
The exponential function (Sect. 7.3)

I The inverse of the logarithm.

I Derivatives and integrals.

I Algebraic properties.



The inverse of the logarithm

Remark: The natural logarithm ln : (0,∞)→ R is a one-to-one
function,

hence invertible.

Definition
The exponential function,
exp : R→ (0,∞), is the
inverse of the natural
logarithm, that is,

exp(x) = y ⇔ x = ln(y).

e

y

y = x

y = ln (x)

y = exp (x)

x1 e

1

Remark: Since ln(1) = 0, then exp(0) = 1.
Since ln(e) = 1, then exp(1) = e.
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The inverse of the logarithm

Remark: Since ln
(
em/n

)
=

m

n
ln(e)

=
m

n
, then holds

exp
(m

n

)
= em/n

The exponentiation of a rational number is the power function.

The exponentiation is a way to extend the power function from
rational numbers to irrational numbers.

Definition
For every x ∈ R we denote ex = ln−1(x) = exp(x).

Example

Find x solution of e3x+1 = 2.

Solution: Compute ln on both sides,

ln
(
e3x+1

)
= ln(2)⇒ 3x + 1 = ln(2)⇒ x =

1

3

[
ln(2)− 1

]
. C
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The exponential function (Sect. 7.3)

I The inverse of the logarithm.

I Derivatives and integrals.

I Algebraic properties.



Derivatives and integrals

Remark: The derivative of the exponential is the same exponential.

Theorem (Derivative of the exponential)

(a) For every x ∈ R holds
(
ex

)′
= ex .

(b) For every differentiable function u holds
(
eu

)′
= eu u′.

Proof:
(a) ln

(
ex

)
= x ⇒ d

dx
ln

(
ex

)
= 1 ⇒ 1

ex

(
ex

)′
= 1

We conclude that
(
ex

)′
= ex .

(b) Chain rule implies(
eu

)′
=

deu

du
u′ ⇒

(
eu

)′
= eu u′.

Remark: In particular:
(
eax

)′
= a eax , for a ∈ R.
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Derivatives and integrals

Remark:
Part (a) of the Theorem can be proven with the formula(
f −1

)′
(x) =

1

f ′
(
f −1(x)

) ,

for f −1(x) = ex . Indeed,

(
ex

)′
=

1

ln′
(
ex

) ,
d ln

dy
(y) =

1

y
⇒

(
ex

)′
= ex .

Example

Find y ′ for y(x) = e(3x2+5).

Solution: We use all the well-known derivation rules,

y ′ =
(
e(3x2+5)

)′
= e(3x2+5) (3x2 + 5)′ ⇒ y ′ = 6x e(3x2+5).

C
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Derivatives and integrals

Example

Find y ′ for y(x) = esin(3x2) ln(x2 + 1).

Solution: We start with the product rule,
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(x2 + 1)
.

y ′ = 2x esin(3x2)
[
3 cos(3x2) ln(x2 + 1) +

1

(x2 + 1)

]
. C
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Derivatives and integrals

Remark: The derivation rule for the exponential implies that its
antiderivative is ∫

eax dx =
eax

a
+ c .

Example

Find I =

∫ π/4

0
e3 sin(2x) cos(2x) dx .

Solution: Use the substitution u = 3 sin(2x), du = 6 cos(2x) dx .

I =

∫ π/4

0
e3 sin(2x) cos(2x) dx =

∫ 1

0
eu du

6
=

1

6

(
eu

)∣∣∣1
0
.

Since, I =
1

6
(e1 − e0), we obtain I =

1

6
(e − 1). C
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Derivatives and integrals

Example

Find I =

∫
3x e2x2

sin
(
e2x2)

dx .

Solution: Recall that
(
e2x2)′

= (2x2)′ e2x2
= 4x e2x2

.

Therefore, use the substitution u = e2x2
, since

du

4
= x e2x2

dx ,

I =

∫
3
du

4
sin(u) =

3

4

∫
sin(u) du =

3

4

(
− cos(u)

)
Substitute back the original unknown,

I = −3

4
cos

(
e2x2)

. C
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Derivatives and integrals

Example

Find the solution to the initial value problem

y ′′(x) = 18 e3x , y(0) = 1, y ′(0) = 2

Solution: We first find y ′, integrating the equation above,∫
y ′′(x) dx =

∫
18 e3x dx + c ⇒ y ′ =

18

3
e3x + c = 6 e3x + c .

The initial condition fixes c ,

2 = y ′(0) = 6 e0 + c ⇒ c = −4 ⇒ y ′(x) = 6 e3x − 4.

We now need to integrate one more time.
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The exponential function (Sect. 7.3)

I The inverse of the logarithm.

I Derivatives and integrals.

I Algebraic properties.



Algebraic properties

Remark: The algebraic properties on natural logarithms translate
into algebraic properties of the exponential function.

Theorem
For every a, b, c ∈ R, and every rational number, q, hold

(a) ea+b = ea, eb;

(b) e−a =
1

ea
;

(c) ea−b =
ea

eb
;

(d)
(
ea

)q
= eqa.

Proof: Only of (a):

ln
(
ea+b

)
= a + b = ln

(
ea

)
+ ln

(
eb

)
= ln

(
ea eb

)
.

We conclude that ea+b = ea eb.
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Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3

=
(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3

=
1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2)

= e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)

=
e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)

=
e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C



The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



Review: The exponential function ex

Definition
The exponential function,
exp : R→ (0,∞), is the
inverse of the natural
logarithm, that is,

exp(x) = y ⇔ x = ln(y).

Notation: exp(x) = ex .

e

y

y = x

y = ln (x)

y = exp (x)

x1 e

1

Remark: Since ln(1) = 0, then e0 = 1.
Since ln(e) = 1, then e1 = e.

(
eax

)′
= a eax ,

∫
eax dx =

eax

a
+ c .



Algebraic properties

Remark: The algebraic properties on natural logarithms translate
into algebraic properties of the exponential function.
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For every a, b ∈ R, and every rational number, q, hold
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1
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= eqa.

Proof: Only of (a):

ln
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eb
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= ln
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ea eb

)
.

We conclude that ea+b = ea eb.
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The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



Computing the number e.

Theorem
The number e defined as ln(e) = 1 can be obtained as

e = lim
h→0

(1 + h)1/h.

Proof: On the one hand, ln′(x) =
1

x
, that implies ln′(1) = 1.

On the other hand, ln′(1) = limh→0
1
h

[
ln(1 + h)− ln(1)

]
, that is,

ln′(1) = lim
h→0

1

h
ln(1 + h) = lim

h→0
ln

[
(1 + h)1/h

]
.

The ln is continuous, lim
h→0

ln
[
(1 + h)1/h

]
= ln

[
lim
h→0

(1 + h)1/h
]
.

Therefore, ln
[
lim
h→0

(1 + h)1/h
]

= 1. But ln is a one-to-one function,

and ln(e) = 1, hence e = lim
h→0

(1 + h)1/h.
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Computing the number e.

Remark: The convergence in e = lim
h→0

(1 + h)1/h is slow.

I For h = 1, eh = 2.

I For h = 1
2 , eh =

(
1.5

)2
= 2.25.

I For h = 1
10 , eh =

(
1.1

)10
= 2.5937....

I For h = 1
100 , eh =

(
1.01

)100
= 2.7048....

I For h = 1
1000 , eh =

(
1.001

)1000
= 2.7169....

Remark: e = 2.71828182....
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The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



The exponential function ax

Remarks:

I The exponentiation function can be generalized from base e
to base a ∈ (0,∞).

I Recall that a = e ln(a), for every a ∈ (0,∞).

Definition
The exponentiation function on base a ∈ (0,∞) is the function
exp[a] : R→ (0,∞) given by

exp[a](x) = ex ln(a).

Remarks:

I For a = e we reobtain exp[e](x) = ex .

I The exponentiation satisfies exp[a](0) = 1 and exp[a](1) = a.

I Also exp[a](m/n) = e(m/n) ln(a) = e ln(am/n) = am/n.

I Notation: exp[a](x) = ax , for x ∈ R.
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The exponential function ax

Remark: The algebraic properties of ex also hold for ax .

Theorem
For every a ∈ (0,∞), b, c ∈ R, and every rational number, q, hold

(a) ab+c = ab, ac ;

(b) a−b =
1

ab
;

(c) ab−c =
ab

ac
;

(d)
(
aa

)q
= aqa.

Proof: Only of (a):

a(b+c) = e(b+c) ln(a) = eb ln(a)+c ln(a) = eb ln(a) ec ln(a).

We conclude that a(b+c) = ab ac .
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The exponential function ax

Example

Compute 3π+
√

2.

Solution:

3π+
√

2 = e(π+
√

2) ln(3) = e(3.14...+1.41...)(1.099...) = 149.167...
C

Example

Compute 2−π.

Solution:

2−π =
1

2π
=

1

eπ ln(2)
=

1

8.825... C
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The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



Derivatives and integrals

Theorem
For every a ∈ (0,∞), c ∈ R, and differentiable function u holds,

(ax)′ = ln(a) ax , (au)′ = ln(a) au u′.

In addition, if a 6= 1, then∫
ax dx =

ax

ln(a)
+ c .

Proof of the first equation:

(ax)′ =
(
ex ln(a)

)′
= ln(a)

(
ex ln(a)

)
,

that is, (ax)′ = ln(a) ax .
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Derivatives and integrals

Example

Compute both the derivative and a primitive of f (x) = 5x .

Solution: The derivative is (5x
)′

= ln(5) 5x .

The antiderivatives are

∫
5x dx =

1

ln(5)
5x + c , for c ∈ R. C

Example

Compute both the derivative and a primitive of f (x) = 53x .

Solution: (53x
)′

= ln(5) 53x(3x)′, hence (53x
)′

= 3 ln(5) 53x ,

For the antiderivatives use u = 3x , du = 3 dx ,

I =

∫
53x dx =

∫
5u du

3
=

1

3

5u

ln(5)
⇒ I =

53x

3 ln(5)
+ c .

C
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Derivatives and integrals

Example
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)u
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7
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ln(7)
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7

)sin(x)
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The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



Logarithms with base a ∈ R.

Remarks:

I The function ax = ex ln(a) is one-to-one, so invertible.

I loga(x), a logarithm with base a, is the inverse of ax .

I The function loga is proportional to ln.

Definition
For every positive a with a 6= 1 the function loga : (0,∞)→ R is
given by

loga(x) = y ⇔ x = ay .

Theorem

For positive a with a 6= 1 holds loga(x) =
ln(x)

ln(a)
.

Proof: loga(x) = y ⇔ x = ay = ey ln(a) ⇔ ln(x) = y ln(a).

Therefore, ln(x) = loga(x) ln(a) ⇒ loga(x) =
ln(x)

ln(a)
.
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,
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.

Proof of the first equation: Since loga(x) =
ln(x)

ln(a)
, then

log′a(x) =
1

ln(a)

1

x
Example

Compute the derivative of f (x) = log2(3x3 + 2).

Solution: f ′(x) =
1

ln(2)
ln′(3x2 + 2) =

1

ln(2)

1

(3x2 + 2)
6x .

We conclude: f ′(x) =
6x

ln(2) (3x2 + 2)
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Solving differential equations (Sect. 7.4)

I Overview of differential equations.

I Exponential growth.

I Separable differential equations.

Next class: Applications.

I Population growth

I Radioactive decay.

I Heat transfer.



Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Remark: May be the most famous differential equation is
Newton’s second law of motion: ma = f .

Example

Newton’s second law of motion in one space dimension is a
differential equation: The unknown is x(t), the particle position as
function of time t, and the equation is

d2x

dt2
(t) =

1

m
f (t, x(t)),

with m the particle mass and f the force acting on the particle.



Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Remark: May be the most famous differential equation is
Newton’s second law of motion: ma = f .

Example

Newton’s second law of motion in one space dimension is a
differential equation: The unknown is x(t), the particle position as
function of time t, and the equation is

d2x

dt2
(t) =

1

m
f (t, x(t)),

with m the particle mass and f the force acting on the particle.
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Overview of differential equations.

Example

The following are examples of differential equations:

I Given a constant k find every function y solution of

dy

dx
(x) = k y(x).

I Find the function y solution of

dy

dx
(x) = (1 + y(x)) x2, y(0) = 2.

I Find every function y solution of

dy

dx
(x) =

e2x−y(x)

ex+y(x)
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Overview of differential equations.

Example

Verify that the functions y(x) = c e−2x − 3

2
, for every c ∈ R, are

solutions to the differential equation y ′ = 2y + 3.

Solution: We first compute the left-hand side of the equation.
We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y ′,

y ′(x) = −2c e−2x .

The right hand side is 2y + 3,

2y + 3 = 2
(
c e−2x − 3

2

)
+ 3 = (2c e−2x − 3) + 3 = 2c e−2x .

Therefore, y ′ = 2y + 3 for all c ∈ R. C
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Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Example

For every c ∈ R, the functions y(x) = c e−2x − 3

2
are solutions to

the differential equation y ′ = 2y + 3.

The differential equation has infinitely many solutions, given by

y(t) = c e2t − 3

2
, c ∈ R.

I To solve a first order
differential equation means
to do one integration.

I So, it is reasonable that the
solution contains a constant
of integration, c ∈ R.

−3/2

c < 0

c > 0

0

y

t

c = 0
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Solving differential equations (Sect. 7.4)

I Overview of differential equations.

I Exponential growth.

I Separable differential equations.



Exponential growth

Remark: The two main examples are:

(a) Population growth with unlimited
food supply and no predators;

(b) Chain reactions in nuclear
explosions.

I For these processes, the rate of change of a quantity y is
proportional to the actual amount of that quantity.

dy

dx
(x) = k y(x).

I The solution of the differential equation above is

y(x) = y0 ekx , y(0) = y0.
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Exponential growth

Example

Given a constant k, find every function y solution of the
differential equation dy

dx
(x) = k y(x).

Solution: This differential equation is particularly simple to solve.

y ′(x)

y(x)
= k ⇒

∫
y ′(x)

y(x)
dx =

∫
k dx .

Introduce the substitution u = y(x), then du = y ′(x) dx .∫
du

u
= k

∫
dx ⇒ ln(|u|) = kx + c .

Substitute back y(x) = u, and exponentiate both sides,

|y(x)| = ekx+c = ekx ec ⇒ y(x) = ±ec ekx .

Denoting y0 = ±ec , we obtain y(x) = y0 ekx . C
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Solving differential equations (Sect. 7.4)

I Overview of differential equations.

I Exponential growth.

I Separable differential equations.



Separable differential equations

Definition
Given functions h, g : R→ R, a differential equation on the
unknown function y : R→ R is called separable iff the equation
has the form

h(y) y ′(x) = g(x).

Remark:
A differential equation y ′(t) = f (t, y(t)) is separable iff

y ′ =
g(x)

h(y)
⇔ f (t, y) =

g(x)

h(y)
.

Example

The three equations below are separable:

dy

dx
=

cos(x)

y2
,

dy

dx
=

ex

(1 + y)
, 3(x + 1) y

dy

dx
= 2(1 + y2).
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Separable differential equations

Example

Determine whether the differential equation below is separable,

y ′(x) =
x2

1− y2(x)
.

Solution: The differential equation is separable, since it is
equivalent to(

1− y2
)
y ′(x) = x2 ⇒

{
g(x) = x2,

h(y) = 1− y2.

C

Remark: The functions g and h are not uniquely defined.
Another choice here is:

g(x) = c x2, h(y) = c (1− y2), c ∈ R.
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Separable differential equations

Example

Find every solution of the separable equation h(y) y ′(x) = g(x).

Solution: We integrate on both sides of the equation,∫
h(y) y ′(x) dx =

∫
g(x) dx + c .

Introduce the substitution u = y(x), then du = y ′(x) dx ,∫
h(u) du =

∫
g(x) dx + c .

Denote by H a primitive of h, that is, H ′ = h.
Denote by G a primitive of g , that is, G ′ = g .

H(u) = G (x) + c .

Substitute back y(x) = u,

H(y(x)) = G (x) + c . C
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Find every solutions of the equation y ′(x) + y2(x) cos(2x) = 0.

Solution: The equation is
y ′

y2
= − cos(2x), separable,

g(x) = − cos(2x), h(y) =
1

y2
.

Integrate on both sides of the equation,

y ′(x)

y2(x)
= − cos(2x) ⇔

∫
y ′(x)

y2(x)
dx = −

∫
cos(2x) dx + c .

The substitution u = y(x), du = y ′(x) dx , implies that∫
du

u2
= −

∫
cos(2x) dx + c ⇔ −1

u
= −1

2
sin(2x) + c .
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Find every solutions of the equation y ′(x) + y2(x) cos(2x) = 0.

Solution: Recall: −1

u
= −1

2
sin(2x) + c .

Substitute the function y(x) = u back in the equation above,

− 1

y(x)
= −1

2
sin(2x) + c . (Implicit form.)
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y(x)
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2
.
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2

sin(2x)− 2c
. (Explicit form.) C
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From all solutions to y ′(x) + y2(x) cos(2x) = 0. find the one
satisfying y(0) = 1.

Solution: Recall: y(x) =
2

sin(2x)− 2c
.

The extra condition is called the initial condition.

The initial condition fixes the value of the constant c .

Indeed, 1 = y(0) =
2

0− 2c
, so 1 = −1

c
, hence c = −1.

We conclude that y(t) =
2

sin(2t) + 2
. C
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