Review for Midterm Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
- Volumes using cross-sections (6.1).
- Arc-length of curves on the plane (6.3).
- Work and fluid forces (6.5).
- The inverse function (7.1).
- The natural logarithm (7.2).
- The exponential function (7.3).

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2]
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2]
$$

one can graph

$$
y=(8 / \pi) \arctan (x)
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2]
$$

one can graph

$$
y=(8 / \pi) \arctan (x)
$$

Notice that

$$
y \in[0,2]
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2],
$$

one can graph

$$
y=(8 / \pi) \arctan (x)
$$

Notice that

$$
y \in[0,2] \Rightarrow x \in[0,1] .
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2]
$$

one can graph

$$
y=(8 / \pi) \arctan (x)
$$

Notice that

$$
y \in[0,2] \Rightarrow x \in[0,1] .
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2]
$$

one can graph

$$
y=(8 / \pi) \arctan (x)
$$

Notice that

$$
y \in[0,2] \Rightarrow x \in[0,1] .
$$

Therefore, $V=\pi \int_{0}^{2}[x(y)]^{2} d y$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution:
To graph the function

$$
x=\tan (\pi y / 8), y \in[0,2],
$$

one can graph

$$
y=(8 / \pi) \arctan (x) .
$$

Notice that

$$
y \in[0,2] \Rightarrow x \in[0,1] .
$$

Therefore, $V=\pi \int_{0}^{2}[x(y)]^{2} d y=\pi \int_{0}^{2}\left[\tan \left(\frac{\pi y}{8}\right)\right]^{2} d y$.

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$.

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$.
Introduce the substitution $u=\pi y / 8$,

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$.
Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$.
Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

$$
V=\pi \frac{8}{\pi} \int_{0}^{\pi / 4} \tan ^{2}(u) d u
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$.
Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

$$
V=\pi \frac{8}{\pi} \int_{0}^{\pi / 4} \tan ^{2}(u) d u=8 \int_{0}^{\pi / 4} \frac{\left[1-\cos ^{2}(u)\right]}{\cos ^{2}(u)} d u
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$. Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

$$
\begin{aligned}
V & =\pi \frac{8}{\pi} \int_{0}^{\pi / 4} \tan ^{2}(u) d u=8 \int_{0}^{\pi / 4} \frac{\left[1-\cos ^{2}(u)\right]}{\cos ^{2}(u)} d u \\
V & =8 \int_{0}^{\pi / 4}\left[\frac{1}{\cos ^{2}(u)}-1\right] d u
\end{aligned}
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$. Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

$$
\begin{gathered}
V=\pi \frac{8}{\pi} \int_{0}^{\pi / 4} \tan ^{2}(u) d u=8 \int_{0}^{\pi / 4} \frac{\left[1-\cos ^{2}(u)\right]}{\cos ^{2}(u)} d u \\
V=8 \int_{0}^{\pi / 4}\left[\frac{1}{\cos ^{2}(u)}-1\right] d u=8 \int_{0}^{\pi / 4}\left[\tan ^{\prime}(u)-1\right] d u .
\end{gathered}
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$. Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

$$
\begin{aligned}
& V=\pi \frac{8}{\pi} \int_{0}^{\pi / 4} \tan ^{2}(u) d u=8 \int_{0}^{\pi / 4} \frac{\left[1-\cos ^{2}(u)\right]}{\cos ^{2}(u)} d u \\
& V=8 \int_{0}^{\pi / 4}\left[\frac{1}{\cos ^{2}(u)}-1\right] d u=8 \int_{0}^{\pi / 4}\left[\tan ^{\prime}(u)-1\right] d u \\
& V=\left.8[\tan (u)-u]\right|_{0} ^{\pi / 4}
\end{aligned}
$$

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y)=\tan (\pi y / 8)$ for $y \in[0,2]$ about the y-axis.

Solution: Recall: $\quad V=\pi \int_{0}^{2} \tan ^{2}\left(\frac{\pi y}{8}\right) d y$. Introduce the substitution $u=\pi y / 8$, so $d u=(\pi / 8) d y$,

$$
\begin{gathered}
V=\pi \frac{8}{\pi} \int_{0}^{\pi / 4} \tan ^{2}(u) d u=8 \int_{0}^{\pi / 4} \frac{\left[1-\cos ^{2}(u)\right]}{\cos ^{2}(u)} d u \\
V=8 \int_{0}^{\pi / 4}\left[\frac{1}{\cos ^{2}(u)}-1\right] d u=8 \int_{0}^{\pi / 4}\left[\tan ^{\prime}(u)-1\right] d u \\
V=\left.8[\tan (u)-u]\right|_{0} ^{\pi / 4} \Rightarrow V=8\left(1-\frac{\pi}{4}\right) .
\end{gathered}
$$

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h.

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h. Solution:

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h. Solution:

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h. Solution:

$$
A(z)=[2 y(z)]^{2}
$$

We must find and invert

$$
z(y)=m y+b .
$$

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h. Solution:

$$
A(z)=[2 y(z)]^{2}
$$

We must find and invert

$$
z(y)=m y+b .
$$

$$
\begin{gathered}
h=z(0)=b, \quad 0=z(a / 2)=m \frac{a}{2}+h \quad \Rightarrow \quad m=-\frac{2 h}{a} . \\
z(y)=-\frac{2 h}{a} y+h \Rightarrow y(z)=-\frac{a}{2 h}(z-h) . \\
V=\int_{0}^{h}\left[-2 \frac{a}{2 h}(z-h)\right]^{2} d z=\frac{a^{2}}{h^{2}}\left[\left.\frac{(z-h)^{3}}{3}\right|_{0} ^{h}\right] \Rightarrow V=\frac{1}{3} a^{2} h .
\end{gathered}
$$

Review for Midterm Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
- Volumes using cross-sections (6.1).
- Arc-length of curves on the plane (6.3).
- Work and fluid forces (6.5).
- The inverse function (7.1).
- The natural logarithm (7.2).
- The exponential function (7.3).

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$.

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}}
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \quad \Rightarrow \quad 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2},
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
\begin{aligned}
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \Rightarrow 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2}, \\
1+\left[y^{\prime}(x)\right]^{2}=x^{4}+\frac{1}{16 x^{4}}+\frac{1}{2}
\end{aligned}
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
\begin{gathered}
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \Rightarrow 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2}, \\
1+\left[y^{\prime}(x)\right]^{2}=x^{4}+\frac{1}{16 x^{4}}+\frac{1}{2}=\left(x^{2}+\frac{1}{4 x^{2}}\right)^{2} .
\end{gathered}
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
\begin{aligned}
& y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \Rightarrow 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2}, \\
& 1+\left[y^{\prime}(x)\right]^{2}=x^{4}+\frac{1}{16 x^{4}}+\frac{1}{2}=\left(x^{2}+\frac{1}{4 x^{2}}\right)^{2} . \\
& L=\int_{1}^{3}\left(x^{2}+\frac{1}{4 x^{2}}\right) d x
\end{aligned}
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
\begin{gathered}
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \Rightarrow 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2}, \\
1+\left[y^{\prime}(x)\right]^{2}=x^{4}+\frac{1}{16 x^{4}}+\frac{1}{2}=\left(x^{2}+\frac{1}{4 x^{2}}\right)^{2} . \\
L=\int_{1}^{3}\left(x^{2}+\frac{1}{4 x^{2}}\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{1}{4 x}\right)\right|_{1} ^{3}
\end{gathered}
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
\begin{gathered}
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \Rightarrow 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2}, \\
1+\left[y^{\prime}(x)\right]^{2}=x^{4}+\frac{1}{16 x^{4}}+\frac{1}{2}=\left(x^{2}+\frac{1}{4 x^{2}}\right)^{2} . \\
L=\int_{1}^{3}\left(x^{2}+\frac{1}{4 x^{2}}\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{1}{4 x}\right)\right|_{1} ^{3}=9-\frac{1}{12}-\frac{1}{3}+\frac{1}{4} .
\end{gathered}
$$

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y=\frac{x^{3}}{3}+\frac{1}{4 x}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{x_{0}}^{x_{1}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$. Find y^{\prime},

$$
\begin{gathered}
y^{\prime}(x)=x^{2}-\frac{1}{4 x^{2}} \Rightarrow 1+\left[y^{\prime}(x)\right]^{2}=1+x^{4}+\frac{1}{16 x^{4}}-\frac{1}{2}, \\
1+\left[y^{\prime}(x)\right]^{2}=x^{4}+\frac{1}{16 x^{4}}+\frac{1}{2}=\left(x^{2}+\frac{1}{4 x^{2}}\right)^{2} . \\
L=\int_{1}^{3}\left(x^{2}+\frac{1}{4 x^{2}}\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{1}{4 x}\right)\right|_{1} ^{3}=9-\frac{1}{12}-\frac{1}{3}+\frac{1}{4} .
\end{gathered}
$$

We conclude that $L=9-1 / 6$.

The main length formula

Example

Find the arc-length of the curve $y=x^{3 / 2}$, for $x \in[0,4]$.

The main length formula

Example

Find the arc-length of the curve $y=x^{3 / 2}$, for $x \in[0,4]$.
Solution: Recall: $L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$. We start with

$$
\begin{gathered}
f(x)=x^{3 / 2} \Rightarrow f^{\prime}(x)=\frac{3}{2} x^{1 / 2} \Rightarrow\left[f^{\prime}(x)\right]^{2}=\frac{9}{4} x . \\
L=\int_{0}^{4} \sqrt{1+\frac{9}{4} x d x, \quad u=1+\frac{9}{4} x, \quad d u=\frac{9}{4} d x .} \begin{array}{c}
L=\int_{1}^{10} \frac{4}{9} \sqrt{u} d u=\frac{4}{9} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{10}\right) .
\end{array} . . \$ \text {. }
\end{gathered}
$$

We conclude that $L=\frac{8}{27}\left(10^{3 / 2}-1\right)$.

Review for Midterm Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
- Volumes using cross-sections (6.1).
- Arc-length of curves on the plane (6.3).
- Work and fluid forces (6.5).
- The inverse function (7.1).
- The natural logarithm (7.2).
- The exponential function (7.3).

Work and fluid forces: Pumping liquids

Proof: (a) Show: $W=\int_{0}^{h_{1}} g \delta A(z) z d z$.

The amount of liquid that can be placed at cross-section $S(z)$ is

$$
M=\delta A(z) d z
$$

The force that must be done to lift that amount of liquid is

$$
F=g[\delta A(z) d z]
$$

The work done to lift that liquid to height z from $z=0$ is

$$
W(z)=z g[\delta A(z) d z]
$$

The work to fill in the container up to h_{1} is $W=\int_{0}^{h_{1}} g \delta A(z) z d z$.

Work and fluid forces: Pumping liquids

Proof: (b) Show: $W=\int_{0}^{h_{1}} g \delta A(z)(h-z) d z$.

The force that must be done to lift the liquid in $S(z)$ is

$$
F=g[\delta A(z) d z] .
$$

The work done to lift that liquid from a height z to h is

$$
W(z)=(h-z) g[\delta A(z) d z]
$$

The work to empty the container initially filled up to h_{1} is

$$
W=\int_{0}^{h_{1}} g \delta A(z)(h-z) d z
$$

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with water. Find the work needed to empty the container if the water is pumped from the top of the tank. Recall the water density is $\delta=1000 \mathrm{Kg} / \mathrm{m}^{3}$, and the gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with water. Find the work needed to empty the container if the water is pumped from the top of the tank. Recall the water density is $\delta=1000 \mathrm{Kg} / \mathrm{m}^{3}$, and the gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

The force is the water weight:

$$
F=g[\delta A(z) d z]
$$

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with water. Find the work needed to empty the container if the water is pumped from the top of the tank. Recall the water density is $\delta=1000 \mathrm{Kg} / \mathrm{m}^{3}$, and the gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

The force is the water weight:

$$
F=g[\delta A(z) d z]=g \delta(a b) d z
$$

The work done to lift that liquid from a height z to h is

$$
W(z)=g \delta(a b)(h-z) d z
$$

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with water. Find the work needed to empty the container if the water is pumped from the top of the tank. Recall the water density is $\delta=1000 \mathrm{Kg} / \mathrm{m}^{3}$, and the gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

The force is the water weight:

$$
F=g[\delta A(z) d z]=g \delta(a b) d z
$$

The work done to lift that liquid from a height z to h is

$$
W(z)=g \delta(a b)(h-z) d z
$$

To empty the container: $W=g \delta(a b) \int_{0}^{h}(h-z) d z$

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with water. Find the work needed to empty the container if the water is pumped from the top of the tank. Recall the water density is $\delta=1000 \mathrm{Kg} / \mathrm{m}^{3}$, and the gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

The force is the water weight:

$$
F=g[\delta A(z) d z]=g \delta(a b) d z
$$

The work done to lift that liquid from a height z to h is

$$
W(z)=g \delta(a b)(h-z) d z
$$

To empty the container: $W=g \delta(a b) \int_{0}^{h}(h-z) d z=g \delta(a b) \frac{h^{2}}{2}$.

Work and fluid forces: Springs

Remark: The force of a spring, $F(x)=k x$ is called Hooke's Law.

Example

Find the minimum work needed to compress a spring with constant $k=3 \mathrm{~N} / \mathrm{m}$ a distance of $d \mathrm{~m}$ from the spring rest position.

Work and fluid forces: Springs

Remark: The force of a spring, $F(x)=k x$ is called Hooke's Law.

Example

Find the minimum work needed to compress a spring with constant $k=3 \mathrm{~N} / \mathrm{m}$ a distance of $d \mathrm{~m}$ from the spring rest position.

Solution: The spring force is $F(x)=k x$, then

$$
W=\int_{0}^{d} k x d x=\left.k \frac{x^{2}}{2}\right|_{0} ^{d} \Rightarrow W=\frac{k d^{2}}{2} .
$$

Work and fluid forces: Springs

Remark: The force of a spring, $F(x)=k x$ is called Hooke's Law.
Example
Find the minimum work needed to compress a spring with constant $k=3 \mathrm{~N} / \mathrm{m}$ a distance of $d \mathrm{~m}$ from the spring rest position.

Solution: The spring force is $F(x)=k x$, then

$$
W=\int_{0}^{d} k x d x=\left.k \frac{x^{2}}{2}\right|_{0} ^{d} \Rightarrow W=\frac{k d^{2}}{2}
$$

Example
If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Work and fluid forces: Springs

Remark: The force of a spring, $F(x)=k x$ is called Hooke's Law.
Example
Find the minimum work needed to compress a spring with constant $k=3 \mathrm{~N} / \mathrm{m}$ a distance of $d \mathrm{~m}$ from the spring rest position.

Solution: The spring force is $F(x)=k x$, then

$$
W=\int_{0}^{d} k x d x=\left.k \frac{x^{2}}{2}\right|_{0} ^{d} \Rightarrow W=\frac{k d^{2}}{2}
$$

Example
If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that $60 N=k$ (3) m, that is, $k=20 \mathrm{~N} / \mathrm{m}$. The previous problem implies $W=k d^{2} / 2$, that is,

$$
W=20 \frac{N}{m} \frac{4^{2}}{2} m^{2} \Rightarrow W=160 \mathrm{~J}
$$

Review for Midterm Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
- Volumes using cross-sections (6.1).
- Arc-length of curves on the plane (6.3).
- Work and fluid forces (6.5).
- The inverse function (7.1).
- The natural logarithm (7.2).
- The exponential function (7.3).

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$,

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
y=8(x-2)^{2}+3
$$

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3)
$$

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{aligned}
& y=8(x-2)^{2}+3 \Rightarrow(x-2)^{2}=\frac{1}{8}(y-3) \\
& x-2=\sqrt{\frac{1}{8}(y-3)}
\end{aligned}
$$

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.
Solution: Recall: $\quad\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}$.

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.
Solution: Recall: $\quad\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}$. Since $f^{-1}(8)=1$,

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.
Solution: Recall: $\quad\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}$. Since $f^{-1}(8)=1$, we need $f^{\prime}(1)$.

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.
Solution: Recall: $\quad\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}$. Since $f^{-1}(8)=1$,
we need $f^{\prime}(1)$. Since $f^{\prime}(x)=6 x^{2}+6 x$,

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.
Solution: Recall: $\quad\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}$. Since $f^{-1}(8)=1$,
we need $f^{\prime}(1)$. Since $f^{\prime}(x)=6 x^{2}+6 x$, we get $f^{\prime}(1)=12$.

The inverse function (7.1).

Example

Find the inverse of $f(x)=8(x-2)^{2}+3$ for $x \geqslant 2$.
Solution: We call $y=f(x)$, and we find $x(y)$.

$$
\begin{gathered}
y=8(x-2)^{2}+3 \quad \Rightarrow \quad(x-2)^{2}=\frac{1}{8}(y-3) \\
x-2=\sqrt{\frac{1}{8}(y-3)} \quad \Rightarrow \quad x=2+\sqrt{\frac{1}{8}(y-3)}
\end{gathered}
$$

Example
Given $f(x)=2 x^{3}+3 x^{2}+3$ for $x \geqslant 0$, find $\frac{d f^{-1}}{d x}$ at $x=8=f(1)$.
Solution: Recall: $\quad\left(f^{-1}\right)^{\prime}(8)=\frac{1}{f^{\prime}\left(f^{-1}(8)\right)}$. Since $f^{-1}(8)=1$,
we need $f^{\prime}(1)$. Since $f^{\prime}(x)=6 x^{2}+6 x$, we get $f^{\prime}(1)=12$.
We obtain $\left(f^{-1}\right)^{\prime}(8)=\frac{1}{12}$.

Review for Midterm Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
- Volumes using cross-sections (6.1).
- Arc-length of curves on the plane (6.3).
- Work and fluid forces (6.5).
- The inverse function (7.1).
- The natural logarithm (7.2).
- The exponential function (7.3).

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

Solution: First: $f(x)=\ln \left(\sin ^{5}(2 t)\right)-\ln (7)$,

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

Solution: First: $f(x)=\ln \left(\sin ^{5}(2 t)\right)-\ln (7)$,
so we conclude that $f(x)=5 \ln (\sin (2 t))-\ln (7)$.

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

Solution: First: $f(x)=\ln \left(\sin ^{5}(2 t)\right)-\ln (7)$,
so we conclude that $f(x)=5 \ln (\sin (2 t))-\ln (7)$.
Second, $g^{\prime}(x)=3 \frac{1}{6 \ln (x)}(6 \ln (x))^{\prime}$,

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

Solution: First: $f(x)=\ln \left(\sin ^{5}(2 t)\right)-\ln (7)$,
so we conclude that $f(x)=5 \ln (\sin (2 t))-\ln (7)$.
Second, $g^{\prime}(x)=3 \frac{1}{6 \ln (x)}(6 \ln (x))^{\prime}$, that is, $g^{\prime}(x)=3 \frac{1}{\ln (x)} \frac{1}{x}$.

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

Solution: First: $f(x)=\ln \left(\sin ^{5}(2 t)\right)-\ln (7)$,
so we conclude that $f(x)=5 \ln (\sin (2 t))-\ln (7)$.
Second, $g^{\prime}(x)=3 \frac{1}{6 \ln (x)}(6 \ln (x))^{\prime}$, that is, $g^{\prime}(x)=3 \frac{1}{\ln (x)} \frac{1}{x}$.
Sometimes it is better simplify first and derivate later,

$$
h(x)=\frac{1}{2}[\ln (25)+\ln (\sin (x))+\ln (\cos (x)],
$$

The natural logarithm (7.2)

Example

Simplify $f(x)=\ln \left(\frac{\sin ^{5}(2 t)}{7}\right)$, and find the derivatives of $g(x)=3 \ln (6 \ln (x))$, and $h(x)=\ln (\sqrt{25 \sin (x) \cos (x)})$.

Solution: First: $f(x)=\ln \left(\sin ^{5}(2 t)\right)-\ln (7)$,
so we conclude that $f(x)=5 \ln (\sin (2 t))-\ln (7)$.
Second, $g^{\prime}(x)=3 \frac{1}{6 \ln (x)}(6 \ln (x))^{\prime}$, that is, $g^{\prime}(x)=3 \frac{1}{\ln (x)} \frac{1}{x}$.
Sometimes it is better simplify first and derivate later,

$$
\begin{gathered}
h(x)=\frac{1}{2}[\ln (25)+\ln (\sin (x))+\ln (\cos (x)], \\
h^{\prime}(x)=\frac{1}{2}\left[\frac{\cos (x)}{\sin (x)}-\frac{\sin (x)}{\cos (x)}\right] .
\end{gathered}
$$

The natural logarithm (7.2)

Example

Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.

The natural logarithm (7.2)

Example

Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$.

The natural logarithm (7.2)

Example

Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}
$$

The natural logarithm (7.2)

Example

Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)}
$$

The natural logarithm (7.2)

Example

Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{gathered}
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)} \\
d u=\frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x
\end{gathered}
$$

The natural logarithm (7.2)

Example
Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{aligned}
& \sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)} \\
& d u= \frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x \\
& d u= \frac{\cos (x)}{[1+\sin (x)]} \frac{[1+\sin (x)]}{\cos ^{2}(x)} d x
\end{aligned}
$$

The natural logarithm (7.2)

Example
Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{gathered}
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)}, \\
d u=\frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x \\
d u=\frac{\cos (x)}{[1+\sin (x)]} \frac{[1+\sin (x)]}{\cos ^{2}(x)} d x=\frac{1}{\cos (x)} d x
\end{gathered}
$$

The natural logarithm (7.2)

Example
Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{gathered}
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)} \\
d u=\frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x \\
d u=\frac{\cos (x)}{[1+\sin (x)]} \frac{[1+\sin (x)]}{\cos ^{2}(x)} d x=\frac{1}{\cos (x)} d x=\sec (x) d x .
\end{gathered}
$$

The natural logarithm (7.2)

Example
Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{aligned}
& \sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)}, \\
& d u=\frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x \\
& d u=\frac{\cos (x)}{[1+\sin (x)]} \frac{[1+\sin (x)]}{\cos ^{2}(x)} d x=\frac{1}{\cos (x)} d x=\sec (x) d x . \\
& \quad I=\int \frac{d u}{u^{1 / 2}}
\end{aligned}
$$

The natural logarithm (7.2)

Example
Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{gathered}
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)}, \\
d u=\frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x \\
d u=\frac{\cos (x)}{[1+\sin (x)]} \frac{[1+\sin (x)]}{\cos ^{2}(x)} d x=\frac{1}{\cos (x)} d x=\sec (x) d x . \\
\quad I=\int \frac{d u}{u^{1 / 2}}=2 u^{1 / 2}
\end{gathered}
$$

The natural logarithm (7.2)

Example
Find $I=\int \frac{\sec (x)}{\sqrt{\ln (\sec (x)+\tan (x))}} d x$.
Solution: We try the substitution $u=\ln (\sec (x)+\tan (x))$. Recall

$$
\begin{gather*}
\sec (x)+\tan (x)=\frac{1}{\cos (x)}+\frac{\sin (x)}{\cos (x)}=\frac{1+\sin (x)}{\cos (x)} \\
d u=\frac{\cos (x)}{1+\sin (x)}\left[\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)}\right] d x \\
d u=\frac{\cos (x)}{[1+\sin (x)]} \frac{[1+\sin (x)]}{\cos ^{2}(x)} d x=\frac{1}{\cos (x)} d x=\sec (x) d x \\
I=\int \frac{d u}{u^{1 / 2}}=2 u^{1 / 2} \Rightarrow I=2 \sqrt{\ln (\sec (x)+\tan (x))} .
\end{gather*}
$$

Review for Midterm Exam 1.

- 5 or 6 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
- Volumes using cross-sections (6.1).
- Arc-length of curves on the plane (6.3).
- Work and fluid forces (6.5).
- The inverse function (7.1).
- The natural logarithm (7.2).
- The exponential function (7.3).

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

Solution:

$$
\ln \left(\frac{3 y-5}{2}\right)
$$

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

Solution:

$$
\ln \left(\frac{3 y-5}{2}\right)=\ln \left(e^{4 x}\right)+\ln (2 x)
$$

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

Solution:

$$
\ln \left(\frac{3 y-5}{2}\right)=\ln \left(e^{4 x}\right)+\ln (2 x)=\ln \left(2 x e^{4 x}\right)
$$

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

Solution:

$$
\begin{aligned}
& \ln \left(\frac{3 y-5}{2}\right)=\ln \left(e^{4 x}\right)+\ln (2 x)=\ln \left(2 x e^{4 x}\right) \\
& \quad \frac{3 y-5}{2}=2 x e^{4 x}
\end{aligned}
$$

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

Solution:

$$
\begin{gathered}
\ln \left(\frac{3 y-5}{2}\right)=\ln \left(e^{4 x}\right)+\ln (2 x)=\ln \left(2 x e^{4 x}\right) \\
\frac{3 y-5}{2}=2 x e^{4 x} \quad \Rightarrow \quad 3 y=4 x e^{4 x}+5
\end{gathered}
$$

The exponential function (7.3)

Example

Solve for y in terms of x the equation

$$
\ln (3 y-5)+\ln (2)=4 x+\ln (2 x)
$$

Solution:

$$
\begin{gather*}
\ln \left(\frac{3 y-5}{2}\right)=\ln \left(e^{4 x}\right)+\ln (2 x)=\ln \left(2 x e^{4 x}\right) \\
\frac{3 y-5}{2}=2 x e^{4 x} \Rightarrow 3 y=4 x e^{4 x}+5 \\
y=\frac{1}{3}\left(4 x e^{4 x}+5\right)
\end{gather*}
$$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$,

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$,

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c
$$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$.

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$. The initial condition implies
$0=y\left(\frac{\ln (2)}{5}\right)$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$. The initial condition implies
$0=y\left(\frac{\ln (2)}{5}\right)=-\cos \left(e^{\ln (2)}-2\right)+c$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$. The initial condition implies
$0=y\left(\frac{\ln (2)}{5}\right)=-\cos \left(e^{\ln (2)}-2\right)+c=-\cos (2-2)+c$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$. The initial condition implies
$0=y\left(\frac{\ln (2)}{5}\right)=-\cos \left(e^{\ln (2)}-2\right)+c=-\cos (2-2)+c=-1+c$

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$. The initial condition implies

$$
0=y\left(\frac{\ln (2)}{5}\right)=-\cos \left(e^{\ln (2)}-2\right)+c=-\cos (2-2)+c=-1+c
$$

We conclude that $c=1$,

The exponential function (7.3)

Example

Solve the initial value problem

$$
y^{\prime}(x)=5 e^{5 x} \sin \left(e^{5 x}-2\right), \quad y\left(\frac{\ln (2)}{5}\right)=0
$$

Solution: We need to compute the integral

$$
y(x)=\int 5 e^{5 x} \sin \left(e^{5 x}-2\right) d x+c
$$

Substitute $u=e^{5 x}-2$, then $d u=5 e^{5 x} d x$, so

$$
y(x)=\int \sin (u) d u+c=-\cos (u)+c
$$

So $y(x)=-\cos \left(e^{5 x}-2\right)+c$. The initial condition implies
$0=y\left(\frac{\ln (2)}{5}\right)=-\cos \left(e^{\ln (2)}-2\right)+c=-\cos (2-2)+c=-1+c$
We conclude that $c=1$, so $y(x)=-\cos \left(e^{5 x}-2\right)+1$.

Solving differential equations (Sect. 7.4)

Today: Applications.

- Review: Overview of differential equations.
- Population growth.
- Radioactive decay.
- Newton's Law of Cooling.

Previous class:

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Review: Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:
(a) All solutions y to the exponential growth equation $y^{\prime}(x)=k y(x)$,

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:
(a) All solutions y to the exponential growth equation $y^{\prime}(x)=k y(x)$, with constant k,

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:
(a) All solutions y to the exponential growth equation
$y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation
$y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation $y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

where $y(0)=y_{0}$.

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation
$y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

where $y(0)=y_{0}$.
(b) All solutions y to the separable equation $h(y) y^{\prime}(x)=g(x)$,

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation $y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

where $y(0)=y_{0}$.
(b) All solutions y to the separable equation $h(y) y^{\prime}(x)=g(x)$, with functions h, g,

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation $y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

where $y(0)=y_{0}$.
(b) All solutions y to the separable equation $h(y) y^{\prime}(x)=g(x)$, with functions h, g, are given in implicit form,

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation
$y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

where $y(0)=y_{0}$.
(b) All solutions y to the separable equation $h(y) y^{\prime}(x)=g(x)$, with functions h, g, are given in implicit form,

$$
H(y)=G(x)+c,
$$

Review: Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Recall:

(a) All solutions y to the exponential growth equation
$y^{\prime}(x)=k y(x)$, with constant k, are given by the exponentials

$$
y(x)=y_{0} e^{k x}
$$

where $y(0)=y_{0}$.
(b) All solutions y to the separable equation $h(y) y^{\prime}(x)=g(x)$, with functions h, g, are given in implicit form,

$$
H(y)=G(x)+c,
$$

where $H^{\prime}=h$ and $g^{\prime}=g$.

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y}
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
\begin{gathered}
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y} . \\
y^{\prime}=e^{x} e^{-2 y}
\end{gathered}
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
\begin{aligned}
& y^{\prime}= \frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y} \\
& y^{\prime}=e^{x} e^{-2 y}=\frac{e^{x}}{e^{2 y}}
\end{aligned}
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
\begin{gathered}
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y} \\
y^{\prime}=e^{x} e^{-2 y}=\frac{e^{x}}{e^{2 y}} \Rightarrow e^{2 y} y^{\prime}=e^{x}
\end{gathered}
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
\begin{gathered}
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y} \\
y^{\prime}=e^{x} e^{-2 y}=\frac{e^{x}}{e^{2 y}} \Rightarrow e^{2 y} y^{\prime}=e^{x}
\end{gathered}
$$

Hence, the equation is separable.

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
\begin{gathered}
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y} . \\
y^{\prime}=e^{x} e^{-2 y}=\frac{e^{x}}{e^{2 y}} \Rightarrow e^{2 y} y^{\prime}=e^{x} .
\end{gathered}
$$

Hence, the equation is separable. We integrate on both sides,

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Rewrite the differential equation,

$$
\begin{gathered}
y^{\prime}=\frac{e^{2 x} e^{-y}}{e^{x} e^{y}}=e^{2 x} e^{-y} \frac{1}{e^{x}} \frac{1}{e^{y}}=e^{2 x} e^{-x} e^{-y} e^{-y} . \\
y^{\prime}=e^{x} e^{-2 y}=\frac{e^{x}}{e^{2 y}} \quad \Rightarrow \quad e^{2 y} y^{\prime}=e^{x} .
\end{gathered}
$$

Hence, the equation is separable. We integrate on both sides,

$$
\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$,

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

$$
\int e^{2 u} d u=\int e^{x} d x
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

$$
\int e^{2 u} d u=\int e^{x} d x \quad \Rightarrow \quad \frac{1}{2} e^{2 u}=e^{x}+c
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

$$
\int e^{2 u} d u=\int e^{x} d x \quad \Rightarrow \quad \frac{1}{2} e^{2 u}=e^{x}+c
$$

We now substitute back $u=y(x)$,

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

$$
\int e^{2 u} d u=\int e^{x} d x \quad \Rightarrow \quad \frac{1}{2} e^{2 u}=e^{x}+c
$$

We now substitute back $u=y(x)$,

$$
e^{2 y(x)}=2\left(e^{x}+c\right)
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

$$
\int e^{2 u} d u=\int e^{x} d x \quad \Rightarrow \quad \frac{1}{2} e^{2 u}=e^{x}+c
$$

We now substitute back $u=y(x)$,

$$
e^{2 y(x)}=2\left(e^{x}+c\right) \Rightarrow 2 y(x)=\ln \left(2\left(e^{x}+c\right)\right)
$$

Review: Overview of differential equations.

Example
Find all solutions y to the equation $y^{\prime}(x)=\frac{e^{2 x-y}}{e^{x+y}}$.
Solution: Recall: $\int e^{2 y(x)} y^{\prime}(x) d x=\int e^{x} d x$.
The usual substitution $u=y(x)$, and then $d u=y^{\prime}(x) d x$,

$$
\int e^{2 u} d u=\int e^{x} d x \quad \Rightarrow \quad \frac{1}{2} e^{2 u}=e^{x}+c
$$

We now substitute back $u=y(x)$,

$$
e^{2 y(x)}=2\left(e^{x}+c\right) \Rightarrow 2 y(x)=\ln \left(2\left(e^{x}+c\right)\right)
$$

We conclude that $y(x)=\frac{1}{2} \ln \left(2\left(e^{x}+c\right)\right)$.

Solving differential equations (Sect. 7.4)

Today: Applications.

- Review: Overview of differential equations.
- Population growth.
- Radioactive decay.
- Newton's Law of Cooling.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$
$e^{k 1961} e^{-k t_{0}}=1.02 e^{k 1960} e^{-k t_{0}}$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$
$e^{k 1961} e^{-k t_{0}}=1.02 e^{k 1960} e^{-k t_{0}} \Rightarrow e^{k(1961-1960)}=1.02$.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$
$e^{k 1961} e^{-k t_{0}}=1.02 e^{k 1960} e^{-k t_{0}} \Rightarrow e^{k(1961-1960)}=1.02$.
$e^{k}=1.02$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$
$e^{k 1961} e^{-k t_{0}}=1.02 e^{k 1960} e^{-k t_{0}} \Rightarrow e^{k(1961-1960)}=1.02$.
$e^{k}=1.02 \Rightarrow k=\ln (1.02)$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$
$e^{k 1961} e^{-k t_{0}}=1.02 e^{k 1960} e^{-k t_{0}} \Rightarrow e^{k(1961-1960)}=1.02$.
$e^{k}=1.02 \Rightarrow k=\ln (1.02) \simeq 0.02$.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: (a) $y(1961)=\left(1+\frac{2}{100}\right) y(1960)$,
$y_{0} e^{k\left(1961-t_{0}\right)}=\frac{102}{100} y_{0} e^{k\left(1960-t_{0}\right)}$
$e^{k 1961} e^{-k t_{0}}=1.02 e^{k 1960} e^{-k t_{0}} \Rightarrow e^{k(1961-1960)}=1.02$.
$e^{k}=1.02 \Rightarrow k=\ln (1.02) \simeq 0.02$. Hence $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,
$3=y\left(t_{0}\right)$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,
$3=y\left(t_{0}\right)=y_{0} e^{(0.02)\left(t_{0}-t_{0}\right)}$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,

$$
3=y\left(t_{0}\right)=y_{0} e^{(0.02)\left(t_{0}-t_{0}\right)} \Rightarrow y_{0}=3
$$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,
$3=y\left(t_{0}\right)=y_{0} e^{(0.02)\left(t_{0}-t_{0}\right)} \Rightarrow y_{0}=3 \Rightarrow y(t)=3 e^{(0.02)(t-1960)}$.

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,
$3=y\left(t_{0}\right)=y_{0} e^{(0.02)\left(t_{0}-t_{0}\right)} \Rightarrow y_{0}=3 \Rightarrow y(t)=3 e^{(0.02)(t-1960)}$.

We only need to evaluate y (2012)

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,
$3=y\left(t_{0}\right)=y_{0} e^{(0.02)\left(t_{0}-t_{0}\right)} \Rightarrow y_{0}=3 \Rightarrow y(t)=3 e^{(0.02)(t-1960)}$.
We only need to evaluate $y(2012)=3 e^{(0.02) 52}$

Population growth

Example

Assume the world population growth is described by $y(t)=y_{0} e^{k\left(t-t_{0}\right)}$, with t measured in years.
(a) If in $1960-1961$ the population increased by 2%, find k.
(b) If the population in $t_{0}=1960$ was 3 billion people, find the actual population predicted by the law above.

Solution: Recall: $y(t)=y_{0} e^{(0.02)\left(t-t_{0}\right)}$.
(b) If y represents billions of people,
$3=y\left(t_{0}\right)=y_{0} e^{(0.02)\left(t_{0}-t_{0}\right)} \Rightarrow y_{0}=3 \Rightarrow y(t)=3 e^{(0.02)(t-1960)}$.
We only need to evaluate $y(2012)=3 e^{(0.02) 52}=8.5$ billions.

Solving differential equations (Sect. 7.4)

Today: Applications.

- Review: Overview of differential equations.
- Population growth.
- Radioactive decay.
- Newton's Law of Cooling.

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.
- It can be seen that the concentration y of a radioactive substance in time t follows the law,

$$
y^{\prime}(t)=-k y(t), \quad k>0
$$

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.
- It can be seen that the concentration y of a radioactive substance in time t follows the law,

$$
y^{\prime}(t)=-k y(t), \quad k>0
$$

- We know the solution is

$$
y(t)=y_{0} e^{-k t}, \quad y(0)=y_{0} .
$$

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.
- It can be seen that the concentration y of a radioactive substance in time t follows the law,

$$
y^{\prime}(t)=-k y(t), \quad k>0
$$

- We know the solution is

$$
y(t)=y_{0} e^{-k t}, \quad y(0)=y_{0} .
$$

- The half-life of the material is the τ such that $y(\tau)=\frac{y_{0}}{2}$.

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.
- It can be seen that the concentration y of a radioactive substance in time t follows the law,

$$
y^{\prime}(t)=-k y(t), \quad k>0
$$

- We know the solution is

$$
y(t)=y_{0} e^{-k t}, \quad y(0)=y_{0} .
$$

- The half-life of the material is the τ such that $y(\tau)=\frac{y_{0}}{2}$.

$$
\frac{y_{0}}{2}=y_{0} e^{-k \tau}
$$

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.
- It can be seen that the concentration y of a radioactive substance in time t follows the law,

$$
y^{\prime}(t)=-k y(t), \quad k>0
$$

- We know the solution is

$$
y(t)=y_{0} e^{-k t}, \quad y(0)=y_{0} .
$$

- The half-life of the material is the τ such that $y(\tau)=\frac{y_{0}}{2}$.

$$
\frac{y_{0}}{2}=y_{0} e^{-k \tau} \Rightarrow-k \tau=\ln \left(\frac{1}{2}\right)
$$

Radioactive decay

Remarks:

- Some atoms can spontaneously break into smaller atoms.
- This process is called radioactive decay.
- It can be seen that the concentration y of a radioactive substance in time t follows the law,

$$
y^{\prime}(t)=-k y(t), \quad k>0
$$

- We know the solution is

$$
y(t)=y_{0} e^{-k t}, \quad y(0)=y_{0} .
$$

- The half-life of the material is the τ such that $y(\tau)=\frac{y_{0}}{2}$.

$$
\frac{y_{0}}{2}=y_{0} e^{-k \tau} \Rightarrow-k \tau=\ln \left(\frac{1}{2}\right) \Rightarrow \tau=\frac{\ln (2)}{k} .
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$,

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}.

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
y(t)=y_{0} e^{-k t}
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
y(t)=y_{0} e^{-k t} \quad \Rightarrow \quad y_{0} e^{-k t_{1}}=y\left(t_{1}\right)
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
y(t)=y_{0} e^{-k t} \quad \Rightarrow \quad y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
y(t)=y_{0} e^{-k t} \quad \Rightarrow \quad y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} .
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{aligned}
& y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
& y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0}
\end{aligned}
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{aligned}
& y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
& y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right)
\end{aligned}
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{gathered}
y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right) \Rightarrow t_{1}=\frac{1}{k} \ln \left(\frac{100}{14}\right) .
\end{gathered}
$$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{gathered}
y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right) \Rightarrow t_{1}=\frac{1}{k} \ln \left(\frac{100}{14}\right)
\end{gathered}
$$

Recall $\tau=\ln (2) / k$

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{gathered}
y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right) \Rightarrow t_{1}=\frac{1}{k} \ln \left(\frac{100}{14}\right) .
\end{gathered}
$$

Recall $\tau=\ln (2) / k$ and $\tau=5730$ years.

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{gathered}
y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right) \Rightarrow t_{1}=\frac{1}{k} \ln \left(\frac{100}{14}\right) .
\end{gathered}
$$

Recall $\tau=\ln (2) / k$ and $\tau=5730$ years. So $1 / k=5730 / \ln (2)$,

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{gathered}
y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right) \Rightarrow t_{1}=\frac{1}{k} \ln \left(\frac{100}{14}\right) .
\end{gathered}
$$

Recall $\tau=\ln (2) / k$ and $\tau=5730$ years. So $1 / k=5730 / \ln (2)$,
We obtain $t_{1}=[5730 / \ln (2)] \ln \left(\frac{100}{14}\right)$,

Radioactive decay

Example

The half-life of a radioactive material is $\tau=5730$ years. If a material sample contains 14% of the original amount, find the date the material sample was created.

Solution: Let us fix the time of the original amount at $t=0$, and denote the present time by t_{1}. Also denote $y(t)$ the material amount at time t.

$$
\begin{gathered}
y(t)=y_{0} e^{-k t} \Rightarrow y_{0} e^{-k t_{1}}=y\left(t_{1}\right)=\frac{14}{100} y(0)=\frac{14}{100} y_{0} . \\
y_{0} e^{-k t_{1}}=\frac{14}{100} y_{0} \Rightarrow-k t_{1}=\ln \left(\frac{14}{100}\right) \Rightarrow t_{1}=\frac{1}{k} \ln \left(\frac{100}{14}\right) .
\end{gathered}
$$

Recall $\tau=\ln (2) / k$ and $\tau=5730$ years. So $1 / k=5730 / \ln (2)$,
We obtain $t_{1}=[5730 / \ln (2)] \ln \left(\frac{100}{14}\right)$, hence $t_{1}=16,253$ years. \triangleleft

Solving differential equations (Sect. 7.4)

Today: Applications.

- Review: Overview of differential equations.
- Population growth.
- Radioactive decay.
- Newton's Law of Cooling.

Newton's Law of Cooling.

Remarks:

- The temperature difference $\Delta T=T-T_{0}$ between the temperature of an object, T, and the constant temperature of the surrounding medium where it is placed, T_{s}, evolves in time t following the equation

$$
(\Delta T)^{\prime}=-k(\Delta T), \quad T(0)=T_{0}, \quad k>0
$$

Newton's Law of Cooling.

Remarks:

- The temperature difference $\Delta T=T-T_{0}$ between the temperature of an object, T, and the constant temperature of the surrounding medium where it is placed, T_{s}, evolves in time t following the equation

$$
(\Delta T)^{\prime}=-k(\Delta T), \quad T(0)=T_{0}, \quad k>0
$$

- The solution is $(\Delta T)(t)=(\Delta T)_{0} e^{-k t}$,

Newton's Law of Cooling.

Remarks:

- The temperature difference $\Delta T=T-T_{0}$ between the temperature of an object, T, and the constant temperature of the surrounding medium where it is placed, T_{s}, evolves in time t following the equation

$$
(\Delta T)^{\prime}=-k(\Delta T), \quad T(0)=T_{0}, \quad k>0
$$

- The solution is $(\Delta T)(t)=(\Delta T)_{0} e^{-k t}$, that is,

$$
\left(T-T_{s}\right)(t)=\left(T_{0}-T_{s}\right) e^{-k t}
$$

Newton's Law of Cooling.

Remarks:

- The temperature difference $\Delta T=T-T_{0}$ between the temperature of an object, T, and the constant temperature of the surrounding medium where it is placed, T_{s}, evolves in time t following the equation

$$
(\Delta T)^{\prime}=-k(\Delta T), \quad T(0)=T_{0}, \quad k>0
$$

- The solution is $(\Delta T)(t)=(\Delta T)_{0} e^{-k t}$, that is,

$$
\begin{aligned}
& \left(T-T_{s}\right)(t)=\left(T_{0}-T_{s}\right) e^{-k t} \\
& T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}
\end{aligned}
$$

Newton's Law of Cooling.

Remarks:

- The temperature difference $\Delta T=T-T_{0}$ between the temperature of an object, T, and the constant temperature of the surrounding medium where it is placed, T_{s}, evolves in time t following the equation

$$
(\Delta T)^{\prime}=-k(\Delta T), \quad T(0)=T_{0}, \quad k>0
$$

- The solution is $(\Delta T)(t)=(\Delta T)_{0} e^{-k t}$, that is,

$$
\begin{aligned}
& \left(T-T_{s}\right)(t)=\left(T_{0}-T_{s}\right) e^{-k t} \\
& T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}
\end{aligned}
$$

- The constant k depends on the material and the surroundings.

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$,

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$.

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
T(t)=(45-5) e^{-k t}+5
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
T(t)=(45-5) e^{-k t}+5 \Rightarrow T(t)=40 e^{-k t}+5 .
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
\begin{aligned}
& T(t)=(45-5) e^{-k t}+5 \Rightarrow T(t)=40 e^{-k t}+5 . \\
& 20=T(2)=40 e^{-2 k}
\end{aligned}
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
\begin{aligned}
& T(t)=(45-5) e^{-k t}+5 \Rightarrow \quad T(t)=40 e^{-k t}+5 \\
& 20=T(2)=40 e^{-2 k} \Rightarrow \ln (1 / 2)=-2 k
\end{aligned}
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
\begin{gathered}
T(t)=(45-5) e^{-k t}+5 \Rightarrow T(t)=40 e^{-k t}+5 . \\
20=T(2)=40 e^{-2 k} \Rightarrow \ln (1 / 2)=-2 k \Rightarrow k=\frac{1}{2} \ln (2) .
\end{gathered}
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
\begin{aligned}
& T(t)=(45-5) e^{-k t}+5 \Rightarrow T(t)=40 e^{-k t}+5 . \\
& 20=T(2)=40 e^{-2 k} \Rightarrow \ln (1 / 2)=-2 k \Rightarrow k=\frac{1}{2} \ln (2) . \\
& T(t)=40 e^{-t \ln (\sqrt{2})}+5
\end{aligned}
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
\begin{aligned}
& T(t)=(45-5) e^{-k t}+5 \Rightarrow T(t)=40 e^{-k t}+5 . \\
& 20=T(2)=40 e^{-2 k} \Rightarrow \ln (1 / 2)=-2 k \Rightarrow k=\frac{1}{2} \ln (2) . \\
& T(t)=40 e^{-t \ln (\sqrt{2})}+5 \Rightarrow 10=40 e^{-t_{1} \ln (\sqrt{2})}
\end{aligned}
$$

Newton's Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C . If after 2 minutes the water temperature is 25 C , when will the water temperature be 15 C ? while

Solution: We know that $T(t)=\left(T_{0}-T_{s}\right) e^{-k t}+T_{s}$, and also

$$
T_{0}=45, \quad T_{s}=5, \quad T(2)=25
$$

Find t_{1} such that $T\left(t_{1}\right)=15$. First we find k,

$$
\begin{gathered}
T(t)=(45-5) e^{-k t}+5 \Rightarrow T(t)=40 e^{-k t}+5 . \\
20=T(2)=40 e^{-2 k} \Rightarrow \ln (1 / 2)=-2 k \Rightarrow k=\frac{1}{2} \ln (2) . \\
T(t)=40 e^{-t \ln (\sqrt{2})}+5 \Rightarrow 10=40 e^{-t_{1} \ln (\sqrt{2})} \Rightarrow t_{1}=4 .
\end{gathered}
$$

Inverse trigonometric functions (Sect. 7.6)

Today: Definitions and properties.

- Domains restrictions and inverse trigs.
- Evaluating inverse trigs at simple values.
- Few identities for inverse trigs.

Next class: Derivatives and integrals.

- Derivatives.
- Anti-derivatives.
- Usual substitutions

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest domain are not invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are invertible.

Domains restrictions and inverse trigs

Definition (arc\{trig\} is the inverse of $\{$ trig $\}$)

- The function arcsin : $[-1,1] \rightarrow[-\pi / 2, \pi / 2]$ is the inverse of $\sin :[-\pi / 2, \pi / 2] \rightarrow[-1,1]$.
- The function arccos : $[-1,1] \rightarrow[0, \pi]$ is the inverse of $\cos :[0, \pi] \rightarrow[-1,1]$.
- The function arctan : $(-\infty, \infty) \rightarrow[-\pi / 2, \pi / 2]$ is the inverse of $\tan :[-\pi / 2, \pi / 2] \rightarrow(-\infty, \infty)$.
- The function arccsc : $(-\infty,-1] \cup[1, \infty) \rightarrow[-\pi / 2, \pi / 2]-\{0\}$ is the inverse of csc : $[-\pi / 2, \pi / 2]-\{0\} \rightarrow(-\infty,-1] \cup[1, \infty)$.
- The function arcsec : $(-\infty,-1] \cup[1, \infty) \rightarrow[0, \pi]-\{\pi / 2\}$ is the inverse of sec : $[0, \pi]-\{\pi / 2\} \rightarrow(-\infty,-1] \cup[1, \infty)$.
- The function arccot : $(-\infty, \infty) \rightarrow[0, \pi]$ is the inverse of cot : $[0, \pi] \rightarrow(-\infty, \infty)$.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the original function graph about the $y=x$ axis.

Inverse trigonometric functions (Sect. 7.6)

Today: Definitions and properties.

- Domains restrictions and inverse trigs.
- Evaluating inverse trigs at simple values.
- Few identities for inverse trigs.

Evaluating inverse trigs at simple values

Notation: In the literature is common the notation $\sin ^{-1}=\arcsin$, and similar for the rest of the trigonometric functions.

Evaluating inverse trigs at simple values

Notation: In the literature is common the notation $\sin ^{-1}=\arcsin$, and similar for the rest of the trigonometric functions.
Do not confuse $\frac{1}{\sin (x)} \neq \sin ^{-1}(x)$

Evaluating inverse trigs at simple values

Notation: In the literature is common the notation $\sin ^{-1}=\arcsin$, and similar for the rest of the trigonometric functions.
Do not confuse $\frac{1}{\sin (x)} \neq \sin ^{-1}(x)=\arcsin (x)$.

Evaluating inverse trigs at simple values

Notation: In the literature is common the notation $\sin ^{-1}=\arcsin$, and similar for the rest of the trigonometric functions.
Do not confuse $\frac{1}{\sin (x)} \neq \sin ^{-1}(x)=\arcsin (x)$.
Remark: sin, cos have simple values at particular angles.

Evaluating inverse trigs at simple values

Notation: In the literature is common the notation $\sin ^{-1}=\arcsin$, and similar for the rest of the trigonometric functions.
Do not confuse $\frac{1}{\sin (x)} \neq \sin ^{-1}(x)=\arcsin (x)$.
Remark: sin, cos have simple values at particular angles.

θ	$\sin (\theta)$	$\cos (\theta)$
0	0	1
$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$
$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$
$\pi / 2$	1	0

Evaluating inverse trigs at simple values

Remark: the symmetry properties of the sine and cosine can be used to evaluate them at a bigger set of angles.

$$
\begin{aligned}
\sin (-x)=-\sin (x), & \sin (\pi-x) & =\sin (x) \\
\cos (-x)=\cos (x), & \cos (\pi-x) & =-\cos (x) \\
& \sin \left(\theta+\frac{\pi}{2}\right) & =\cos (\theta)
\end{aligned}
$$

Evaluating inverse trigs at simple values

Remark: the symmetry properties of the sine and cosine can be used to evaluate them at a bigger set of angles.

$$
\begin{aligned}
\sin (-x) & =-\sin (x), & \sin (\pi-x) & =\sin (x) \\
\cos (-x) & =\cos (x), & \cos (\pi-x) & =-\cos (x) \\
y & & \sin \left(\theta+\frac{\pi}{2}\right) & =\cos (\theta)
\end{aligned}
$$

Evaluating inverse trigs at simple values

Remark: the symmetry properties of the sine and cosine can be used to evaluate them at a bigger set of angles.

$$
\begin{aligned}
\sin (-x) & =-\sin (x), & \sin (\pi-x) & =\sin (x) \\
\cos (-x) & =\cos (x), & \cos (\pi-x) & =-\cos (x) \\
y & & \sin \left(\theta+\frac{\pi}{2}\right) & =\cos (\theta)
\end{aligned}
$$

Evaluating inverse trigs at simple values

Remark: the symmetry properties of the sine and cosine can be used to evaluate them at a bigger set of angles.

$$
\begin{array}{rlrl}
\sin (-x) & =-\sin (x), & \sin (\pi-x) & =\sin (x) \\
\cos (-x) & =\cos (x), & \cos (\pi-x) & =-\cos (x) \\
y^{A} & \sin \left(\theta+\frac{\pi}{2}\right) & =\cos (\theta)
\end{array}
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.

Evaluating inverse trigs at simple values

Example
Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\tan \left(\frac{\pi}{3}\right)
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3}
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3}
$$

$$
\sec \left(\frac{2 \pi}{3}\right)
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{aligned}
& \tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
& \sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}
\end{aligned}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{aligned}
& \tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
& \sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}
\end{aligned}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{gathered}
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
\sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}}
\end{gathered}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{gathered}
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
\sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}} \quad \Rightarrow \quad \sec \left(\frac{2 \pi}{3}\right)=-2 .
\end{gathered}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{aligned}
& \tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
& \sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}} \Rightarrow \sec \left(\frac{2 \pi}{3}\right)=-2 . \\
& \csc \left(-\frac{\pi}{6}\right)
\end{aligned}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{aligned}
& \tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
& \sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}} \quad \Rightarrow \quad \sec \left(\frac{2 \pi}{3}\right)=-2 . \\
& \csc \left(-\frac{\pi}{6}\right)=\frac{1}{\sin \left(-\frac{\pi}{6}\right)}
\end{aligned}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{gathered}
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
\sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}} \quad \Rightarrow \quad \sec \left(\frac{2 \pi}{3}\right)=-2 . \\
\csc \left(-\frac{\pi}{6}\right)=\frac{1}{\sin \left(-\frac{\pi}{6}\right)}=\frac{1}{-\sin \left(\frac{\pi}{6}\right)}
\end{gathered}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{gathered}
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} . \\
\sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}} \quad \Rightarrow \quad \sec \left(\frac{2 \pi}{3}\right)=-2 . \\
\csc \left(-\frac{\pi}{6}\right)=\frac{1}{\sin \left(-\frac{\pi}{6}\right)}=\frac{1}{-\sin \left(\frac{\pi}{6}\right)}=\frac{1}{-\frac{1}{2}}
\end{gathered}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\tan (\pi / 3), \sec (2 \pi / 3), \csc (-\pi / 6)$.
Solution:

$$
\begin{gathered}
\tan \left(\frac{\pi}{3}\right)=\frac{\sin \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \Rightarrow \tan \left(\frac{\pi}{3}\right)=\sqrt{3} \\
\sec \left(\frac{2 \pi}{3}\right)=\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{-\cos \left(\frac{\pi}{3}\right)}=\frac{1}{-\frac{1}{2}} \quad \Rightarrow \quad \sec \left(\frac{2 \pi}{3}\right)=-2 \\
\csc \left(-\frac{\pi}{6}\right)=\frac{1}{\sin \left(-\frac{\pi}{6}\right)}=\frac{1}{-\sin \left(\frac{\pi}{6}\right)}=\frac{1}{-\frac{1}{2}} \quad \Rightarrow \quad \csc \left(-\frac{\pi}{3}\right)=-2
\end{gathered}
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.

Evaluating inverse trigs at simple values

Example

Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}
$$

Evaluating inverse trigs at simple values

Example

Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}, \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}, \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

We conclude that $\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.

Evaluating inverse trigs at simple values

Example
Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}, \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

We conclude that $\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.

$$
\arccos \left(\frac{1}{\sqrt{2}}\right)=\theta \quad \Leftrightarrow \quad \cos (\theta)=\frac{1}{\sqrt{2}}
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}, \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

We conclude that $\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.

$$
\arccos \left(\frac{1}{\sqrt{2}}\right)=\theta \quad \Leftrightarrow \quad \cos (\theta)=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2},
$$

Evaluating inverse trigs at simple values

Example
Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}, \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

We conclude that $\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.

$$
\arccos \left(\frac{1}{\sqrt{2}}\right)=\theta \quad \Leftrightarrow \quad \cos (\theta)=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}, \quad \theta \in[0, \pi] .
$$

Evaluating inverse frigs at simple values

Example
Find the values: $\arcsin (\sqrt{3} / 2), \arccos (1 / \sqrt{2})$.
Solution:

$$
\arcsin \left(\frac{\sqrt{3}}{2}\right)=\theta \quad \Leftrightarrow \quad \sin (\theta)=\frac{\sqrt{3}}{2}, \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

We conclude that $\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$.

$$
\arccos \left(\frac{1}{\sqrt{2}}\right)=\theta \quad \Leftrightarrow \quad \cos (\theta)=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}, \quad \theta \in[0, \pi] .
$$

We conclude that $\arccos \left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$.

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\operatorname{arcsec}(-5 \sqrt{5})=x
$$

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\operatorname{arcsec}(-5 \sqrt{5})=x \Leftrightarrow \sec (x)=-5 \sqrt{5}
$$

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} .
\end{aligned}
$$

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} . \quad \Leftrightarrow \quad \cos (x)=-\frac{1}{5 \sqrt{5}}
\end{aligned}
$$

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} . \quad \Leftrightarrow \quad \cos (x)=-\frac{1}{5 \sqrt{5}}
\end{aligned}
$$

How do we find $\sin (x)$?

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} . \quad \Leftrightarrow \quad \cos (x)=-\frac{1}{5 \sqrt{5}}
\end{aligned}
$$

How do we find $\sin (x)$? Use trigonometric identities:

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} . \quad \Leftrightarrow \quad \cos (x)=-\frac{1}{5 \sqrt{5}}
\end{aligned}
$$

How do we find $\sin (x)$? Use trigonometric identities:

$$
\sin (x)= \pm \sqrt{1-\cos ^{2}(x)}
$$

Evaluating inverse trigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} . \quad \Leftrightarrow \quad \cos (x)=-\frac{1}{5 \sqrt{5}}
\end{aligned}
$$

How do we find $\sin (x)$? Use trigonometric identities:

$$
\sin (x)= \pm \sqrt{1-\cos ^{2}(x)}= \pm \sqrt{1-\frac{1}{125}}
$$

Evaluating inverse frigs at simple values

Example
Given that $x=\operatorname{arcsec}(-5 \sqrt{5})$, find $\sin (x)$.
Solution: Recall:

$$
\begin{aligned}
& \operatorname{arcsec}(-5 \sqrt{5})=x \quad \Leftrightarrow \quad \sec (x)=-5 \sqrt{5} \\
& \frac{1}{\cos (x)}=-5 \sqrt{5} . \quad \Leftrightarrow \quad \cos (x)=-\frac{1}{5 \sqrt{5}}
\end{aligned}
$$

How do we find $\sin (x)$? Use trigonometric identities:

$$
\sin (x)= \pm \sqrt{1-\cos ^{2}(x)}= \pm \sqrt{1-\frac{1}{125}} \Rightarrow \sin (x)= \pm \sqrt{\frac{124}{125}}
$$

Inverse trigonometric functions (Sect. 7.6)

Today: Definitions and properties.

- Domains restrictions and inverse trigs.
- Evaluating inverse trigs at simple values.
- Few identities for inverse trigs.

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\arccos (x)+\arccos (-x)=\pi, \quad \arccos (x)+\arcsin (x)=\frac{\pi}{2}
$$

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\arccos (x)+\arccos (-x)=\pi, \quad \arccos (x)+\arcsin (x)=\frac{\pi}{2}
$$

Proof:

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\arccos (x)+\arccos (-x)=\pi, \quad \arccos (x)+\arcsin (x)=\frac{\pi}{2}
$$

Proof:

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\begin{aligned}
\arcsin (-x) & =-\arcsin (x), \\
\arctan (-x) & =-\arctan (x), \\
\operatorname{arccsc}(-x) & =-\operatorname{arccsc}(x)
\end{aligned}
$$

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\begin{aligned}
\arcsin (-x) & =-\arcsin (x), \\
\arctan (-x) & =-\arctan (x), \\
\operatorname{arccsc}(-x) & =-\operatorname{arccsc}(x)
\end{aligned}
$$

Proof:

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\begin{aligned}
\arcsin (-x) & =-\arcsin (x), \\
\arctan (-x) & =-\arctan (x), \\
\operatorname{arccsc}(-x) & =-\operatorname{arccsc}(x)
\end{aligned}
$$

Proof:

Few identities for inverse trigs

Theorem
For all $x \in[-1,1]$ the following identities hold,

$$
\begin{aligned}
\arcsin (-x) & =-\arcsin (x) \\
\arctan (-x) & =-\arctan (x), \\
\operatorname{arccsc}(-x) & =-\operatorname{arccsc}(x)
\end{aligned}
$$

Proof:

