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I Definition as an integral.

I The derivative and properties.
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Definition as an integral

Recall:

(a) The derivative of y = xn is

y ′ = n x (n−1), for n integer.

(b) The integral of y = xn is

∫
xn dx =

x (n+1)

(n + 1)
, for n 6= −1.

(c) Case n = −1:

∫
dx

x
is neither rational nor trigonometric

function. This is a new function.

Definition
The natural logarithm is the
function

ln(x) =

∫ x

1

dt

t
, x ∈ (0,∞).

In particular: ln(1) = 0.
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y = 1/x
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Definition
The number e is the number
satisfying ln(e) = 1, that is,∫ e

1

dt

t
= 1.

(e = 2.718281...).

1

y = ln (x)

x

y

1

e
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The derivative and properties

Theorem (Derivative of ln)

The Fundamental Theorem of Calculus implies ln′(x) =
1

x
.

Proof:

ln(x) =

∫ x

1

dt

t
⇒ ln′(x) =

1

x
.

Theorem (Chain rule)

For every differentiable function u holds
[
ln(u)

]′
=

u′

u
.

Proof:

d ln(u)

dx
=

d ln

du
(u)

du

dx
=

1

u
u′ ⇒ d ln(u)

dx
(x) =

u′(x)

u(x)
.
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The derivative and properties

Example

Find the derivative of y(x) = ln(3x), and z(x) = ln
(
2x2 +cos(x)

)
.

Solution: We use the chain rule.

y ′(x) =
1

(3x)
(3) =

1

x
⇒ y ′(x) =

1

x
.

We also use chain rule,

z ′(x) =
1(

2x2 + cos(x)
) (4x − sin(x))

z ′(x) =
4x − sin(x)

2x2 + cos(x)
.

C

Remark: y(x) = ln(3x), satisfies y ′(x) = ln′(x).
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The derivative and properties

Theorem (Algebraic properties)

For every positive real numbers a and b holds,

(a) ln(ab) = ln(a) + ln(b), (product rule);

(b) ln
(a

b

)
= ln(a)− ln(b), (quotient rule);

(c) ln
(1

a

)
= − ln(a), (reciprocal rule);

(d) ln(ab) = b ln(a), (power rule).

Proof of (a): (only)

The function y(x) = ln(ax) satisfies y ′(x) =
1

ax
a =

1

x
= ln′(x)

Therefore ln(ax) = ln(x) + c . Evaluating at x = 1 we obtain c .

ln(a) = ln(1) + c ⇒ c = ln(a) ⇒ ln(ax) = ln(x) + ln(a).
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The derivative and properties

Example

Compute the derivative of y(x) = ln
[ (x + 1)2

3(x + 2)

]
.

Solution: Before computing the derivative of y , we simplify it,

y = ln
[
(x + 1)2

]
− ln

[
3(x + 2)
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,
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ln(3) + ln(x + 2)

]
.

The derivative of function y is: y ′ = 2
1
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− 1

(x + 2)
.
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2(x + 2)− (x + 1)
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⇒ y ′ =

(x + 3)

(x + 1)(x + 2)
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Natural Logarithms (Sect. 7.2)

I Definition as an integral.

I The derivative and properties.

I The graph of the natural logarithm.

I Integrals involving logarithms.

I Logarithmic differentiation.



The graph of the natural logarithm

Remarks:
The graph of ln function has:

(a) A vertical asymptote at
x = 0.

(b) No horizontal asymptote.
1 x

1

e

y

x 8

y

8

y

8

x0

y = ln (x)

Proof: Recall e = 2.718281... > 1 and ln(e) = 1.

(a): If x = en, then ln(en) = n ln(e) = n. Hence

lim
x→∞

ln(x) =∞.

(b): If x =
1

en
, then ln

( 1

en

)
= − ln(en)− n ln(e) = −n. Hence

lim
x→0+

ln(x) = −∞.
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Natural Logarithms (Sect. 7.2)

I Definition as an integral.

I The derivative and properties.

I The graph of the natural logarithm.

I Integrals involving logarithms.

I Logarithmic differentiation.



Integrals involving logarithms.

Remark: It holds

∫
dx

x
= ln(|x |) + c for x 6= 0 and c ∈ R.

Indeed, for x > 0 this is the definition of logarithm.
And for x < 0, we have that −x > 0, then,∫

dx

x
=

∫
(−dx)

(−x)
= ln(−x) + c , −x > 0.

We conclude, ∫
dx

x
=

{
ln(−x) + c if x < 0,

ln(x) + c if x > 0.

Remark: It also holds

∫
f ′(x)

f (x)
dx = ln(|f (x)|) + c , for f (x) 6= 0.
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Integrals involving logarithms.

Remarks:

(a)

∫
tan(x) dx = − ln(| cos(x)|) + c .

Indeed,∫
tan(x) dx =

∫
sin(x)

cos(x)
dx u = cos(x), du = − sin(x) dx .∫

tan(x) dx = −
∫

du

u
= − ln(|u|) + c = − ln(| cos(x)|) + c .

(b)

∫
cot(x) dx = ln(| sin(x)|) + c . Indeed,∫
cot(x) dx =

∫
cos(x)

sin(x)
dx u = sin(x), du = cos(x) dx .∫

cot(x) dx =

∫
du

u
= ln(|u|) + c = ln(| sin(x)|) + c .
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Integrals involving logarithms.

Example

Find y(t) =

∫
3 sin(t)

(2 + cos(t))
dt.

Solution:

y(t) =

∫
3 sin(t)

(2 + cos(t))
dt, u = 2 + cos(t), du = − sin(t) dt.

y(t) =

∫
3(−du)

u
= −3

∫
du

u
= −3 ln(|u|) + c

We conclude that y(t) = −3 ln
(
|2 + cos(t)|

)
+ c . C
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Natural Logarithms (Sect. 7.2)

I Definition as an integral.

I The derivative and properties.

I The graph of the natural logarithm.

I Integrals involving logarithms.

I Logarithmic differentiation.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)] = ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)
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ln[y(x)] = ln
[
x3
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+ ln

[
(x + 2)2

]
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[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)] = ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = ln
[
x3

]
+ ln

[
(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)]

= ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = ln
[
x3

]
+ ln

[
(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)] = ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = ln
[
x3

]
+ ln

[
(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)] = ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = ln
[
x3

]
+ ln

[
(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)] = ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = ln
[
x3

]
+ ln

[
(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: First compute ln[y(x)] = ln
[x3(x + 2)2

cos3(x)

]
,

ln[y(x)] = ln
[
x3(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = ln
[
x3

]
+ ln

[
(x + 2)2

]
− ln

[
cos3(x)

]
,

ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.



Logarithmic differentiation

Example

Find the derivative of y(x) =
x3(x + 2)2

cos3(x)
.

Solution: Recall: ln[y(x)] = 3 ln(x) + 2 ln(x + 2)− 3 ln
[
cos(x)

]
.

y ′(x)

y(x)
=
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[3

x
+

2

(x + 2)
+

3 sin(x)

cos(x)

]
y(x).
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The inverse function (Sect. 7.1)

I One-to-one functions.

I The inverse function

I The graph of the inverse function.

I Derivatives of the inverse function.



One-to-one functions

Remark:

I Not every function is invertible.

I Only one-to-one functions are invertible.

Definition
A function f : D → R is called one-to-one (injective) iff for every
x1, x2 ∈ D holds

x1 6= x2 ⇒ f (x1) 6= f (x2).

Example

Invertible:

1. y = x3, for x ∈ R.

2. y = x2, for x ∈ [0, b].

3. y =
√

x , for x ∈ [0,∞).

4. y = sin(x), x ∈ [−π
2 , π

2 ].

Not Invertible:

1. y = x2, for x ∈ [−a, a].

2. y = |x |, for x ∈ [−a, a].

3. y = cos(x), x ∈ [−a, a].

4. y = sin(x), for x ∈ [0, π].
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One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function f : D → R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = y0 at
(x1, f (x1)) and (x2, f (x2)), with x1 6= x2, that means
y0 = f (x1) = f (x2). Hence f is not one-to-one.

Example
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The inverse function (Sect. 7.1)

I One-to-one functions.

I The inverse function

I The graph of the inverse function.

I Derivatives of the inverse function.



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D → R is the function
f −1 : R → D defined for all x ∈ D and all y ∈ R as follows

f −1(y) = x ⇔ y = f (x).

Example

Find the inverse of f (x) = 2x − 3.

Solution: Denote y = f (x), that is, y = 2x − 3. Find x in the
expression above,

2x = y + 3 ⇒ x =
1

2
y +

3

2
.

Then, the inverse function is f −1(y) =
1

2
y +

3

2
. C
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The inverse function (Sect. 7.1)

I One-to-one functions.

I The inverse function

I The graph of the inverse function.

I Derivatives of the inverse function.



The graph of the inverse function

Remark: The graph of the function f −1 is obtained reflecting the
graph of f along the line y = x .

Example

1 xx

y f (x)
y

1

x

x1

y
1

f  (y)
−1

y

y = x

x

y

f  (x)
−1

f (x)



The graph of the inverse function

Remark: The graph of the function f −1 is obtained reflecting the
graph of f along the line y = x .

Example

1 xx

y f (x)
y

1

x

x1

y
1

f  (y)
−1

y

y = x

x

y

f  (x)
−1

f (x)



The graph of the inverse function

Remark: The graph of the function f −1 is obtained reflecting the
graph of f along the line y = x .

Example

1 xx

y f (x)
y

1

x

x1

y
1

f  (y)
−1

y

y = x

x

y

f  (x)
−1

f (x)



The graph of the inverse function

Remark: The graph of the function f −1 is obtained reflecting the
graph of f along the line y = x .

Example

1 xx

y f (x)
y

1

x

x1

y
1

f  (y)
−1

y

y = x

x

y

f  (x)
−1

f (x)



The inverse function (Sect. 7.1)

I One-to-one functions.

I The inverse function
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Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are
deeply related.
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Theorem (Derivative for inverse functions)

If the invertible function f : D → R is differentiable and f ′(x) 6= 0
for every x ∈ D, then the function f −1 : R → D is differentiable.
Furthermore, for every y ∈ R holds(

f −1
)′

(y) =
1

f ′
(
f −1(y)

) .
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Verify the Theorem above for f (x) = 2x − 3.

Solution: This case is simple because f ′(x) = 2, constant.
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Derivatives of the inverse function.

Example

Verify the Theorem above for f (x) = x3.

Solution:
We first compute the inverse function. Denote y = f (x), then

y = x3 ⇒ x = y1/3 ⇒ f −1(y) = y1/3.

Compute now the derivative of the inverse function,(
f −1

)′
(y) =
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3
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3

1

y2/3
.

Compute now the derivative of the original function,
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)2
= 3

(
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)2
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We conclude that
1

3 y2/3
=

(
f −1

)′
(y) =

1

f ′
(
f −1(y)
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