
Review for Midterm Exam 1.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to webwork.
I Midterm Exam 1 covers:

I Volumes using cross-sections (6.1).
I Arc-length of curves on the plane (6.3).
I Work and fluid forces (6.5).
I The inverse function (7.1).
I The natural logarithm (7.2).
I The exponential function (7.3).



Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve
x(y) = tan(πy/8) for y ∈ [0, 2] about the y -axis.

Solution:

To graph the function

x = tan(πy/8), y ∈ [0, 2],

one can graph

y = (8/π) arctan(x).

Notice that

y ∈ [0, 2]⇒ x ∈ [0, 1].

y

x

2

1

y = (8/pi) arctan(x)4

Therefore, V = π

∫ 2

0

[
x(y)

]2
dy = π

∫ 2

0

[
tan

(πy

8

)]2
dy .
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∫ 2

0
tan2

(πy

8

)
dy .

Introduce the substitution u = πy/8, so du = (π/8) dy ,

V = π
8

π

∫ π/4

0
tan2(u) du = 8

∫ π/4

0

[1− cos2(u)]

cos2(u)
du

V = 8

∫ π/4

0

[ 1

cos2(u)
− 1

]
du = 8

∫ π/4

0

[
tan′(u)− 1

]
du.

V = 8
[
tan(u)− u
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⇒ V = 8

(
1− π

4

)
. C
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Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h.

Solution:

S

z

h

a / 2

a / 2

x

y
y(z)

z

a / 2

z = m y + bh

y

A(z) =
[
2y(z)

]2

We must find and invert

z(y) = my + b.

h = z(0) = b, 0 = z(a/2) = m
a

2
+ h ⇒ m = −2h

a
.

z(y) = −2h

a
y + h ⇒ y(z) = − a

2h
(z − h).

V =

∫ h

0

[
−2

a

2h
(z − h)

]2
dz =

a2

h2

[(z − h)3

3

∣∣∣h
0

]
⇒ V =

1

3
a2h.

C
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Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function y =
x3

3
+

1

4x
, for x ∈ [1, 3].

Solution: Recall: L =

∫ x1

x0

√
1 +

[
y ′(x)

]2
dx . Find y ′,

y ′(x) = x2 − 1

4x2
⇒ 1 +

[
y ′(x)

]2
= 1 + x4 +

1

16x4
− 1

2
,

1 +
[
y ′(x)

]2
= x4 +

1

16x4
+

1

2
=

(
x2 +

1

4x2

)2
.

L =

∫ 3

1

(
x2 +

1

4x2

)
dx =

(x3

3
− 1

4x

)∣∣∣3
1

= 9− 1

12
− 1

3
+

1

4
.

We conclude that L = 9− 1/6. C
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The main length formula

Example

Find the arc-length of the curve y = x3/2, for x ∈ [0, 4].

Solution: Recall: L =

∫ b

a

√
1 +

[
f ′(x)

]2
dx . We start with

f (x) = x3/2 ⇒ f ′(x) =
3

2
x1/2 ⇒

[
f ′(x)

]2
=

9

4
x .

L =

∫ 4

0

√
1 +

9

4
x dx , u = 1 +

9

4
x , du =

9

4
dx .

L =

∫ 10

1

4

9

√
u du =

4

9

2

3

(
u3/2

∣∣∣10

1

)
.

We conclude that L =
8

27
(103/2 − 1). C
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Review for Midterm Exam 1.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to webwork.
I Midterm Exam 1 covers:

I Volumes using cross-sections (6.1).
I Arc-length of curves on the plane (6.3).
I Work and fluid forces (6.5).
I The inverse function (7.1).
I The natural logarithm (7.2).
I The exponential function (7.3).



Work and fluid forces: Pumping liquids

Proof: (a) Show: W =

∫ h1

0
g δ A(z) z dz .

h

z

x

S(z),

y

A(z)

The amount of liquid that can be
placed at cross-section S(z) is

M = δ A(z) dz .

The force that must be done to
lift that amount of liquid is

F = g [δ A(z) dz ].

The work done to lift that liquid to height z from z = 0 is

W (z) = z g [δ A(z) dz ].

The work to fill in the container up to h1 is W =

∫ h1

0
g δ A(z) z dz .



Work and fluid forces: Pumping liquids

Proof: (b) Show: W =

∫ h1

0
g δ A(z) (h − z) dz .

h

z

x

S(z),

y

A(z)

The force that must be done to
lift the liquid in S(z) is

F = g [δ A(z) dz ].

The work done to lift that liquid
from a height z to h is

W (z) = (h − z) g [δ A(z) dz ].

The work to empty the container initially filled up to h1 is

W =

∫ h1

0
g δ A(z) (h − z) dz .



Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with
water. Find the work needed to empty the container if the water is
pumped from the top of the tank. Recall the water density is
δ = 1000 Kg/m3, and the gravity acceleration is g = 10 m/s2.

Solution:

A(z)

a

z

y

x
b

h

S(z)

The force is the water weight:

F = g [δ A(z) dz ] = gδ(ab) dz

The work done to lift that liquid from a
height z to h is

W (z) = gδ(ab)(h − z) dz .

To empty the container: W = gδ(ab)

∫ h

0
(h − z) dz = gδ (ab)

h2

2
.
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Work and fluid forces: Springs

Remark: The force of a spring, F (x) = k x is called Hooke’s Law.

Example

Find the minimum work needed to compress a spring with constant
k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F (x) = kx , then

W =

∫ d

0
kx dx = k

x2

2

∣∣∣d
0

⇒ W =
kd2

2
. C .

Example

If a force of 60 N stretches a spring 3 m from its rest position, how
much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke’s Law we know that 60 N = k (3) m, that is,
k = 20 N/m. The previous problem implies W = kd2/2, that is,

W = 20
N

m

42

2
m2 ⇒ W = 160 J. C
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Review for Midterm Exam 1.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to webwork.
I Midterm Exam 1 covers:

I Volumes using cross-sections (6.1).
I Arc-length of curves on the plane (6.3).
I Work and fluid forces (6.5).
I The inverse function (7.1).
I The natural logarithm (7.2).
I The exponential function (7.3).



The inverse function (7.1).

Example

Find the inverse of f (x) = 8(x − 2)2 + 3 for x > 2.

Solution: We call y = f (x), and we find x(y).

y = 8(x − 2)2 + 3 ⇒ (x − 2)2 =
1

8
(y − 3)

x − 2 =

√
1

8
(y − 3) ⇒ x = 2 +

√
1

8
(y − 3).

Example

Given f (x) = 2x3 + 3x2 + 3 for x > 0, find
df −1

dx
at x = 8 = f (1).

Solution: Recall: (f −1)′(8) =
1

f ′(f −1(8))
. Since f −1(8) = 1,

we need f ′(1). Since f ′(x) = 6x2 + 6x , we get f ′(1) = 12.

We obtain (f −1)′(8) =
1

12
. C
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Review for Midterm Exam 1.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to webwork.
I Midterm Exam 1 covers:

I Volumes using cross-sections (6.1).
I Arc-length of curves on the plane (6.3).
I Work and fluid forces (6.5).
I The inverse function (7.1).
I The natural logarithm (7.2).
I The exponential function (7.3).



The natural logarithm (7.2)

Example

Simplify f (x) = ln
(sin5(2t)

7

)
, and find the derivatives of

g(x) = 3 ln(6 ln(x)), and h(x) = ln
(√

25 sin(x) cos(x)
)
.

Solution: First: f (x) = ln(sin5(2t))− ln(7),

so we conclude that f (x) = 5 ln(sin(2t))− ln(7).

Second, g ′(x) = 3
1

6 ln(x)
(6 ln(x))′, that is, g ′(x) = 3

1

ln(x)

1

x
.

Sometimes it is better simplify first and derivate later,

h(x) =
1

2

[
ln(25) + ln(sin(x)) + ln(cos(x)

]
,

h′(x) =
1

2

[cos(x)

sin(x)
− sin(x)

cos(x)

]
. C
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The natural logarithm (7.2)

Example

Find I =

∫
sec(x)√

ln(sec(x) + tan(x))
dx .

Solution: We try the substitution u = ln(sec(x) + tan(x)). Recall

sec(x) + tan(x) =
1

cos(x)
+

sin(x)

cos(x)
=

1 + sin(x)

cos(x)
,

du =
cos(x)

1 + sin(x)

[cos(x) cos(x)− (1 + sin(x))(− sin(x))

cos2(x)

]
dx

du =
cos(x)

[1 + sin(x)]

[1 + sin(x)]

cos2(x)
dx =

1

cos(x)
dx = sec(x) dx .

I =

∫
du

u1/2
= 2 u1/2 ⇒ I = 2

√
ln(sec(x) + tan(x)). C
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Review for Midterm Exam 1.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to webwork.
I Midterm Exam 1 covers:

I Volumes using cross-sections (6.1).
I Arc-length of curves on the plane (6.3).
I Work and fluid forces (6.5).
I The inverse function (7.1).
I The natural logarithm (7.2).
I The exponential function (7.3).



The exponential function (7.3)

Example

Solve for y in terms of x the equation

ln(3y − 5) + ln(2) = 4x + ln(2x).

Solution:

ln
(3y − 5

2

)
= ln

(
e4x

)
+ ln(2x) = ln

(
2x e4x

)
.

3y − 5

2
= 2x e4x ⇒ 3y = 4x e4x + 5

y =
1

3

(
4x e4x + 5

)
. C
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The exponential function (7.3)
Example

Solve the initial value problem

y ′(x) = 5 e5x sin
(
e5x − 2

)
, y

( ln(2)

5

)
= 0.

Solution: We need to compute the integral

y(x) =

∫
5 e5x sin

(
e5x − 2

)
dx + c

Substitute u = e5x − 2, then du = 5 e5x dx , so

y(x) =

∫
sin(u) du + c = − cos(u) + c

So y(x) = − cos
(
e5x − 2

)
+ c . The initial condition implies

0 = y
( ln(2)

5

)
= − cos

(
e ln(2)− 2

)
+ c = − cos(2− 2)+ c = −1+ c

We conclude that c = 1, so y(x) = − cos
(
e5x − 2

)
+ 1. C
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Solving differential equations (Sect. 7.4)

Today: Applications.

I Review: Overview of differential equations.

I Population growth.

I Radioactive decay.

I Newton’s Law of Cooling.

Previous class:

I Overview of differential equations.

I Exponential growth.

I Separable differential equations.



Review: Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Recall:

(a) All solutions y to the exponential growth equation
y ′(x) = k y(x), with constant k, are given by the exponentials

y(x) = y0 ekx ,

where y(0) = y0.

(b) All solutions y to the separable equation h(y) y ′(x) = g(x),
with functions h, g , are given in implicit form,

H(y) = G (x) + c ,

where H ′ = h and g ′ = g .
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Review: Overview of differential equations.

Example

Find all solutions y to the equation y ′(x) =
e2x−y

ex+y
.

Solution: Rewrite the differential equation,

y ′ =
e2x e−y

ex ey
= e2x e−y 1

ex

1

ey
= e2x e−x e−y e−y .

y ′ = ex e−2y =
ex

e2y
⇒ e2y y ′ = ex .

Hence, the equation is separable. We integrate on both sides,∫
e2y(x) y ′(x) dx =

∫
ex dx .
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e2u du =

∫
ex dx ⇒ 1

2
e2u = ex + c .

We now substitute back u = y(x),

e2y(x) = 2 (ex + c) ⇒ 2y(x) = ln
(
2 (ex + c)

)
We conclude that y(x) =

1

2
ln

(
2 (ex + c)

)
. C
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Solving differential equations (Sect. 7.4)

Today: Applications.

I Review: Overview of differential equations.

I Population growth.

I Radioactive decay.

I Newton’s Law of Cooling.



Population growth

Example

Assume the world population growth is described by
y(t) = y0 ek(t−t0), with t measured in years.

(a) If in 1960− 1961 the population increased by 2%, find k.

(b) If the population in t0 = 1960 was 3 billion people, find the
actual population predicted by the law above.

Solution: (a) y(1961) =
(
1 +

2

100

)
y(1960),

y0 ek(1961−t0) =
102

100
y0 ek(1960−t0)

ek1961 e−kt0 = 1.02 ek1960 e−kt0 ⇒ ek(1961−1960) = 1.02.

ek = 1.02 ⇒ k = ln(1.02) ' 0.02. Hence y(t) = y0 e(0.02)(t−t0).
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Solving differential equations (Sect. 7.4)

Today: Applications.

I Review: Overview of differential equations.

I Population growth.

I Radioactive decay.

I Newton’s Law of Cooling.



Radioactive decay

Remarks:

I Some atoms can spontaneously break into smaller atoms.

I This process is called radioactive decay.

I It can be seen that the concentration y of a radioactive
substance in time t follows the law,

y ′(t) = −k y(t), k > 0.

I We know the solution is

y(t) = y0 e−kt , y(0) = y0.

I The half-life of the material is the τ such that y(τ) =
y0

2
.

y0

2
= y0 e−kτ ⇒ − kτ = ln

(1

2

)
⇒ τ =

ln(2)

k
.
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Radioactive decay

Example

The half-life of a radioactive material is τ = 5730 years. If a
material sample contains 14% of the original amount, find the date
the material sample was created.

Solution: Let us fix the time of the original amount at t = 0, and
denote the present time by t1. Also denote y(t) the material
amount at time t.

y(t) = y0 e−kt ⇒ y0 e−kt1 = y(t1) =
14

100
y(0) =

14

100
y0.

y0 e−kt1 =
14

100
y0 ⇒ − kt1 = ln

( 14

100

)
⇒ t1 =

1

k
ln

(100

14

)
.

Recall τ = ln(2)/k and τ = 5730 years. So 1/k = 5730/ ln(2),

We obtain t1 = [5730/ ln(2)] ln
(100

14

)
, hence t1 = 16, 253 years.C
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Solving differential equations (Sect. 7.4)

Today: Applications.

I Review: Overview of differential equations.

I Population growth.

I Radioactive decay.

I Newton’s Law of Cooling.



Newton’s Law of Cooling.

Remarks:

I The temperature difference ∆T = T − T0 between the
temperature of an object, T , and the constant temperature of
the surrounding medium where it is placed, Ts , evolves in
time t following the equation

(∆T )′ = −k(∆T ), T (0) = T0, k > 0.

I The solution is (∆T )(t) = (∆T )0 e−kt , that is,

(T − Ts)(t) = (T0 − Ts) e−kt

T (t) = (T0 − Ts) e−kt + Ts .

I The constant k depends on the material and the surroundings.
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Newton’s Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C. If
after 2 minutes the water temperature is 25 C, when will the water
temperature be 15 C? while

Solution: We know that T (t) = (T0 − Ts) e−kt + Ts , and also

T0 = 45, Ts = 5, T (2) = 25.

Find t1 such that T (t1) = 15. First we find k,

T (t) = (45− 5) e−kt + 5 ⇒ T (t) = 40 e−kt + 5.

20 = T (2) = 40 e−2k ⇒ ln(1/2) = −2k ⇒ k =
1

2
ln(2).

T (t) = 40 e−t ln(
√

2) + 5⇒ 10 = 40 e−t1 ln(
√

2) ⇒ t1 = 4. C
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Inverse trigonometric functions (Sect. 7.6)

Today: Definitions and properties.

I Domains restrictions and inverse trigs.

I Evaluating inverse trigs at simple values.

I Few identities for inverse trigs.

Next class: Derivatives and integrals.

I Derivatives.

I Anti-derivatives.

I Usual substitutions



Domains restrictions and inverse trigs

Remark: The trigonometric functions defined on their biggest
domain are not invertible.

y = sin(x)

x

y y

x

y = cos(x) y = tan(x)y

x

y

x

y = csc(x) y = sec(x)y

x

y

x

y = cot(x)
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Domains restrictions and inverse trigs

Remark: On certain domains the trigonometric functions are
invertible.
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Domains restrictions and inverse trigs

Definition (arc{trig} is the inverse of {trig})

I The function arcsin : [−1, 1]→ [−π/2, π/2]
is the inverse of sin : [−π/2, π/2]→ [−1, 1].

I The function arccos : [−1, 1]→ [0, π]
is the inverse of cos : [0, π]→ [−1, 1].

I The function arctan : (−∞,∞)→ [−π/2, π/2]
is the inverse of tan : [−π/2, π/2]→ (−∞,∞).

I The function arccsc : (−∞,−1]∪ [1,∞)→ [−π/2, π/2]−{0}
is the inverse of csc : [−π/2, π/2]−{0} → (−∞,−1]∪ [1,∞).

I The function arcsec : (−∞,−1] ∪ [1,∞)→ [0, π]− {π/2}
is the inverse of sec : [0, π]− {π/2} → (−∞,−1] ∪ [1,∞).

I The function arccot : (−∞,∞)→ [0, π]
is the inverse of cot : [0, π]→ (−∞,∞).



Domains restrictions and inverse trigs

Remark: The graph of the inverse function is a reflection of the
original function graph about the y = x axis.
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Inverse trigonometric functions (Sect. 7.6)

Today: Definitions and properties.

I Domains restrictions and inverse trigs.

I Evaluating inverse trigs at simple values.

I Few identities for inverse trigs.



Evaluating inverse trigs at simple values

Notation: In the literature is common the notation sin−1 = arcsin,
and similar for the rest of the trigonometric functions.

Do not confuse
1

sin(x)
6= sin−1(x) = arcsin(x).

Remark: sin, cos have simple values at particular angles.

θ sin(θ) cos(θ)

0 0 1

π/6 1/2
√

3/2

π/4
√

2/2
√

2/2

π/3
√

3/2 1/2

π/2 1 0
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Evaluating inverse trigs at simple values

Remark: the symmetry properties of the sine and cosine can be
used to evaluate them at a bigger set of angles.

sin(−x) = − sin(x), sin(π − x) = sin(x).

cos(−x) = cos(x), cos(π − x) = − cos(x).

sin
(
θ +

π

2

)
= cos(θ).

(θ)

θ

π − θ sin(θ)

sin
coscos (π−θ)

1

x

y

(−θ)
sin((3π/2)−θ)

sin(π−θ)

y = sin(x)

x

y

y

x

y = cos(x)
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Evaluating inverse trigs at simple values

Example

Find the values: tan(π/3), sec(2π/3), csc(−π/6).

Solution:

tan
(π

3

)
=

sin(π
3 )

cos(π
3 )

=

√
3

2
1
2

⇒ tan
(π

3

)
=
√

3.

sec
(2π

3

)
=

1

cos(2π
3 )

=
1

− cos(π
3 )

=
1

−1
2

⇒ sec
(2π

3

)
= −2.

csc
(
−π

6

)
=

1

sin(−π
6 )

=
1

− sin(π
6 )

=
1

−1
2

⇒ csc
(
−π

3

)
= −2.

C
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Evaluating inverse trigs at simple values

Example

Given that x = arcsec(−5
√

5), find sin(x).

Solution: Recall:

arcsec(−5
√

5) = x ⇔ sec(x) = −5
√

5

1

cos(x)
= −5

√
5. ⇔ cos(x) = − 1

5
√

5
.

How do we find sin(x)? Use trigonometric identities:

sin(x) = ±
√

1− cos2(x) = ±
√

1− 1

125
⇒ sin(x) = ±

√
124

125
.
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Inverse trigonometric functions (Sect. 7.6)

Today: Definitions and properties.

I Domains restrictions and inverse trigs.

I Evaluating inverse trigs at simple values.

I Few identities for inverse trigs.



Few identities for inverse trigs

Theorem
For all x ∈ [−1, 1] the following identities hold,

arccos(x) + arccos(−x) = π, arccos(x) + arcsin(x) =
π

2
.

Proof:

arccos(−x)

θ

1

y

(θ)x = cos(π−θ)−x = cos

π − θ

θ

x

arccos(x) arccos(x)

θ

1

y

(θ)x = cos x

π/2 − θ

(π/2−θ)x = sin

arcsin(x)
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Theorem
For all x ∈ [−1, 1] the following identities hold,

arcsin(−x) = − arcsin(x),

arctan(−x) = − arctan(x),

arccsc(−x) = −arccsc(x).

Proof:
y = arcsin(x)

x

π / 2

− π / 2

1−1

y y

x

− π / 2 

π / 2

y = arctan(x) y = arccsc(x)y

−1 0 1

π / 2

− π / 2

x
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