Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example
Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $\quad I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}
$$

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $\quad I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}=\int \frac{d x}{|x| \sqrt{2 x+3}}
$$

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}=\int \frac{d x}{|x| \sqrt{2 x+3}}=\int \frac{d x}{x \sqrt{2 x+3}}
$$

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}=\int \frac{d x}{|x| \sqrt{2 x+3}}=\int \frac{d x}{x \sqrt{2 x+3}}
$$

where we used that $x>0$.

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}=\int \frac{d x}{|x| \sqrt{2 x+3}}=\int \frac{d x}{x \sqrt{2 x+3}}
$$

where we used that $x>0$. Notice that the denominator does not vanishes for $x>0$.

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}=\int \frac{d x}{|x| \sqrt{2 x+3}}=\int \frac{d x}{x \sqrt{2 x+3}}
$$

where we used that $x>0$. Notice that the denominator does not vanishes for $x>0$. After looking for a while in the integration tables at the end of the textbook, we find the entry (13b):

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c
$$

Using Integration tables

Example
Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: Recall: $I=\int \frac{d x}{x \sqrt{2 x+3}}$ and from the table,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c
$$

Using Integration tables

Example
Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: Recall: $I=\int \frac{d x}{x \sqrt{2 x+3}}$ and from the table,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c .
$$

We can use this formula for $a=2$ and $b=3$.

Using Integration tables

Example
Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: Recall: $I=\int \frac{d x}{x \sqrt{2 x+3}}$ and from the table,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c .
$$

We can use this formula for $a=2$ and $b=3$. We conclude that

$$
\int \frac{d x}{x \sqrt{2 x+3}}=\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{2 x+3}-\sqrt{3}}{\sqrt{2 x+3}+\sqrt{3}}\right|+c .
$$

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.
Example
Evaluate $\quad I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.
Example
Evaluate $\quad I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution: We can rewrite the integral as

$$
I=\int \frac{d x}{\sqrt{x^{4}(4 x+9)}}
$$

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.
Example
Evaluate $\quad I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution: We can rewrite the integral as

$$
I=\int \frac{d x}{\sqrt{x^{4}(4 x+9)}}=\int \frac{d x}{x^{2} \sqrt{(4 x+9)}} .
$$

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.
Example
Evaluate $I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution: We can rewrite the integral as

$$
I=\int \frac{d x}{\sqrt{x^{4}(4 x+9)}}=\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}
$$

Entry (15) in the integration tables at the end of the textbook is

$$
\int \frac{d x}{x^{2} \sqrt{a x+b}}=-\frac{\sqrt{a x+b}}{b x}-\frac{a}{2 b} \int \frac{d x}{x \sqrt{a x+b}}
$$

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.
Example
Evaluate $I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution: We can rewrite the integral as

$$
I=\int \frac{d x}{\sqrt{x^{4}(4 x+9)}}=\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}
$$

Entry (15) in the integration tables at the end of the textbook is

$$
\int \frac{d x}{x^{2} \sqrt{a x+b}}=-\frac{\sqrt{a x+b}}{b x}-\frac{a}{2 b} \int \frac{d x}{x \sqrt{a x+b}}
$$

This formula relates a complicated integral to a simpler integral.

$$
\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9} \int \frac{d x}{x \sqrt{4 x+9}}
$$

Reduction formulas

Example
Evaluate $I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution:
Recall: $\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9} \int \frac{d x}{x \sqrt{4 x+9}}$.

Reduction formulas

Example
Evaluate $I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution:
Recall: $\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9} \int \frac{d x}{x \sqrt{4 x+9}}$.
We now use the entry (13b) again,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c
$$

Reduction formulas

Example
Evaluate $I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution:
Recall: $\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9} \int \frac{d x}{x \sqrt{4 x+9}}$.
We now use the entry (13b) again,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c,
$$

and we get

$$
I=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9}\left[\frac{1}{3} \ln \left|\frac{\sqrt{4 x+9}-3}{\sqrt{4 x+9}+3}\right|\right]+c .
$$

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.
- Different programs can provide equivalent, but not identical, expressions for the same integral.

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.
- Different programs can provide equivalent, but not identical, expressions for the same integral.

Example
Use Maple and Mathematica to evaluate $I=\int x^{2} \sqrt{a^{2}+x^{2}} d x$.

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.
- Different programs can provide equivalent, but not identical, expressions for the same integral.

Example

Use Maple and Mathematica to evaluate $I=\int x^{2} \sqrt{a^{2}+x^{2}} d x$.
Solution: Maple gives:

$$
I=\frac{x}{4}\left(a^{2}+x^{2}\right)^{3 / 2}-\frac{a^{2} x}{8} \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right) .
$$

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.
- Different programs can provide equivalent, but not identical, expressions for the same integral.

Example

Use Maple and Mathematica to evaluate $I=\int x^{2} \sqrt{a^{2}+x^{2}} d x$. Solution: Maple gives:

$$
I=\frac{x}{4}\left(a^{2}+x^{2}\right)^{3 / 2}-\frac{a^{2} x}{8} \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right) .
$$

Mathematica gives

$$
\left(\frac{a^{2} x}{8}+\frac{x^{3}}{4}\right) \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)
$$

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.
- Different programs can provide equivalent, but not identical, expressions for the same integral.

Example

Use Maple and Mathematica to evaluate $I=\int x^{2} \sqrt{a^{2}+x^{2}} d x$. Solution: Maple gives:

$$
I=\frac{x}{4}\left(a^{2}+x^{2}\right)^{3 / 2}-\frac{a^{2} x}{8} \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)
$$

Mathematical gives

$$
\left(\frac{a^{2} x}{8}+\frac{x^{3}}{4}\right) \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)
$$

Both expressions define the same function.

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.
- Elementary functions: polynomials, rational powers of quotient of polynomials, trigonometric functions.

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.
- Elementary functions: polynomials, rational powers of quotient of polynomials, trigonometric functions.
- A similar statement is not true for integration.

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.
- Elementary functions: polynomials, rational powers of quotient of polynomials, trigonometric functions.
- A similar statement is not true for integration.
- Example: $f(x)=\int \frac{d x}{x}$ is a new function.

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.
- Elementary functions: polynomials, rational powers of quotient of polynomials, trigonometric functions.
- A similar statement is not true for integration.
- Example: $f(x)=\int \frac{d x}{x}$ is a new function. It is called $\ln (x)$.

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.
- Elementary functions: polynomials, rational powers of quotient of polynomials, trigonometric functions.
- A similar statement is not true for integration.
- Example: $f(x)=\int \frac{d x}{x}$ is a new function. It is called $\ln (x)$.
- In a similar way, the following integrals define new functions:

$$
\begin{array}{rlrl}
\operatorname{erf} & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t, & I_{1} & =\int \sin \left(x^{2}\right) d x, \\
I_{2} & =\int \frac{\sin (x)}{x} d x \\
I_{2} & =\int \sqrt{1+x^{4}} d x, & I_{3} & =\int \frac{e^{x}}{x} d x,
\end{array} I_{4}=\int \frac{d x}{\ln (x)} .
$$

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Limits using L'Hôpital's Rule (Sect. 7.5)

Remarks:

- L'Hôpital's rule applies on limits of the form $L=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ in the case that $f(a)=0$ and $g(a)=0$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Remarks:

- L'Hôpital's rule applies on limits of the form $L=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ in the case that $f(a)=0$ and $g(a)=0$.
- These limits are called indeterminate and denoted as $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Remarks:

- L'Hôpital's rule applies on limits of the form $L=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ in the case that $f(a)=0$ and $g(a)=0$.
- These limits are called indeterminate and denoted as $\frac{0}{0}$.

Theorem
If functions $f, g: I \rightarrow \mathbb{R}$ are differentiable in an open interval containing $x=a$, with $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ for $x \in I-\{a\}$, then holds

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

assuming the limit on the right-hand side exists.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.
The limit is indeterminate, $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.
The limit is indeterminate, $\frac{0}{0}$. But,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.
The limit is indeterminate, $\frac{0}{0}$. But,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.
The limit is indeterminate, $\frac{0}{0}$. But,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=1
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example

Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.
The limit is indeterminate, $\frac{0}{0}$. But,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=1
$$

We conclude $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x} .
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x} .
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}=\frac{(-1 / 4)}{2}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}=\frac{(-1 / 4)}{2}
$$

We conclude that $L=-\frac{1}{8}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: The limit is indeterminate, $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(x-x \cos (6 x))}{(7 x-\sin (7 x))}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(x-x \cos (6 x))}{(7 x-\sin (7 x))}=\lim _{x \rightarrow 0} \frac{1-\cos (6 x)+6 x \sin (6 x)}{(7-7 \cos (7 x))}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(x-x \cos (6 x))}{(7 x-\sin (7 x))}=\lim _{x \rightarrow 0} \frac{1-\cos (6 x)+6 x \sin (6 x)}{(7-7 \cos (7 x))}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(x-x \cos (6 x))}{(7 x-\sin (7 x))}=\lim _{x \rightarrow 0} \frac{1-\cos (6 x)+6 x \sin (6 x)}{(7-7 \cos (7 x))}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.
This limit is still indeterminate, $\frac{0}{0}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.

Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.
This limit is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a third time,

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.

Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.
This limit is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a third time,

$$
L=\lim _{x \rightarrow 0} \frac{2\left(6^{2}\right) \cos (6 x)+6^{2} \cos (6 x)+6^{3} x \sin (6 x)}{7^{3} \cos (7 x)}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.

Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.
This limit is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a third time,

$$
L=\lim _{x \rightarrow 0} \frac{2\left(6^{2}\right) \cos (6 x)+6^{2} \cos (6 x)+6^{3} x \sin (6 x)}{7^{3} \cos (7 x)}=\frac{3\left(6^{2}\right)}{7^{3}}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.

Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.
This limit is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a third time,

$$
L=\lim _{x \rightarrow 0} \frac{2\left(6^{2}\right) \cos (6 x)+6^{2} \cos (6 x)+6^{3} x \sin (6 x)}{7^{3} \cos (7 x)}=\frac{3\left(6^{2}\right)}{7^{3}}
$$

We conclude that $L=\frac{3\left(6^{2}\right)}{7^{3}}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

- Review: L'Hôpital's rule for indeterminate limits $\frac{0}{0}$.
- Indeterminate limit $\frac{\infty}{\infty}$.
- Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.
- Overview of improper integrals (Sect. 8.7).

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remarks:

- L'Hôpital's rule applies on limits of the form $L=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ in the case that both $f(a)=0$ and $g(a)=0$.
- These limits are called indeterminate and denoted as $\frac{0}{0}$.

Theorem
If functions $f, g: I \rightarrow \mathbb{R}$ are differentiable in an open interval containing $x=a$, with $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ for $x \in I-\{a\}$, then holds

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

assuming the limit on the right-hand side exists.

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$.

Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}=\frac{(-1 / 4)}{2}
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}=\frac{(-1 / 4)}{2}
$$

We conclude that $L=-\frac{1}{8}$.

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$

Remark: L'Hôpital's rule applies to indeterminate limits only.

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$.

Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}
$$

Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}
$$

Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1}
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

Remark:

- The limit $\frac{0}{1}$ is not indeterminate,

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

Remark:

- The limit $\frac{0}{1}$ is not indeterminate, since $\frac{0}{1}=0$.

Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

Remark:

- The limit $\frac{0}{1}$ is not indeterminate, since $\frac{0}{1}=0$.
- Therefore, L'Hôpital's rule does not hold in this case:

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

Remark:

- The limit $\frac{0}{1}$ is not indeterminate, since $\frac{0}{1}=0$.
- Therefore, L'Hôpital's rule does not hold in this case:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x} \neq \lim _{x \rightarrow 0} \frac{(\sin (x))^{\prime}}{(1+2 x)^{\prime}}
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

Remark:

- The limit $\frac{0}{1}$ is not indeterminate, since $\frac{0}{1}=0$.
- Therefore, L'Hôpital's rule does not hold in this case:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x} \neq \lim _{x \rightarrow 0} \frac{(\sin (x))^{\prime}}{(1+2 x)^{\prime}}=\lim _{x \rightarrow 0} \frac{\cos (x)}{2}
$$

L'Hôpital's rule for indeterminate limits $\frac{0}{0}$
Remark: L'Hôpital's rule applies to indeterminate limits only.
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}$.
Solution: The limit is indeterminate $\frac{0}{0}$. L'Hôpital's rule implies,

$$
L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x}=\frac{0}{1} \Rightarrow L=0
$$

Remark:

- The limit $\frac{0}{1}$ is not indeterminate, since $\frac{0}{1}=0$.
- Therefore, L'Hôpital's rule does not hold in this case:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{1+2 x} \neq \lim _{x \rightarrow 0} \frac{(\sin (x))^{\prime}}{(1+2 x)^{\prime}}=\lim _{x \rightarrow 0} \frac{\cos (x)}{2}=\frac{1}{2}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

- Review: L'Hôpital's rule for indeterminate limits $\frac{0}{0}$.
- Indeterminate limit $\frac{\infty}{\infty}$.
- Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.
- Overview of improper integrals (Sect. 8.7).

Indeterminate limit $\frac{\infty}{\infty}$
Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$.

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(2+\tan (x))^{\prime}}{(3+\sec (x))^{\prime}}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(2+\tan (x))^{\prime}}{(3+\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(2+\tan (x))^{\prime}}{(3+\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(2+\tan (x))^{\prime}}{(3+\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}
$$

Since $\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(2+\tan (x))^{\prime}}{(3+\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}
$$

Since $\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}=\frac{1}{\sin (x)}$,

Indeterminate limit $\frac{\infty}{\infty}$

Remark: L'Hôpital's rule can be generalized to limits $\frac{\infty}{\infty}$, and also to side limits.

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{2+\tan (x)}{3+\sec (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(2+\tan (x))^{\prime}}{(3+\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}
$$

Since $\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}=\frac{1}{\sin (x)}$, then $L=1$.

Indeterminate limit $\frac{\infty}{\infty}$

Remark: Sometimes L'Hôpital's rule is not useful.
Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.

Indeterminate limit $\frac{\infty}{\infty}$

Remark: Sometimes L'Hôpital's rule is not useful.
Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: We know that this limit can be computed simplifying:

Indeterminate limit $\frac{\infty}{\infty}$

Remark: Sometimes L'Hôpital's rule is not useful.
Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: We know that this limit can be computed simplifying:

$$
\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: Sometimes L'Hôpital's rule is not useful.
Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: We know that this limit can be computed simplifying:

$$
\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}=\frac{1}{\sin (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: Sometimes L'Hôpital's rule is not useful.
Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: We know that this limit can be computed simplifying:

$$
\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}=\frac{1}{\sin (x)} \Rightarrow L=1
$$

Indeterminate limit $\frac{\infty}{\infty}$

Remark: Sometimes L'Hôpital's rule is not useful.
Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: We know that this limit can be computed simplifying:

$$
\frac{\sec (x)}{\tan (x)}=\frac{1}{\cos (x)} \frac{\cos (x)}{\sin (x)}=\frac{1}{\sin (x)} \quad \Rightarrow \quad L=1
$$

We now try to compute this limit using L'Hôpital's rule.

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$.

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\tan (x)}{\sec (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\tan (x)}{\sec (x)}
$$

The later limit is once again indeterminate, $\frac{\infty}{\infty}$.

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\tan (x)}{\sec (x)} .
$$

The later limit is once again indeterminate, $\frac{\infty}{\infty}$. Then

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\tan (x))^{\prime}}{(\sec (x))^{\prime}}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\tan (x)}{\sec (x)}
$$

The later limit is once again indeterminate, $\frac{\infty}{\infty}$. Then

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\tan (x))^{\prime}}{(\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\tan (x)}{\sec (x)}
$$

The later limit is once again indeterminate, $\frac{\infty}{\infty}$. Then

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\tan (x))^{\prime}}{(\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example

Evaluate $L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\sec (x))^{\prime}}{(\tan (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x) \tan (x)}{\sec ^{2}(x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\tan (x)}{\sec (x)}
$$

The later limit is once again indeterminate, $\frac{\infty}{\infty}$. Then

$$
L=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{(\tan (x))^{\prime}}{(\sec (x))^{\prime}}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec ^{2}(x)}{\sec (x) \tan (x)}=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \frac{\sec (x)}{\tan (x)}
$$

L'Hôpital's rule gives us a cycling expression.

Indeterminate limit $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.

Indeterminate limit $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$.

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5\right)^{\prime}}{\left(2 x^{2}-x+3\right)^{\prime}}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5\right)^{\prime}}{\left(2 x^{2}-x+3\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{6 x}{4 x-1}
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5\right)^{\prime}}{\left(2 x^{2}-x+3\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{6 x}{4 x-1}=\lim _{x \rightarrow \infty}\left(\frac{6}{4-\frac{1}{x}}\right) .
$$

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5\right)^{\prime}}{\left(2 x^{2}-x+3\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{6 x}{4 x-1}=\lim _{x \rightarrow \infty}\left(\frac{6}{4-\frac{1}{x}}\right) .
$$

Recalling $\lim _{x \rightarrow \infty} \frac{1}{x}=0$,

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5\right)^{\prime}}{\left(2 x^{2}-x+3\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{6 x}{4 x-1}=\lim _{x \rightarrow \infty}\left(\frac{6}{4-\frac{1}{x}}\right) .
$$

Recalling $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, we get that $L=\frac{6}{4}$.

Indeterminate limit $\frac{\infty}{\infty}$

Example
Evaluate $L=\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}$.
Solution: This is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
L=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-5\right)^{\prime}}{\left(2 x^{2}-x+3\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{6 x}{4 x-1}=\lim _{x \rightarrow \infty}\left(\frac{6}{4-\frac{1}{x}}\right) .
$$

Recalling $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, we get that $L=\frac{6}{4}$. We conclude that

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x^{2}-x+3}=\frac{3}{2} .
$$

Limits using L'Hôpital's Rule (Sect. 7.5)

- Review: L'Hôpital's rule for indeterminate limits $\frac{0}{0}$.
- Indeterminate limit $\frac{\infty}{\infty}$.
- Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.
- Overview of improper integrals (Sect. 8.7).

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Remark: Sometimes limits of the form $\infty \cdot 0$ and $(\infty-\infty)$ can be converted by algebraic identities into indeterminate limits $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Remark: Sometimes limits of the form $\infty \cdot 0$ and $(\infty-\infty)$ can be converted by algebraic identities into indeterminate limits $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: This is a limit of the form $(\infty-\infty)$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Remark: Sometimes limits of the form $\infty \cdot 0$ and $(\infty-\infty)$ can be converted by algebraic identities into indeterminate limits $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: This is a limit of the form $(\infty-\infty)$. Since

$$
\frac{1}{\sin (x)}-\frac{1}{x}=\frac{x-\sin (x)}{x \sin (x)}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Remark: Sometimes limits of the form $\infty \cdot 0$ and $(\infty-\infty)$ can be converted by algebraic identities into indeterminate limits $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: This is a limit of the form $(\infty-\infty)$. Since

$$
\frac{1}{\sin (x)}-\frac{1}{x}=\frac{x-\sin (x)}{x \sin (x)} \Rightarrow \text { indeterminate } \frac{0}{0}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Remark: Sometimes limits of the form $\infty \cdot 0$ and $(\infty-\infty)$ can be converted by algebraic identities into indeterminate limits $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: This is a limit of the form $(\infty-\infty)$. Since

$$
\frac{1}{\sin (x)}-\frac{1}{x}=\frac{x-\sin (x)}{x \sin (x)} \Rightarrow \text { indeterminate } \frac{0}{0}
$$

Then L'Hôpital's rule in this case implies

$$
L=\lim _{x \rightarrow 0} \frac{(x-\sin (x))^{\prime}}{(x \sin (x))^{\prime}}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Remark: Sometimes limits of the form $\infty \cdot 0$ and $(\infty-\infty)$ can be converted by algebraic identities into indeterminate limits $\frac{0}{0}$ or $\frac{\infty}{\infty}$
Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: This is a limit of the form $(\infty-\infty)$. Since

$$
\frac{1}{\sin (x)}-\frac{1}{x}=\frac{x-\sin (x)}{x \sin (x)} \Rightarrow \text { indeterminate } \frac{0}{0}
$$

Then L'Hôpital's rule in this case implies

$$
L=\lim _{x \rightarrow 0} \frac{(x-\sin (x))^{\prime}}{(x \sin (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.
This limit is still indeterminate $\frac{0}{0}$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.
This limit is still indeterminate $\frac{0}{0}$. Hence
$L=\lim _{x \rightarrow 0} \frac{(1-\cos (x))^{\prime}}{(\sin (x)+x \cos (x))^{\prime}}$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.
This limit is still indeterminate $\frac{0}{0}$. Hence

$$
L=\lim _{x \rightarrow 0} \frac{(1-\cos (x))^{\prime}}{(\sin (x)+x \cos (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 \cos (x)-x \sin (x))^{\prime}}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.
This limit is still indeterminate $\frac{0}{0}$. Hence

$$
L=\lim _{x \rightarrow 0} \frac{(1-\cos (x))^{\prime}}{(\sin (x)+x \cos (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 \cos (x)-x \sin (x))^{\prime}}=\frac{0}{2}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.
This limit is still indeterminate $\frac{0}{0}$. Hence

$$
L=\lim _{x \rightarrow 0} \frac{(1-\cos (x))^{\prime}}{(\sin (x)+x \cos (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 \cos (x)-x \sin (x))^{\prime}}=\frac{0}{2}=0 .
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution: Recall $L=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)+x \cos (x)}$.
This limit is still indeterminate $\frac{0}{0}$. Hence
$L=\lim _{x \rightarrow 0} \frac{(1-\cos (x))^{\prime}}{(\sin (x)+x \cos (x))^{\prime}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 \cos (x)-x \sin (x))^{\prime}}=\frac{0}{2}=0$.
We conclude that $L=0$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example
Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function,

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)} .
$$

The exponent, is an indeterminate limit $\frac{\infty}{\infty}$.

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since \exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)}
$$

The exponent, is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)} .
$$

The exponent, is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow \infty} \frac{2 \ln (3 x)}{x}=\lim _{x \rightarrow \infty} \frac{(2 \ln (3 x))^{\prime}}{(x)^{\prime}}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)} .
$$

The exponent, is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow \infty} \frac{2 \ln (3 x)}{x}=\lim _{x \rightarrow \infty} \frac{(2 \ln (3 x))^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow \infty} \frac{2 / x}{1}
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)} .
$$

The exponent, is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow \infty} \frac{2 \ln (3 x)}{x}=\lim _{x \rightarrow \infty} \frac{(2 \ln (3 x))^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow \infty} \frac{2 / x}{1}=0
$$

Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.

Example

Evaluate $L=\lim _{x \rightarrow \infty}(3 x)^{2 / x}$.
Solution: This limits is of the form ∞^{0}. So, before using L'Hôpital's rule we need to rewrite the function above.

$$
(3 x)^{2 / x}=e^{\ln \left((3 x)^{2 / x}\right)}=e^{\left(\frac{2}{x} \ln (3 x)\right)} .
$$

Since exp is a continuous function, holds

$$
\lim _{x \rightarrow \infty}(3 x)^{2 / x}=e^{\lim _{x \rightarrow \infty}\left(\frac{2}{x} \ln (3 x)\right)}=e^{\lim _{x \rightarrow \infty}\left(\frac{2 \ln (3 x)}{x}\right)}
$$

The exponent, is an indeterminate limit $\frac{\infty}{\infty}$. L'Hôpital's rule implies

$$
\lim _{x \rightarrow \infty} \frac{2 \ln (3 x)}{x}=\lim _{x \rightarrow \infty} \frac{(2 \ln (3 x))^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow \infty} \frac{2 / x}{1}=0
$$

We conclude that $L=e^{0}$, that is, $L=1$.

Limits using L'Hôpital's Rule (Sect. 7.5)

- Review: L'Hôpital's rule for indeterminate limits $\frac{0}{0}$.
- Indeterminate limit $\frac{\infty}{\infty}$.
- Indeterminate limits $\infty \cdot 0$ and $\infty-\infty$.
- Overview of improper integrals (Sect. 8.7).

Overview of improper integrals (Sect. 8.7)

Remarks:

- L'Hôpital's rule is useful to compute improper integrals.

Overview of improper integrals (Sect. 8.7)

Remarks:

- L'Hôpital's rule is useful to compute improper integrals.
- Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Overview of improper integrals (Sect. 8.7)

Remarks:

- L'Hôpital's rule is useful to compute improper integrals.
- Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition
The improper integral of a continuous function $f:[a, \infty) \rightarrow \mathbb{R}$ is

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

Overview of improper integrals (Sect. 8.7)

Remarks:

- L'Hôpital's rule is useful to compute improper integrals.
- Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition

The improper integral of a continuous function $f:[a, \infty) \rightarrow \mathbb{R}$ is

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function $f:(-\infty, b] \rightarrow \mathbb{R}$ is

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

Overview of improper integrals (Sect. 8.7)

Remarks:

- L'Hôpital's rule is useful to compute improper integrals.
- Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition

The improper integral of a continuous function $f:[a, \infty) \rightarrow \mathbb{R}$ is

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function $f:(-\infty, b] \rightarrow \mathbb{R}$ is

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function $f:(-\infty, \infty) \rightarrow \mathbb{R}$,

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Integrating by parts,

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Integrating by parts, $u=\ln (x)$,

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Integrating by parts, $u=\ln (x)$, and $d v=d x / x^{2}$,

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Integrating by parts, $u=\ln (x)$, and $d v=d x / x^{2}$,

$$
\int_{1}^{b} \frac{\ln (x)}{x^{2}} d x=\left.\left(-\frac{1}{x}\right) \ln (x)\right|_{1} ^{b}-\int_{1}^{b}\left(\frac{1}{x}\right)\left(-\frac{1}{x}\right) d x
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Integrating by parts, $u=\ln (x)$, and $d v=d x / x^{2}$,

$$
\begin{aligned}
& \int_{1}^{b} \frac{\ln (x)}{x^{2}} d x=\left.\left(-\frac{1}{x}\right) \ln (x)\right|_{1} ^{b}-\int_{1}^{b}\left(\frac{1}{x}\right)\left(-\frac{1}{x}\right) d x \\
& \int_{1}^{b} \frac{\ln (x)}{x^{2}} d x=-\frac{\ln (b)}{b}+\int_{1}^{b} \frac{d x}{x^{2}}
\end{aligned}
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln (x)}{x^{2}}
$$

Integrating by parts, $u=\ln (x)$, and $d v=d x / x^{2}$,

$$
\begin{aligned}
& \int_{1}^{b} \frac{\ln (x)}{x^{2}} d x=\left.\left(-\frac{1}{x}\right) \ln (x)\right|_{1} ^{b}-\int_{1}^{b}\left(\frac{1}{x}\right)\left(-\frac{1}{x}\right) d x \\
& \int_{1}^{b} \frac{\ln (x)}{x^{2}} d x=-\frac{\ln (b)}{b}+\int_{1}^{b} \frac{d x}{x^{2}}=-\frac{\ln (b)}{b}-\left.\frac{1}{x}\right|_{1} ^{b} .
\end{aligned}
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $\quad I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.
The first limit on the right-hand side is indeterminate $\frac{\infty}{\infty}$.

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.
The first limit on the right-hand side is indeterminate $\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{b \rightarrow \infty} \frac{\ln (b)}{b}=\lim _{b \rightarrow \infty} \frac{(\ln (b))^{\prime}}{(b)^{\prime}}
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $\quad I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.
The first limit on the right-hand side is indeterminate $\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{b \rightarrow \infty} \frac{\ln (b)}{b}=\lim _{b \rightarrow \infty} \frac{(\ln (b))^{\prime}}{(b)^{\prime}}=\lim _{b \rightarrow \infty} \frac{(1 / b)}{1}
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $\quad I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.
The first limit on the right-hand side is indeterminate $\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{b \rightarrow \infty} \frac{\ln (b)}{b}=\lim _{b \rightarrow \infty} \frac{(\ln (b))^{\prime}}{(b)^{\prime}}=\lim _{b \rightarrow \infty} \frac{(1 / b)}{1}=0
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.
The first limit on the right-hand side is indeterminate $\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{b \rightarrow \infty} \frac{\ln (b)}{b}=\lim _{b \rightarrow \infty} \frac{(\ln (b))^{\prime}}{(b)^{\prime}}=\lim _{b \rightarrow \infty} \frac{(1 / b)}{1}=0
$$

Therefore, the improper integral is given by

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=0-0+1
$$

Overview of improper integrals (Sect. 8.7)

Example
Evaluate $I=\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x$.
Solution: Recall: $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{b \rightarrow \infty}\left(-\frac{\ln (b)}{b}-\frac{1}{b}+1\right)$.
The first limit on the right-hand side is indeterminate $\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{b \rightarrow \infty} \frac{\ln (b)}{b}=\lim _{b \rightarrow \infty} \frac{(\ln (b))^{\prime}}{(b)^{\prime}}=\lim _{b \rightarrow \infty} \frac{(1 / b)}{1}=0
$$

Therefore, the improper integral is given by

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=0-0+1 \Rightarrow \int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=1
$$

Improper integrals (Sect. 8.7)

This class:

- Integrals on infinite domains (Type I).
- The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$.
- Integrands with vertical asymptotes (Type II).
- The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$.

Next class:

- Convergence tests:
- Direct comparison test.
- Limit comparison test.
- Examples.

Improper integrals (Sect. 8.7)

- Integrals on infinite domains (Type I).
- The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$.
- Integrands with vertical asymptotes (Type II).
- The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$.

Integrals on infinite domains (Type I)

Remark: Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Integrals on infinite domains (Type I)

Remark: Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition (Type I)
Improper integrals of Type I are integrals of continuous functions on infinite domains;

Integrals on infinite domains (Type I)

Remark: Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition (Type I)
Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function f on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

Integrals on infinite domains (Type I)

Remark: Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition (Type I)

Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function f on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function f on $(-\infty, b]$,

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

Integrals on infinite domains (Type I)

Remark: Improper integrals are the limit of definite integrals when one endpoint if integration approaches $\pm \infty$.

Definition (Type I)

Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function f on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function f on $(-\infty, b]$,

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function f on $(-\infty, \infty)$,

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

Integrals on infinite domains (Type I)

Example

Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrals on infinite domains (Type I)

Example

Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrating by parts,

Integrals on infinite domains (Type I)

Example

Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrating by parts, $u=\ln (|x|)$,

Integrals on infinite domains (Type I)

Example

Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrating by parts, $u=\ln (|x|)$, and $d v=d x / x^{2}$,

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrating by parts, $u=\ln (|x|)$, and $d v=d x / x^{2}$,

$$
\int_{a}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\left.\left(-\frac{1}{x}\right) \ln (|x|)\right|_{a} ^{-1}-\int_{a}^{-1}\left(\frac{1}{x}\right)\left(-\frac{1}{x}\right) d x
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrating by parts, $u=\ln (|x|)$, and $d v=d x / x^{2}$,

$$
\begin{aligned}
& \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\left.\left(-\frac{1}{x}\right) \ln (|x|)\right|_{a} ^{-1}-\int_{a}^{-1}\left(\frac{1}{x}\right)\left(-\frac{1}{x}\right) d x \\
& \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\frac{\ln (|a|)}{a}+\int_{a}^{-1} \frac{d x}{x^{2}}
\end{aligned}
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: This is an improper integral:

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{\ln (|x|)}{x^{2}}
$$

Integrating by parts, $u=\ln (|x|)$, and $d v=d x / x^{2}$,

$$
\begin{gathered}
\int_{a}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\left.\left(-\frac{1}{x}\right) \ln (|x|)\right|_{a} ^{-1}-\int_{a}^{-1}\left(\frac{1}{x}\right)\left(-\frac{1}{x}\right) d x \\
\int_{a}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\frac{\ln (|a|)}{a}+\int_{a}^{-1} \frac{d x}{x^{2}}=\frac{\ln (|a|)}{a}-\left.\frac{1}{x}\right|_{a} ^{-1} .
\end{gathered}
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.
The first limit on the right-hand side is indeterminate $-\frac{\infty}{\infty}$.

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.
The first limit on the right-hand side is indeterminate $-\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{a \rightarrow-\infty} \frac{\ln (|a|)}{a}=\lim _{a \rightarrow-\infty} \frac{(\ln (|a|))^{\prime}}{(a)^{\prime}}
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.
The first limit on the right-hand side is indeterminate $-\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{a \rightarrow-\infty} \frac{\ln (|a|)}{a}=\lim _{a \rightarrow-\infty} \frac{(\ln (|a|))^{\prime}}{(a)^{\prime}}=\lim _{a \rightarrow-\infty} \frac{(1 / a)}{1}
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.
The first limit on the right-hand side is indeterminate $-\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{a \rightarrow-\infty} \frac{\ln (|a|)}{a}=\lim _{a \rightarrow-\infty} \frac{(\ln (|a|))^{\prime}}{(a)^{\prime}}=\lim _{a \rightarrow-\infty} \frac{(1 / a)}{1}=0
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.
The first limit on the right-hand side is indeterminate $-\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{a \rightarrow-\infty} \frac{\ln (|a|)}{a}=\lim _{a \rightarrow-\infty} \frac{(\ln (|a|))^{\prime}}{(a)^{\prime}}=\lim _{a \rightarrow-\infty} \frac{(1 / a)}{1}=0 .
$$

Therefore, the improper integral is given by

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=0+1+0
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x$.
Solution: Recall: $\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=\lim _{a \rightarrow-\infty}\left(\frac{\ln (|a|)}{a}+1+\frac{1}{a}\right)$.
The first limit on the right-hand side is indeterminate $-\frac{\infty}{\infty}$.
L'Hôpital's rule implies

$$
\lim _{a \rightarrow-\infty} \frac{\ln (|a|)}{a}=\lim _{a \rightarrow-\infty} \frac{(\ln (|a|))^{\prime}}{(a)^{\prime}}=\lim _{a \rightarrow-\infty} \frac{(1 / a)}{1}=0 .
$$

Therefore, the improper integral is given by

$$
\int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=0+1+0 \Rightarrow \int_{-\infty}^{-1} \frac{\ln (|x|)}{x^{2}} d x=1 .
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit.

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral,

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}
$$

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)}
$$

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)} \Rightarrow 2=a(x-2)+b x
$$

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)} \quad \Rightarrow \quad 2=a(x-2)+b x .
$$

Then $a=-1$,

Integrals on infinite domains (Type I)
Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)} \Rightarrow 2=a(x-2)+b x
$$

Then $a=-1$, and $b=1$.

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)} \quad \Rightarrow \quad 2=a(x-2)+b x .
$$

Then $a=-1$, and $b=1$. Hence

$$
\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=-\int_{3}^{b} \frac{d x}{x}+\int_{3}^{b} \frac{d x}{x-2}
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)} \quad \Rightarrow \quad 2=a(x-2)+b x .
$$

Then $a=-1$, and $b=1$. Hence

$$
\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=-\int_{3}^{b} \frac{d x}{x}+\int_{3}^{b} \frac{d x}{x-2}=\left.[-\ln x+\ln (x-2)]\right|_{3} ^{b} .
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$.
Solution: Recall: $I=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{2}{x^{2}-2 x} d x$.
First integrate, then the limit. For the integral, partial fractions:

$$
\frac{2}{x^{2}-2 x}=\frac{2}{x(x-2)}=\frac{a}{x}+\frac{b}{(x-2)} \quad \Rightarrow \quad 2=a(x-2)+b x .
$$

Then $a=-1$, and $b=1$. Hence

$$
\begin{gathered}
\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=-\int_{3}^{b} \frac{d x}{x}+\int_{3}^{b} \frac{d x}{x-2}=\left.[-\ln x+\ln (x-2)]\right|_{3} ^{b} . \\
\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3) .
\end{gathered}
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$
Solution: Recall: $\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3)$.

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$
Solution: Recall: $\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3)$.
Therefore, the improper integral is

$$
I=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{b-2}{b}\right)+\ln (3)\right] .
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$
Solution: Recall: $\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3)$.
Therefore, the improper integral is

$$
I=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{b-2}{b}\right)+\ln (3)\right] .
$$

The natural log function is continuous,

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$
Solution: Recall: $\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3)$.
Therefore, the improper integral is

$$
I=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{b-2}{b}\right)+\ln (3)\right] .
$$

The natural log function is continuous,

$$
I=\ln \left(\lim _{b \rightarrow \infty} \frac{b-2}{b}\right)+\ln (3)
$$

Integrals on infinite domains (Type I)

Example
Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$
Solution: Recall: $\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3)$.
Therefore, the improper integral is

$$
I=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{b-2}{b}\right)+\ln (3)\right] .
$$

The natural log function is continuous,

$$
I=\ln \left(\lim _{b \rightarrow \infty} \frac{b-2}{b}\right)+\ln (3)=\ln (1)+\ln (3)
$$

Integrals on infinite domains (Type I)

Example

Evaluate $I=\int_{3}^{\infty} \frac{2}{x^{2}-2 x} d x$
Solution: Recall: $\int_{3}^{b} \frac{2}{x^{2}-2 x} d x=\ln (1 / b)+\ln (b-2)+\ln (3)$.
Therefore, the improper integral is

$$
I=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{b-2}{b}\right)+\ln (3)\right] .
$$

The natural log function is continuous,

$$
I=\ln \left(\lim _{b \rightarrow \infty} \frac{b-2}{b}\right)+\ln (3)=\ln (1)+\ln (3) .
$$

We then conclude that $I=\ln (3)$.

Improper integrals (Sect. 8.7)

- Integrals on infinite domains (Type I).
- The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$.
- Integrands with vertical asymptotes (Type II).
- The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$.

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $I=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-p} d x$

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $I=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-p} d x=\lim _{b \rightarrow \infty}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{1} ^{b}\right]$.

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $I=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-p} d x=\lim _{b \rightarrow \infty}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{1} ^{b}\right]$.

$$
I=\frac{(-1)}{(p-1)}\left[\lim _{b \rightarrow \infty} \frac{1}{b^{(p-1)}}-1\right]
$$

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $I=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-p} d x=\lim _{b \rightarrow \infty}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{1} ^{b}\right]$.

$$
I=\frac{(-1)}{(p-1)}\left[\lim _{b \rightarrow \infty} \frac{1}{b^{(p-1)}}-1\right] \Rightarrow \begin{cases}I \text { diverges } & p<1, \\ I=\frac{1}{p-1} & p>1 .\end{cases}
$$

The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $I=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-p} d x=\lim _{b \rightarrow \infty}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{1} ^{b}\right]$.

$$
I=\frac{(-1)}{(p-1)}\left[\lim _{b \rightarrow \infty} \frac{1}{b^{(p-1)}}-1\right] \Rightarrow \begin{cases}I \text { diverges } & p<1, \\ I=\frac{1}{p-1} & p>1 .\end{cases}
$$

In the case $p=1$ the integral diverges since $I=\lim _{b \rightarrow \infty} \ln (b)$.

Improper integrals (Sect. 8.7)

- Integrals on infinite domains (Type I).
- The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$.
- Integrands with vertical asymptotes (Type II).
- The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$.

Integrands with vertical asymptotes (Type II)

Definition (Type II)
Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval;

Integrands with vertical asymptotes (Type II)

Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:
If f is continuous on $(a, b]$ and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

Integrands with vertical asymptotes (Type II)

Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:
If f is continuous on $(a, b]$ and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

If f is continuous on $[a, b)$ and discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

Integrands with vertical asymptotes (Type II)

Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:
If f is continuous on $(a, b]$ and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

If f is continuous on $[a, b)$ and discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

If f is continuous on $[a, c) \cup(c, b]$ and discontinuous at c, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Integrands with vertical asymptotes (Type II)

Example

Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.
Solution: Recall: $\quad I=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2} d x$.

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.
Solution: Recall: $\quad I=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2} d x$.
We first integrate, then we take the limit.

Integrands with vertical asymptotes (Type II)

Example

Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.
Solution: Recall: $\quad I=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2} d x$.
We first integrate, then we take the limit. The integral is

$$
\int_{0}^{c}(1-x)^{-2} d x=\left.(1-x)^{-1}\right|_{0} ^{c}
$$

Integrands with vertical asymptotes (Type II)

Example

Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.
Solution: Recall: $\quad I=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2} d x$.
We first integrate, then we take the limit. The integral is

$$
\int_{0}^{c}(1-x)^{-2} d x=\left.(1-x)^{-1}\right|_{0} ^{c}=\frac{1}{(1-c)}-1 .
$$

Integrands with vertical asymptotes (Type II)

Example

Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.
Solution: Recall: $\quad I=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2} d x$.
We first integrate, then we take the limit. The integral is

$$
\int_{0}^{c}(1-x)^{-2} d x=\left.(1-x)^{-1}\right|_{0} ^{c}=\frac{1}{(1-c)}-1 .
$$

We now take the limit,

$$
I=\lim _{c \rightarrow 1^{-}} \frac{1}{(1-c)}-1
$$

Integrands with vertical asymptotes (Type II)

Example

Evaluate $I=\int_{0}^{1} \frac{d x}{(1-x)^{2}}$.
Solution: Recall: $\quad I=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2} d x$.
We first integrate, then we take the limit. The integral is

$$
\int_{0}^{c}(1-x)^{-2} d x=\left.(1-x)^{-1}\right|_{0} ^{c}=\frac{1}{(1-c)}-1 .
$$

We now take the limit,

$$
I=\lim _{c \rightarrow 1^{-}} \frac{1}{(1-c)}-1 .
$$

We conclude that / diverges.

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution:
Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution:
Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The first integral is given by
$\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2 / 5} d x$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution:
Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The first integral is given by
$\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{-}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{0} ^{c}$,

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution:
Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The first integral is given by
$\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{-}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{0} ^{c}$,

$$
\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}=-\frac{5}{3} \lim _{c \rightarrow 1^{-}}(1-c)^{3 / 5}+\frac{5}{3}
$$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution:
Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The first integral is given by
$\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{-}} \int_{0}^{c}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{-}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{0} ^{c}$,

$$
\int_{0}^{1} \frac{d x}{(1-x)^{2 / 5}}=-\frac{5}{3} \lim _{c \rightarrow 1^{-}}(1-c)^{3 / 5}+\frac{5}{3}=\frac{5}{3} .
$$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution: Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution: Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The second integral is given by
$\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{+}} \int_{c}^{2}(1-x)^{-2 / 5} d x$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution: Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The second integral is given by

$$
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{+}} \int_{c}^{2}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{+}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{c} ^{2},
$$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution: Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The second integral is given by

$$
\begin{gathered}
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{+}} \int_{c}^{2}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{+}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{c} ^{2}, \\
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\frac{5}{3} \lim _{c \rightarrow 1^{+}}(1-c)^{3 / 5}
\end{gathered}
$$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution: Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The second integral is given by

$$
\begin{gathered}
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{+}} \int_{c}^{2}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{+}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{c} ^{2}, \\
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\frac{5}{3} \lim _{c \rightarrow 1^{+}}(1-c)^{3 / 5}=\frac{5}{3} .
\end{gathered}
$$

Integrands with vertical asymptotes (Type II)

Example
Evaluate $I=\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
Solution: Recall: $\int_{0}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}$.
The second integral is given by

$$
\begin{gathered}
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\lim _{c \rightarrow 1^{+}} \int_{c}^{2}(1-x)^{-2 / 5} d x=\lim _{c \rightarrow 1^{+}}-\left.\frac{5}{3}(1-x)^{3 / 5}\right|_{c} ^{2}, \\
\int_{1}^{2} \frac{d x}{(1-x)^{2 / 5}}=\frac{5}{3}+\frac{5}{3} \lim _{c \rightarrow 1^{+}}(1-c)^{3 / 5}=\frac{5}{3} .
\end{gathered}
$$

We conclude: $\quad I=\frac{10}{3}$.

Improper integrals (Sect. 8.7)

- Integrals on infinite domains (Type I).
- The case $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$.
- Integrands with vertical asymptotes (Type II).
- The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$.

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $\quad I=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-p} d x$

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $\quad I=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-p} d x=\lim _{a \rightarrow 0^{+}}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{a} ^{1}\right]$.

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $I=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-p} d x=\lim _{a \rightarrow 0^{+}}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{a} ^{1}\right]$.

$$
I=\frac{(-1)}{(p-1)}\left[1-\lim _{a \rightarrow 0^{+}} \frac{1}{a^{(p-1)}}\right]
$$

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $\quad I=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-p} d x=\lim _{a \rightarrow 0^{+}}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{a} ^{1}\right]$.

$$
I=\frac{(-1)}{(p-1)}\left[1-\lim _{a \rightarrow 0^{+}} \frac{1}{a^{(p-1)}}\right] \Rightarrow \begin{cases}I=\frac{1}{1-p} & p<1 \\ I \text { diverges } & p>1\end{cases}
$$

The case $I=\int_{0}^{1} \frac{d x}{x^{p}}$
Example
Evaluate $I=\int_{0}^{1} \frac{d x}{x^{p}}$ for $p>0$.
Solution: We first compute the integral, then take the limit.
For $p \neq 1$, holds $\quad I=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-p} d x=\lim _{a \rightarrow 0^{+}}\left[\left.\frac{x^{(-p+1)}}{(-p+1)}\right|_{a} ^{1}\right]$.

$$
I=\frac{(-1)}{(p-1)}\left[1-\lim _{a \rightarrow 0^{+}} \frac{1}{a^{(p-1)}}\right] \Rightarrow \begin{cases}I=\frac{1}{1-p} & p<1, \\ I \text { diverges } & p>1 .\end{cases}
$$

In the case $p=1$ the integral diverges since $I=\lim _{a \rightarrow 0^{+}} \ln (a)$.

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary:

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}=\frac{1}{1-p} & p<1, \\
\text { diverges } & p>1 .\end{cases} \\
& \int_{1}^{\infty} \frac{d x}{x^{p}}= \begin{cases}\text { diverges } & p<1, \\
=\frac{1}{p-1} & p>1 .\end{cases}
\end{aligned}
$$

In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

