The exponential function (Sect. 7.3)

- The inverse of the logarithm.
- Derivatives and integrals.
- Algebraic properties.

The inverse of the logarithm

Remark: The natural logarithm $\operatorname{In}:(0, \infty) \rightarrow \mathbb{R}$ is a one-to-one function,

The inverse of the logarithm

Remark: The natural logarithm $\operatorname{In}:(0, \infty) \rightarrow \mathbb{R}$ is a one-to-one function, hence invertible.

The inverse of the logarithm

Remark: The natural logarithm $\ln :(0, \infty) \rightarrow \mathbb{R}$ is a one-to-one function, hence invertible.

Definition

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the inverse of the natural logarithm, that is,

$$
\exp (x)=y \Leftrightarrow x=\ln (y)
$$

The inverse of the logarithm

Remark: The natural logarithm $\ln :(0, \infty) \rightarrow \mathbb{R}$ is a one-to-one function, hence invertible.

Definition

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the inverse of the natural logarithm, that is,

$$
\exp (x)=y \Leftrightarrow x=\ln (y) .
$$

The inverse of the logarithm

Remark: The natural logarithm $\ln :(0, \infty) \rightarrow \mathbb{R}$ is a one-to-one function, hence invertible.

Definition

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the inverse of the natural logarithm, that is,

$$
\exp (x)=y \Leftrightarrow x=\ln (y) .
$$

Remark: Since $\ln (1)=0$, then $\exp (0)=1$.

The inverse of the logarithm

Remark: The natural logarithm $\ln :(0, \infty) \rightarrow \mathbb{R}$ is a one-to-one function, hence invertible.

Definition

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the inverse of the natural logarithm, that is,

$$
\exp (x)=y \Leftrightarrow x=\ln (y) .
$$

Remark: Since $\ln (1)=0$, then $\exp (0)=1$. Since $\ln (e)=1$, then $\exp (1)=e$.

The inverse of the logarithm
Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)$

The inverse of the logarithm

$$
\text { Remark: Since } \ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n} \text {, }
$$

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function. The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.
The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

Definition
For every $x \in \mathbb{R}$ we denote $e^{x}=\ln ^{-1}(x)=\exp (x)$.

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.
The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

Definition
For every $x \in \mathbb{R}$ we denote $e^{x}=\ln ^{-1}(x)=\exp (x)$.

Example

Find x solution of $e^{3 x+1}=2$.

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.
The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

Definition
For every $x \in \mathbb{R}$ we denote $e^{x}=\ln ^{-1}(x)=\exp (x)$.

Example

Find x solution of $e^{3 x+1}=2$.
Solution: Compute In on both sides,

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.
The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

Definition
For every $x \in \mathbb{R}$ we denote $e^{x}=\ln ^{-1}(x)=\exp (x)$.

Example

Find x solution of $e^{3 x+1}=2$.
Solution: Compute In on both sides,

$$
\ln \left(e^{3 x+1}\right)=\ln (2)
$$

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.
The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

Definition
For every $x \in \mathbb{R}$ we denote $e^{x}=\ln ^{-1}(x)=\exp (x)$.

Example

Find x solution of $e^{3 x+1}=2$.
Solution: Compute In on both sides,

$$
\ln \left(e^{3 x+1}\right)=\ln (2) \Rightarrow 3 x+1=\ln (2)
$$

The inverse of the logarithm

Remark: Since $\ln \left(e^{m / n}\right)=\frac{m}{n} \ln (e)=\frac{m}{n}$, then holds

$$
\exp \left(\frac{m}{n}\right)=e^{m / n}
$$

The exponentiation of a rational number is the power function.
The exponentiation is a way to extend the power function from rational numbers to irrational numbers.

Definition
For every $x \in \mathbb{R}$ we denote $e^{x}=\ln ^{-1}(x)=\exp (x)$.

Example

Find x solution of $e^{3 x+1}=2$.
Solution: Compute In on both sides,

$$
\ln \left(e^{3 x+1}\right)=\ln (2) \Rightarrow 3 x+1=\ln (2) \Rightarrow x=\frac{1}{3}[\ln (2)-1] .
$$

The exponential function (Sect. 7.3)

- The inverse of the logarithm.
- Derivatives and integrals.
- Algebraic properties.

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x$

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1$

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1 \quad \Rightarrow \quad \frac{1}{e^{x}}\left(e^{x}\right)^{\prime}=1$

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1 \quad \Rightarrow \quad \frac{1}{e^{x}}\left(e^{x}\right)^{\prime}=1$

We conclude that $\left(e^{x}\right)^{\prime}=e^{x}$.

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1 \quad \Rightarrow \quad \frac{1}{e^{x}}\left(e^{x}\right)^{\prime}=1$

We conclude that $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) Chain rule implies

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1 \quad \Rightarrow \quad \frac{1}{e^{x}}\left(e^{x}\right)^{\prime}=1$

We conclude that $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) Chain rule implies

$$
\left(e^{u}\right)^{\prime}=\frac{d e^{u}}{d u} u^{\prime}
$$

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1 \quad \Rightarrow \quad \frac{1}{e^{x}}\left(e^{x}\right)^{\prime}=1$

We conclude that $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) Chain rule implies

$$
\left(e^{u}\right)^{\prime}=\frac{d e^{u}}{d u} u^{\prime} \quad \Rightarrow \quad\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}
$$

Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.
Theorem (Derivative of the exponential)
(a) For every $x \in \mathbb{R}$ holds $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) For every differentiable function u holds $\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}$.

Proof:
(a) $\ln \left(e^{x}\right)=x \Rightarrow \frac{d}{d x} \ln \left(e^{x}\right)=1 \quad \Rightarrow \quad \frac{1}{e^{x}}\left(e^{x}\right)^{\prime}=1$

We conclude that $\left(e^{x}\right)^{\prime}=e^{x}$.
(b) Chain rule implies

$$
\left(e^{u}\right)^{\prime}=\frac{d e^{u}}{d u} u^{\prime} \quad \Rightarrow \quad\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}
$$

Remark: In particular: $\left(e^{a x}\right)^{\prime}=a e^{a x}$, for $a \in \mathbb{R}$.

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$,

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$, for $f^{-1}(x)=e^{x}$.

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{gathered}
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}
\end{gathered}
$$

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{gathered}
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y}
\end{gathered}
$$

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
& \qquad\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y} \quad \Rightarrow \quad\left(e^{x}\right)^{\prime}=e^{x} .
\end{aligned}
$$

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \text {, for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
& \qquad\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y} \quad \Rightarrow \quad\left(e^{x}\right)^{\prime}=e^{x} .
\end{aligned}
$$

Example
Find y^{\prime} for $y(x)=e^{\left(3 x^{2}+5\right)}$.

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
& \quad\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y} \quad \Rightarrow \quad\left(e^{x}\right)^{\prime}=e^{x} .
\end{aligned}
$$

Example
Find y^{\prime} for $y(x)=e^{\left(3 x^{2}+5\right)}$.
Solution: We use all the well-known derivation rules,

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
& \quad\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y} \quad \Rightarrow \quad\left(e^{x}\right)^{\prime}=e^{x} .
\end{aligned}
$$

Example
Find y^{\prime} for $y(x)=e^{\left(3 x^{2}+5\right)}$.
Solution: We use all the well-known derivation rules,

$$
y^{\prime}=\left(e^{\left(3 x^{2}+5\right)}\right)^{\prime}
$$

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
& \quad\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y} \quad \Rightarrow \quad\left(e^{x}\right)^{\prime}=e^{x} .
\end{aligned}
$$

Example

Find y^{\prime} for $y(x)=e^{\left(3 x^{2}+5\right)}$.
Solution: We use all the well-known derivation rules,

$$
y^{\prime}=\left(e^{\left(3 x^{2}+5\right)}\right)^{\prime}=e^{\left(3 x^{2}+5\right)}\left(3 x^{2}+5\right)^{\prime}
$$

Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula

$$
\begin{aligned}
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \text { for } f^{-1}(x)=e^{x} . \text { Indeed, } \\
& \quad\left(e^{x}\right)^{\prime}=\frac{1}{\ln ^{\prime}\left(e^{x}\right)}, \quad \frac{d \ln }{d y}(y)=\frac{1}{y} \quad \Rightarrow \quad\left(e^{x}\right)^{\prime}=e^{x} .
\end{aligned}
$$

Example
Find y^{\prime} for $y(x)=e^{\left(3 x^{2}+5\right)}$.
Solution: We use all the well-known derivation rules,

$$
y^{\prime}=\left(e^{\left(3 x^{2}+5\right)}\right)^{\prime}=e^{\left(3 x^{2}+5\right)}\left(3 x^{2}+5\right)^{\prime} \quad \Rightarrow \quad y^{\prime}=6 x e^{\left(3 x^{2}+5\right)}
$$

Derivatives and integrals

Example
Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.

Derivatives and integrals

Example
Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

Derivatives and integrals

Example
Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

$$
y^{\prime}=\left(e^{\sin \left(3 x^{2}\right)}\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)}\left(\ln \left(x^{2}+1\right)\right)^{\prime}
$$

Derivatives and integrals

Example

Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

$$
\begin{aligned}
& y^{\prime}=\left(e^{\sin \left(3 x^{2}\right)}\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)}\left(\ln \left(x^{2}+1\right)\right)^{\prime} \\
& y^{\prime}=e^{\sin \left(3 x^{2}\right)}\left(\sin \left(3 x^{2}\right)\right)^{\prime} \ln \left(x^{2}+1\right)+
\end{aligned}
$$

Derivatives and integrals

Example

Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

$$
\begin{gathered}
y^{\prime}=\left(e^{\sin \left(3 x^{2}\right)}\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)}\left(\ln \left(x^{2}+1\right)\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)}\left(\sin \left(3 x^{2}\right)\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)} \frac{1}{\left(x^{2}+1\right)}\left(x^{2}+1\right)^{\prime}
\end{gathered}
$$

Derivatives and integrals

Example

Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

$$
\begin{gathered}
y^{\prime}=\left(e^{\sin \left(3 x^{2}\right)}\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)}\left(\ln \left(x^{2}+1\right)\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)}\left(\sin \left(3 x^{2}\right)\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)} \frac{1}{\left(x^{2}+1\right)}\left(x^{2}+1\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)} \cos \left(3 x^{2}\right)(6 x) \ln \left(x^{2}+1\right)+
\end{gathered}
$$

Derivatives and integrals

Example
Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

$$
\begin{gathered}
y^{\prime}=\left(e^{\sin \left(3 x^{2}\right)}\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)}\left(\ln \left(x^{2}+1\right)\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)}\left(\sin \left(3 x^{2}\right)\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)} \frac{1}{\left(x^{2}+1\right)}\left(x^{2}+1\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)} \cos \left(3 x^{2}\right)(6 x) \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)} \frac{(2 x)}{\left(x^{2}+1\right)}
\end{gathered}
$$

Derivatives and integrals

Example
Find y^{\prime} for $y(x)=e^{\sin \left(3 x^{2}\right)} \ln \left(x^{2}+1\right)$.
Solution: We start with the product rule,

$$
\begin{gather*}
y^{\prime}=\left(e^{\sin \left(3 x^{2}\right)}\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)}\left(\ln \left(x^{2}+1\right)\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)}\left(\sin \left(3 x^{2}\right)\right)^{\prime} \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)} \frac{1}{\left(x^{2}+1\right)}\left(x^{2}+1\right)^{\prime} \\
y^{\prime}=e^{\sin \left(3 x^{2}\right)} \cos \left(3 x^{2}\right)(6 x) \ln \left(x^{2}+1\right)+e^{\sin \left(3 x^{2}\right)} \frac{(2 x)}{\left(x^{2}+1\right)} \\
y^{\prime}=2 x e^{\sin \left(3 x^{2}\right)}\left[3 \cos \left(3 x^{2}\right) \ln \left(x^{2}+1\right)+\frac{1}{\left(x^{2}+1\right)}\right]
\end{gather*}
$$

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x)$,

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x), \quad d u=6 \cos (2 x) d x$.

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x), \quad d u=6 \cos (2 x) d x$.

$$
I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x
$$

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x), \quad d u=6 \cos (2 x) d x$.

$$
I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x=\int_{0}^{1} e^{u} \frac{d u}{6}
$$

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x), \quad d u=6 \cos (2 x) d x$.

$$
I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x=\int_{0}^{1} e^{u} \frac{d u}{6}=\left.\frac{1}{6}\left(e^{u}\right)\right|_{0} ^{1}
$$

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x), \quad d u=6 \cos (2 x) d x$.

$$
I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x=\int_{0}^{1} e^{u} \frac{d u}{6}=\left.\frac{1}{6}\left(e^{u}\right)\right|_{0} ^{1}
$$

Since, $\quad I=\frac{1}{6}\left(e^{1}-e^{0}\right)$,

Derivatives and integrals

Remark: The derivation rule for the exponential implies that its antiderivative is

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+c
$$

Example
Find $I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x$.
Solution: Use the substitution $u=3 \sin (2 x), \quad d u=6 \cos (2 x) d x$.

$$
I=\int_{0}^{\pi / 4} e^{3 \sin (2 x)} \cos (2 x) d x=\int_{0}^{1} e^{u} \frac{d u}{6}=\left.\frac{1}{6}\left(e^{u}\right)\right|_{0} ^{1}
$$

Since, $\quad I=\frac{1}{6}\left(e^{1}-e^{0}\right)$, we obtain $\quad I=\frac{1}{6}(e-1)$.

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}$

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}$

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$,

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$, since $\frac{d u}{4}=x e^{2 x^{2}} d x$,

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$, since $\frac{d u}{4}=x e^{2 x^{2}} d x$,

$$
I=\int 3 \frac{d u}{4} \sin (u)
$$

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$, since $\frac{d u}{4}=x e^{2 x^{2}} d x$,

$$
I=\int 3 \frac{d u}{4} \sin (u)=\frac{3}{4} \int \sin (u) d u
$$

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$, since $\frac{d u}{4}=x e^{2 x^{2}} d x$,

$$
I=\int 3 \frac{d u}{4} \sin (u)=\frac{3}{4} \int \sin (u) d u=\frac{3}{4}(-\cos (u))
$$

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$, since $\frac{d u}{4}=x e^{2 x^{2}} d x$,

$$
I=\int 3 \frac{d u}{4} \sin (u)=\frac{3}{4} \int \sin (u) d u=\frac{3}{4}(-\cos (u))
$$

Substitute back the original unknown,

Derivatives and integrals

Example
Find $I=\int 3 x e^{2 x^{2}} \sin \left(e^{2 x^{2}}\right) d x$.
Solution: Recall that $\left(e^{2 x^{2}}\right)^{\prime}=\left(2 x^{2}\right)^{\prime} e^{2 x^{2}}=4 x e^{2 x^{2}}$.
Therefore, use the substitution $u=e^{2 x^{2}}$, since $\frac{d u}{4}=x e^{2 x^{2}} d x$,

$$
I=\int 3 \frac{d u}{4} \sin (u)=\frac{3}{4} \int \sin (u) d u=\frac{3}{4}(-\cos (u))
$$

Substitute back the original unknown,

$$
I=-\frac{3}{4} \cos \left(e^{2 x^{2}}\right) .
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime},

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

The initial condition fixes c,

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

The initial condition fixes c,

$$
2=y^{\prime}(0)
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

The initial condition fixes c,

$$
2=y^{\prime}(0)=6 e^{0}+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

The initial condition fixes c,

$$
2=y^{\prime}(0)=6 e^{0}+c \Rightarrow c=-4
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

The initial condition fixes c,

$$
2=y^{\prime}(0)=6 e^{0}+c \quad \Rightarrow \quad c=-4 \quad \Rightarrow \quad y^{\prime}(x)=6 e^{3 x}-4
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: We first find y^{\prime}, integrating the equation above,

$$
\int y^{\prime \prime}(x) d x=\int 18 e^{3 x} d x+c \quad \Rightarrow \quad y^{\prime}=\frac{18}{3} e^{3 x}+c=6 e^{3 x}+c
$$

The initial condition fixes c,

$$
2=y^{\prime}(0)=6 e^{0}+c \Rightarrow c=-4 \Rightarrow y^{\prime}(x)=6 e^{3 x}-4
$$

We now need to integrate one more time.

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $y^{\prime}(x)=6 e^{3 x}-4$.

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $y^{\prime}(x)=6 e^{3 x}-4$.

$$
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $\quad y^{\prime}(x)=6 e^{3 x}-4$.

$$
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $\quad y^{\prime}(x)=6 e^{3 x}-4$.

$$
\begin{gathered}
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c \\
y(x)=\frac{6}{3} e^{3 x}-4 x+c
\end{gathered}
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $\quad y^{\prime}(x)=6 e^{3 x}-4$.

$$
\begin{gathered}
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c \\
y(x)=\frac{6}{3} e^{3 x}-4 x+c=2 e^{3 x}-4 x+c
\end{gathered}
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $\quad y^{\prime}(x)=6 e^{3 x}-4$.

$$
\begin{gathered}
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c \\
y(x)=\frac{6}{3} e^{3 x}-4 x+c=2 e^{3 x}-4 x+c
\end{gathered}
$$

The initial condition implies

$$
1=y(0)
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $\quad y^{\prime}(x)=6 e^{3 x}-4$.

$$
\begin{gathered}
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c \\
y(x)=\frac{6}{3} e^{3 x}-4 x+c=2 e^{3 x}-4 x+c
\end{gathered}
$$

The initial condition implies

$$
1=y(0)=2 e^{0}+c
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $y^{\prime}(x)=6 e^{3 x}-4$.

$$
\begin{gathered}
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c \\
y(x)=\frac{6}{3} e^{3 x}-4 x+c=2 e^{3 x}-4 x+c
\end{gathered}
$$

The initial condition implies

$$
1=y(0)=2 e^{0}+c \Rightarrow c=-1
$$

Derivatives and integrals

Example

Find the solution to the initial value problem

$$
y^{\prime \prime}(x)=18 e^{3 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution: Recall: $y^{\prime}(x)=6 e^{3 x}-4$.

$$
\begin{gathered}
\int y^{\prime}(x) d x=\int\left(6 e^{3 x}-4\right) d x+c=6 \int e^{3 x} d x-4 \int d x+c \\
y(x)=\frac{6}{3} e^{3 x}-4 x+c=2 e^{3 x}-4 x+c
\end{gathered}
$$

The initial condition implies

$$
1=y(0)=2 e^{0}+c \Rightarrow c=-1
$$

We conclude that $y(x)=2 e^{3 x}-4 x-1$.

The exponential function (Sect. 7.3)

- The inverse of the logarithm.
- Derivatives and integrals.
- Algebraic properties.

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)=\ln \left(e^{a} e^{b}\right)
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)=\ln \left(e^{a} e^{b}\right)
$$

We conclude that $e^{a+b}=e^{a} e^{b}$.

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{aligned}
& \left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
& \quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}
\end{aligned}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{aligned}
& \left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
& \quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}
\end{aligned}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{gathered}
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
\quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}=\frac{e^{3(x-1)}}{8}
\end{gathered}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{gathered}
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
\quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}=\frac{e^{3(x-1)}}{8}
\end{gathered}
$$

We conclude that $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{1}{8} e^{3(x-1)}$.

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Review: The exponential function e^{x}

Definition

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the inverse of the natural logarithm, that is,

Remark: Since $\ln (1)=0$, then $e^{0}=1$. Since $\ln (e)=1$, then $e^{1}=e$.

$$
\left(e^{a x}\right)^{\prime}=a e^{a x}, \quad \int e^{a x} d x=\frac{e^{a x}}{a}+c .
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)=\ln \left(e^{a} e^{b}\right)
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem
For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)=\ln \left(e^{a} e^{b}\right)
$$

We conclude that $e^{a+b}=e^{a} e^{b}$.

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{aligned}
& \left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
& \quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}
\end{aligned}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{aligned}
& \left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
& \quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}
\end{aligned}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{gathered}
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
\quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}=\frac{e^{3(x-1)}}{8}
\end{gathered}
$$

Algebraic properties

Example
Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{gathered}
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
\quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}=\frac{e^{3(x-1)}}{8}
\end{gathered}
$$

We conclude that $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{1}{8} e^{3(x-1)}$.

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h} .
$$

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h} .
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$,

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)$

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$,

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)
$$

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right] .
$$

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]
$$

The \ln is continuous,

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]
$$

The \ln is continuous, $\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]=\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]$.

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right] .
$$

The \ln is continuous, $\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]=\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]$.
Therefore, $\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]=1$.

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right] .
$$

The \ln is continuous, $\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]=\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]$.
Therefore, $\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]=1$. But \ln is a one-to-one function,

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right] .
$$

The \ln is continuous, $\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]=\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]$.
Therefore, $\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]=1$. But \ln is a one-to-one function, and $\ln (e)=1$,

Computing the number e.

Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right] .
$$

The \ln is continuous, $\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]=\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]$.
Therefore, $\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]=1$. But \ln is a one-to-one function,
and $\ln (e)=1$, hence $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1$,

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}$,

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}$

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}$,

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}$

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}$,

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}$

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}=2.7048 \ldots$.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}=2.7048 \ldots$.
- For $h=\frac{1}{1000}$,

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}=2.7048 \ldots$.
- For $h=\frac{1}{1000}, e_{h}=(1.001)^{1000}$

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}=2.7048 \ldots$.
- For $h=\frac{1}{1000}, e_{h}=(1.001)^{1000}=2.7169 \ldots$.

Computing the number e.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}=2.7048 \ldots$.
- For $h=\frac{1}{1000}, e_{h}=(1.001)^{1000}=2.7169 \ldots$.

Remark: $e=2.71828182 \ldots$

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$ and $\exp [a](1)=a$.

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$ and $\exp [a](1)=a$.
- Also $\exp [a](m / n)=e^{(m / n) \ln (a)}$

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$ and $\exp [a](1)=a$.
- Also $\exp [a](m / n)=e^{(m / n) \ln (a)}=e^{\ln \left(a^{m / n}\right)}$

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$ and $\exp [a](1)=a$.
- Also $\exp [a](m / n)=e^{(m / n) \ln (a)}=e^{\ln \left(a^{m / n}\right)}=a^{m / n}$.

The exponential function a^{x}

Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$ and $\exp [a](1)=a$.
- Also $\exp [a](m / n)=e^{(m / n) \ln (a)}=e^{\ln \left(a^{m / n}\right)}=a^{m / n}$.
- Notation: $\exp [a](x)=a^{x}$, for $x \in \mathbb{R}$.

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

$$
a^{(b+c)}
$$

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

$$
a^{(b+c)}=e^{(b+c) \ln (a)}
$$

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

$$
a^{(b+c)}=e^{(b+c) \ln (a)}=e^{b \ln (a)+c \ln (a)}
$$

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

$$
a^{(b+c)}=e^{(b+c) \ln (a)}=e^{b \ln (a)+c \ln (a)}=e^{b \ln (a)} e^{c \ln (a)} .
$$

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

$$
a^{(b+c)}=e^{(b+c) \ln (a)}=e^{b \ln (a)+c \ln (a)}=e^{b \ln (a)} e^{c \ln (a)} .
$$

We conclude that $a^{(b+c)}=a^{b} a^{c}$.

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

Example
Compute $2^{-\pi}$.

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

Example
Compute $2^{-\pi}$.
Solution:

$$
2^{-\pi}
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

Example
Compute $2^{-\pi}$.
Solution:

$$
2^{-\pi}=\frac{1}{2^{\pi}}
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

Example
Compute $2^{-\pi}$.
Solution:

$$
2^{-\pi}=\frac{1}{2^{\pi}}=\frac{1}{e^{\pi \ln (2)}}
$$

The exponential function a^{x}

Example
Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

Example
Compute $2^{-\pi}$.
Solution:

$$
2^{-\pi}=\frac{1}{2^{\pi}}=\frac{1}{e^{\pi \ln (2)}}=\frac{1}{8.825 \ldots}
$$

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Derivatives and integrals

Theorem
For every $a \in(0, \infty), c \in \mathbb{R}$, and differentiable function u holds,

$$
\left(a^{x}\right)^{\prime}=\ln (a) a^{x}, \quad\left(a^{u}\right)^{\prime}=\ln (a) a^{u} u^{\prime}
$$

In addition, if $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+c
$$

Derivatives and integrals

Theorem
For every $a \in(0, \infty), c \in \mathbb{R}$, and differentiable function u holds,

$$
\left(a^{x}\right)^{\prime}=\ln (a) a^{x}, \quad\left(a^{u}\right)^{\prime}=\ln (a) a^{u} u^{\prime} .
$$

In addition, if $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+c
$$

Proof of the first equation:

Derivatives and integrals

Theorem
For every $a \in(0, \infty), c \in \mathbb{R}$, and differentiable function u holds,

$$
\left(a^{x}\right)^{\prime}=\ln (a) a^{x}, \quad\left(a^{u}\right)^{\prime}=\ln (a) a^{u} u^{\prime}
$$

In addition, if $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+c
$$

Proof of the first equation:

$$
\left(a^{x}\right)^{\prime}=\left(e^{x \ln (a)}\right)^{\prime}
$$

Derivatives and integrals

Theorem
For every $a \in(0, \infty), c \in \mathbb{R}$, and differentiable function u holds,

$$
\left(a^{x}\right)^{\prime}=\ln (a) a^{x}, \quad\left(a^{u}\right)^{\prime}=\ln (a) a^{u} u^{\prime}
$$

In addition, if $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+c
$$

Proof of the first equation:

$$
\left(a^{x}\right)^{\prime}=\left(e^{x \ln (a)}\right)^{\prime}=\ln (a)\left(e^{x \ln (a)}\right),
$$

Derivatives and integrals

Theorem
For every $a \in(0, \infty), c \in \mathbb{R}$, and differentiable function u holds,

$$
\left(a^{x}\right)^{\prime}=\ln (a) a^{x}, \quad\left(a^{u}\right)^{\prime}=\ln (a) a^{u} u^{\prime}
$$

In addition, if $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+c
$$

Proof of the first equation:

$$
\left(a^{x}\right)^{\prime}=\left(e^{x \ln (a)}\right)^{\prime}=\ln (a)\left(e^{x \ln (a)}\right),
$$

that is, $\left(a^{x}\right)^{\prime}=\ln (a) a^{x}$.

Derivatives and integrals

Example
Compute both the derivative and a primitive of $f(x)=5^{x}$.

Derivatives and integrals

Example
Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}$

Derivatives and integrals

Example
Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x$

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}$

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$,

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x$,

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x, d u=3 d x$,

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x, d u=3 d x$,

$$
I=\int 5^{3 x} d x
$$

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x, d u=3 d x$,

$$
I=\int 5^{3 x} d x=\int 5^{u} \frac{d u}{3}
$$

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x, d u=3 d x$,

$$
I=\int 5^{3 x} d x=\int 5^{u} \frac{d u}{3}=\frac{1}{3} \frac{5^{u}}{\ln (5)}
$$

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.
Example
Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x, d u=3 d x$,

$$
I=\int 5^{3 x} d x=\int 5^{u} \frac{d u}{3}=\frac{1}{3} \frac{5^{u}}{\ln (5)} \quad \Rightarrow \quad I=\frac{5^{3 x}}{3 \ln (5)}+c
$$

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$,

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$, then $d u=\cos (x) d x$.

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$, then $d u=\cos (x) d x$.

$$
I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x
$$

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$, then $d u=\cos (x) d x$.

$$
I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x=\int\left(\frac{1}{7}\right)^{u} d u
$$

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$, then $d u=\cos (x) d x$.

$$
\begin{gathered}
I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x=\int\left(\frac{1}{7}\right)^{u} d u \\
I=\frac{1}{\ln (1 / 7)}\left(\frac{1}{7}\right)^{u}+c
\end{gathered}
$$

Derivatives and integrals

Example
Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$, then $d u=\cos (x) d x$.

$$
\begin{gathered}
I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x=\int\left(\frac{1}{7}\right)^{u} d u \\
I=\frac{1}{\ln (1 / 7)}\left(\frac{1}{7}\right)^{u}+c
\end{gathered}
$$

Now substitute back,

$$
I=-\frac{1}{\ln (7)}\left(\frac{1}{7}\right)^{\sin (x)}+c
$$

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Logarithms with base $a \in \mathbb{R}$.
Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to In.

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to In .

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y} .
$$

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to In .

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y}
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to In .

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y}
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.
Proof: $\log _{a}(x)=y \Leftrightarrow x=a^{y}$

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to In .

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y}
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.
Proof: $\log _{a}(x)=y \Leftrightarrow x=a^{y}=e^{y \ln (a)}$

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to \ln.

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y}
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.
Proof: $\log _{a}(x)=y \Leftrightarrow x=a^{y}=e^{y \ln (a)} \Leftrightarrow \ln (x)=y \ln (a)$.

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to \ln.

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y}
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.
Proof: $\log _{a}(x)=y \Leftrightarrow x=a^{y}=e^{y \ln (a)} \Leftrightarrow \ln (x)=y \ln (a)$.
Therefore, $\ln (x)=\log _{a}(x) \ln (a)$

Logarithms with base $a \in \mathbb{R}$.

Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to In.

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y} .
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.
Proof: $\log _{a}(x)=y \Leftrightarrow x=a^{y}=e^{y \ln (a)} \Leftrightarrow \ln (x)=y \ln (a)$.
Therefore, $\ln (x)=\log _{a}(x) \ln (a) \quad \Rightarrow \quad \log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u} .
$$

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation:

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$,

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u} .
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$, then

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a)} \frac{1}{x}
$$

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$, then

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a)} \frac{1}{x}
$$

Example
Compute the derivative of $f(x)=\log _{2}\left(3 x^{3}+2\right)$.

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$, then

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a)} \frac{1}{x}
$$

Example
Compute the derivative of $f(x)=\log _{2}\left(3 x^{3}+2\right)$.
Solution: $f^{\prime}(x)=\frac{1}{\ln (2)} \ln ^{\prime}\left(3 x^{2}+2\right)$

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$, then

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a)} \frac{1}{x}
$$

Example
Compute the derivative of $f(x)=\log _{2}\left(3 x^{3}+2\right)$.
Solution: $f^{\prime}(x)=\frac{1}{\ln (2)} \ln ^{\prime}\left(3 x^{2}+2\right)=\frac{1}{\ln (2)} \frac{1}{\left(3 x^{2}+2\right)} 6 x$.

Logarithms with base $a \in \mathbb{R}$.

Theorem

For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$, then

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a)} \frac{1}{x}
$$

Example
Compute the derivative of $f(x)=\log _{2}\left(3 x^{3}+2\right)$.
Solution: $f^{\prime}(x)=\frac{1}{\ln (2)} \ln ^{\prime}\left(3 x^{2}+2\right)=\frac{1}{\ln (2)} \frac{1}{\left(3 x^{2}+2\right)} 6 x$.
We conclude: $\quad f^{\prime}(x)=\frac{6 x}{\ln (2)\left(3 x^{2}+2\right)}$.

Solving differential equations (Sect. 7.4)

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Next class: Applications.

- Population growth
- Radioactive decay.
- Heat transfer.

Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Example
Newton's second law of motion in one space dimension is a differential equation:

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Example
Newton's second law of motion in one space dimension is a differential equation: The unknown is $x(t)$, the particle position as function of time t,

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Example

Newton's second law of motion in one space dimension is a differential equation: The unknown is $x(t)$, the particle position as function of time t, and the equation is

$$
\frac{d^{2} x}{d t^{2}}(t)=\frac{1}{m} f(t, x(t))
$$

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Example

Newton's second law of motion in one space dimension is a differential equation: The unknown is $x(t)$, the particle position as function of time t, and the equation is

$$
\frac{d^{2} x}{d t^{2}}(t)=\frac{1}{m} f(t, x(t))
$$

with m the particle mass

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Example

Newton's second law of motion in one space dimension is a differential equation: The unknown is $x(t)$, the particle position as function of time t, and the equation is

$$
\frac{d^{2} x}{d t^{2}}(t)=\frac{1}{m} f(t, x(t)),
$$

with m the particle mass and f the force acting on the particle.

Overview of differential equations.

Example

The following are examples of differential equations:

- Given a constant k find every function y solution of

$$
\frac{d y}{d x}(x)=k y(x) .
$$

Overview of differential equations.

Example

The following are examples of differential equations:

- Given a constant k find every function y solution of

$$
\frac{d y}{d x}(x)=k y(x)
$$

- Find the function y solution of

$$
\frac{d y}{d x}(x)=(1+y(x)) x^{2}, \quad y(0)=2 .
$$

Overview of differential equations.

Example

The following are examples of differential equations:

- Given a constant k find every function y solution of

$$
\frac{d y}{d x}(x)=k y(x)
$$

- Find the function y solution of

$$
\frac{d y}{d x}(x)=(1+y(x)) x^{2}, \quad y(0)=2
$$

- Find every function y solution of

$$
\frac{d y}{d x}(x)=\frac{e^{2 x-y(x)}}{e^{x+y(x)}}
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation.

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation. We then compute the right-hand side of the equation.

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation. We then compute the right-hand side of the equation. We verify that we obtain the same expression.

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation. We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation. We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation. We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

The right hand side is $2 y+3$,
$2 y+3$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation.
We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

The right hand side is $2 y+3$,

$$
2 y+3=2\left(c e^{-2 x}-\frac{3}{2}\right)+3
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation.
We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

The right hand side is $2 y+3$,

$$
2 y+3=2\left(c e^{-2 x}-\frac{3}{2}\right)+3=\left(2 c e^{-2 x}-3\right)+3
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation.
We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

The right hand side is $2 y+3$,

$$
2 y+3=2\left(c e^{-2 x}-\frac{3}{2}\right)+3=\left(2 c e^{-2 x}-3\right)+3=2 c e^{-2 x} .
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation.
We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

The right hand side is $2 y+3$,

$$
2 y+3=2\left(c e^{-2 x}-\frac{3}{2}\right)+3=\left(2 c e^{-2 x}-3\right)+3=2 c e^{-2 x} .
$$

Therefore, $y^{\prime}=2 y+3$ for all $c \in \mathbb{R}$.

Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Overview of differential equations.

Remark: Differential equations have infinity many solutions.
Example
For every $c \in \mathbb{R}$, the functions $y(x)=c e^{-2 x}-\frac{3}{2}$ are solutions to the differential equation $y^{\prime}=2 y+3$.

Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Example

For every $c \in \mathbb{R}$, the functions $y(x)=c e^{-2 x}-\frac{3}{2}$ are solutions to the differential equation $y^{\prime}=2 y+3$.

The differential equation has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Example

For every $c \in \mathbb{R}$, the functions $y(x)=c e^{-2 x}-\frac{3}{2}$ are solutions to the differential equation $y^{\prime}=2 y+3$.

The differential equation has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

- To solve a first order differential equation means to do one integration.

Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Example

For every $c \in \mathbb{R}$, the functions $y(x)=c e^{-2 x}-\frac{3}{2}$ are solutions to the differential equation $y^{\prime}=2 y+3$.

The differential equation has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R} .
$$

- To solve a first order differential equation means to do one integration.
- So, it is reasonable that the solution contains a constant of integration, $c \in \mathbb{R}$.

Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Example

For every $c \in \mathbb{R}$, the functions $y(x)=c e^{-2 x}-\frac{3}{2}$ are solutions to the differential equation $y^{\prime}=2 y+3$.

The differential equation has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

- To solve a first order differential equation means to do one integration.
- So, it is reasonable that the solution contains a constant of integration, $c \in \mathbb{R}$.

Solving differential equations (Sect. 7.4)

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Exponential growth

Remark: The two main examples are:

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

- For these processes, the rate of change of a quantity y is proportional to the actual amount of that quantity.

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

- For these processes, the rate of change of a quantity y is proportional to the actual amount of that quantity.

$$
\frac{d y}{d x}(x)=k y(x)
$$

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

- For these processes, the rate of change of a quantity y is proportional to the actual amount of that quantity.

$$
\frac{d y}{d x}(x)=k y(x)
$$

- The solution of the differential equation above is

$$
y(x)=y_{0} e^{k x}
$$

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

- For these processes, the rate of change of a quantity y is proportional to the actual amount of that quantity.

$$
\frac{d y}{d x}(x)=k y(x)
$$

- The solution of the differential equation above is

$$
y(x)=y_{0} e^{k x}, \quad y(0)=y_{0} .
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$,

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \quad \Rightarrow \quad \ln (|u|)=k x+c
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \quad \Rightarrow \quad \ln (|u|)=k x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \quad \Rightarrow \quad \ln (|u|)=k x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{k x+c}
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \quad \Rightarrow \quad \ln (|u|)=k x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{k x+c}=e^{k x} e^{c}
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \quad \Rightarrow \quad \ln (|u|)=k x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{k x+c}=e^{k x} e^{c} \Rightarrow y(x)= \pm e^{c} e^{k x} .
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \Rightarrow \ln (|u|)=k x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{k x+c}=e^{k x} e^{c} \Rightarrow y(x)= \pm e^{c} e^{k x} .
$$

Denoting $y_{0}= \pm e^{c}$,

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \quad \Rightarrow \quad \ln (|u|)=k x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{k x+c}=e^{k x} e^{c} \Rightarrow y(x)= \pm e^{c} e^{k x} .
$$

Denoting $y_{0}= \pm e^{c}$, we obtain $y(x)=y_{0} e^{k x}$.

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x) .
$$

Solution: This differential equation is particularly simple to solve.

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x) .
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \Rightarrow \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x) .
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$,

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \Rightarrow \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{-3 x+c}
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{-3 x+c}=e^{-3 x} e^{c}
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{-3 x+c}=e^{-3 x} e^{c} \Rightarrow y(x)=+e^{c} e^{-3 x} .
$$

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{-3 x+c}=e^{-3 x} e^{c} \Rightarrow y(x)=+e^{c} e^{-3 x}
$$

Denoting $y_{0}=e^{c}$,

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{-3 x+c}=e^{-3 x} e^{c} \Rightarrow y(x)=+e^{c} e^{-3 x}
$$

Denoting $y_{0}=e^{c}$, we obtain $y(x)=y_{0} e^{-3 x}$.

Solving differential equations (Sect. 7.4)

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(x)}{h(y)}
$$

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(x)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(x)}{h(y)}
$$

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(x)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(x)}{h(y)}
$$

Example

The three equations below are separable:

$$
\frac{d y}{d x}=\frac{\cos (x)}{y^{2}}
$$

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(x)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(x)}{h(y)}
$$

Example

The three equations below are separable:

$$
\frac{d y}{d x}=\frac{\cos (x)}{y^{2}}, \quad \frac{d y}{d x}=\frac{e^{x}}{(1+y)},
$$

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(x)}{h(y)} \Leftrightarrow f(t, y)=\frac{g(x)}{h(y)}
$$

Example
The three equations below are separable:

$$
\frac{d y}{d x}=\frac{\cos (x)}{y^{2}}, \quad \frac{d y}{d x}=\frac{e^{x}}{(1+y)}, \quad 3(x+1) y \frac{d y}{d x}=2\left(1+y^{2}\right)
$$

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Solution: The differential equation is separable,

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(x)=x^{2}
$$

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(x)=x^{2} \Rightarrow\left\{\begin{array}{l}
g(x)=x^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(x)=x^{2} \Rightarrow\left\{\begin{array}{l}
g(x)=x^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined.

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(x)=x^{2} \Rightarrow\left\{\begin{array}{l}
g(x)=x^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(x)=c x^{2}, \quad h(y)=c\left(1-y^{2}\right), \quad c \in \mathbb{R}
$$

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$,

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h,

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$.

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$.
Denote by G a primitive of g,

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$.
Denote by G a primitive of g, that is, $G^{\prime}=g$.

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$. Denote by G a primitive of g, that is, $G^{\prime}=g$.

$$
H(u)=G(x)+c .
$$

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$. Denote by G a primitive of g, that is, $G^{\prime}=g$.

$$
H(u)=G(x)+c .
$$

Substitute back $y(x)=u$,

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$.
Denote by G a primitive of g, that is, $G^{\prime}=g$.

$$
H(u)=G(x)+c .
$$

Substitute back $y(x)=u$,

$$
H(y(x))=G(x)+c .
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$,

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=-\cos (2 x)
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=-\cos (2 x) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(x)}{y^{2}(x)} d x=-\int \cos (2 x) d x+c
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=-\cos (2 x) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(x)}{y^{2}(x)} d x=-\int \cos (2 x) d x+c
$$

The substitution $u=y(x), d u=y^{\prime}(x) d x$,

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=-\cos (2 x) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(x)}{y^{2}(x)} d x=-\int \cos (2 x) d x+c
$$

The substitution $u=y(x), d u=y^{\prime}(x) d x$, implies that

$$
\int \frac{d u}{u^{2}}=-\int \cos (2 x) d x+c
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=-\cos (2 x) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(x)}{y^{2}(x)} d x=-\int \cos (2 x) d x+c
$$

The substitution $u=y(x), d u=y^{\prime}(x) d x$, implies that

$$
\int \frac{d u}{u^{2}}=-\int \cos (2 x) d x+c \quad \Leftrightarrow \quad-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

$$
-\frac{1}{y(x)}=-\frac{1}{2} \sin (2 x)+c . \quad \text { (Implicit form.) }
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

$$
-\frac{1}{y(x)}=-\frac{1}{2} \sin (2 x)+c . \quad \text { (Implicit form.) }
$$

Or multiply by (-1),

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

$$
-\frac{1}{y(x)}=-\frac{1}{2} \sin (2 x)+c . \quad \text { (Implicit form.) }
$$

Or multiply by (-1),

$$
\frac{1}{y(x)}=\frac{1}{2} \sin (2 x)-c
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

$$
-\frac{1}{y(x)}=-\frac{1}{2} \sin (2 x)+c . \quad \text { (Implicit form.) }
$$

Or multiply by (-1),

$$
\frac{1}{y(x)}=\frac{1}{2} \sin (2 x)-c=\frac{\sin (2 x)-2 c}{2}
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

$$
-\frac{1}{y(x)}=-\frac{1}{2} \sin (2 x)+c . \quad \text { (Implicit form.) }
$$

Or multiply by (-1),

$$
\begin{aligned}
& \frac{1}{y(x)}=\frac{1}{2} \sin (2 x)-c=\frac{\sin (2 x)-2 c}{2} . \\
& y(x)=\frac{2}{\sin (2 x)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $\quad y(x)=\frac{2}{\sin (2 x)-2 c}$.

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $\quad y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $\quad y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.
Indeed, $1=y(0)$

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $\quad y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.
Indeed, $1=y(0)=\frac{2}{0-2 c}$,

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $\quad y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.
Indeed, $1=y(0)=\frac{2}{0-2 c}$, so $1=-\frac{1}{c}$,

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $\quad y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.
Indeed, $1=y(0)=\frac{2}{0-2 c}$, so $1=-\frac{1}{c}$, hence $c=-1$.

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.
Indeed, $1=y(0)=\frac{2}{0-2 c}$, so $1=-\frac{1}{c}$, hence $c=-1$.
We conclude that $y(t)=\frac{2}{\sin (2 t)+2}$.

