Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Integrals involving logarithms.
- Logarithmic differentiation.

Recall:

(a) The derivative of $y = x^n$ is

(ロ)、(型)、(E)、(E)、 E、 の(の)

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

(b) The integral of $y = x^n$ is

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$,

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

(c) Case
$$n = -1$$
: $\int \frac{dx}{x}$

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

(c) Case n = -1: $\int \frac{dx}{x}$ is neither rational nor trigonometric function.

・ロト・日本・日本・日本・日本・今日・

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

(c) Case n = -1: $\int \frac{dx}{x}$ is neither rational nor trigonometric function. This is a new function.

・ロト・日本・日本・日本・日本・今日・

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

(c) Case n = -1: $\int \frac{dx}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

(c) Case n = -1: $\int \frac{dx}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

Recall:

(a) The derivative of $y = x^n$ is $y' = n x^{(n-1)}$, for *n* integer.

(b) The integral of
$$y = x^n$$
 is $\int x^n dx = \frac{x^{(n+1)}}{(n+1)}$, for $n \neq -1$.

(c) Case n = -1: $\int \frac{dx}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

Definition

The *number* e is the number satisfying $\ln(e) = 1$,

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

Definition

The *number* e is the number satisfying $\ln(e) = 1$, that is,

$$\int_1^e \frac{dt}{t} = 1.$$

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

Definition

The number e is the number satisfying ln(e) = 1, that is,

$$\int_{1}^{e} \frac{dt}{t} = 1$$
(e = 2.718281...).

Definition The *natural logarithm* is the function

$$\ln(x) = \int_1^x \frac{dt}{t}, \qquad x \in (0,\infty).$$

In particular: ln(1) = 0.

Definition

The number e is the number satisfying ln(e) = 1, that is,

$$\int_{1}^{e} \frac{dt}{t} = 1$$
(e = 2.718281...).

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- ► The derivative and properties.
- The graph of the natural logarithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Integrals involving logarithms.
- Logarithmic differentiation.

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

$$\ln(x) = \int_1^x \frac{dt}{t}$$

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

Proof:

$$\ln(x) = \int_{1}^{x} \frac{dt}{t} \quad \Rightarrow \quad \ln'(x) = \frac{1}{x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

Proof:

$$\ln(x) = \int_{1}^{x} \frac{dt}{t} \quad \Rightarrow \quad \ln'(x) = \frac{1}{x}$$

Theorem (Chain rule)

For every differentiable function u holds $\left[\ln(u)\right]' = \frac{u'}{u}$.

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

Proof:

$$\ln(x) = \int_{1}^{x} \frac{dt}{t} \quad \Rightarrow \quad \ln'(x) = \frac{1}{x}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Chain rule)

For every differentiable function u holds $\left[\ln(u)\right]' = \frac{u'}{u}$.

$$\frac{d\ln(u)}{dx} =$$

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

Proof:

$$\ln(x) = \int_{1}^{x} \frac{dt}{t} \quad \Rightarrow \quad \ln'(x) = \frac{1}{x}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Chain rule)

For every differentiable function u holds $\left[\ln(u)\right]' = \frac{u'}{u}$.

$$\frac{d\ln(u)}{dx} = \frac{d\ln}{du}(u)\frac{du}{dx}$$

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

Proof:

$$\ln(x) = \int_{1}^{x} \frac{dt}{t} \quad \Rightarrow \quad \ln'(x) = \frac{1}{x}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Chain rule)

For every differentiable function u holds $\left[\ln(u)\right]' = \frac{u'}{u}$.

$$\frac{d\ln(u)}{dx} = \frac{d\ln}{du}(u)\frac{du}{dx} = \frac{1}{u}u'$$

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies $\ln'(x) = \frac{1}{x}$.

Proof:

$$\ln(x) = \int_{1}^{x} \frac{dt}{t} \quad \Rightarrow \quad \ln'(x) = \frac{1}{x}$$

Theorem (Chain rule)

For every differentiable function u holds $\left[\ln(u)\right]' = \frac{u'}{u}$.

Proof:

$$\frac{d\ln(u)}{dx} = \frac{d\ln}{du}(u)\frac{du}{dx} = \frac{1}{u}u' \quad \Rightarrow \quad \frac{d\ln(u)}{dx}(x) = \frac{u'(x)}{u(x)}.$$

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Solution: We use the chain rule.

$$y'(x)=\frac{1}{(3x)}(3)$$

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Solution: We use the chain rule.

$$y'(x) = \frac{1}{(3x)}(3) = \frac{1}{x}$$

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

Solution: We use the chain rule.

$$y'(x) = \frac{1}{(3x)}(3) = \frac{1}{x} \Rightarrow y'(x) = \frac{1}{x}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

Solution: We use the chain rule.

$$y'(x) = \frac{1}{(3x)}(3) = \frac{1}{x} \Rightarrow y'(x) = \frac{1}{x}$$

We also use chain rule,

$$z'(x) = \frac{1}{(2x^2 + \cos(x))} (4x - \sin(x))$$

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

Solution: We use the chain rule.

$$y'(x) = \frac{1}{(3x)}(3) = \frac{1}{x} \Rightarrow y'(x) = \frac{1}{x}$$

We also use chain rule,

$$z'(x) = \frac{1}{(2x^2 + \cos(x))} (4x - \sin(x))$$
$$z'(x) = \frac{4x - \sin(x)}{2x^2 + \cos(x)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the derivative of $y(x) = \ln(3x)$, and $z(x) = \ln(2x^2 + \cos(x))$.

Solution: We use the chain rule.

$$y'(x) = \frac{1}{(3x)}(3) = \frac{1}{x} \Rightarrow y'(x) = \frac{1}{x}.$$

We also use chain rule,

$$z'(x) = \frac{1}{(2x^2 + \cos(x))} (4x - \sin(x))$$
$$z'(x) = \frac{4x - \sin(x)}{2x^2 + \cos(x)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: $y(x) = \ln(3x)$, satisfies $y'(x) = \ln'(x)$.

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only)

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a$

(日) (同) (三) (三) (三) (○) (○)
Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x}$

(日) (同) (三) (三) (三) (○) (○)

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x} = \ln'(x)$

(日) (同) (三) (三) (三) (○) (○)

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x} = \ln'(x)$ Therefore $\ln(ax) = \ln(x) + c$.

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x} = \ln'(x)$ Therefore $\ln(ax) = \ln(x) + c$. Evaluating at x = 1 we obtain c.

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x} = \ln'(x)$ Therefore $\ln(ax) = \ln(x) + c$. Evaluating at x = 1 we obtain c.

$$\ln(a) = \ln(1) + c$$

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x} = \ln'(x)$ Therefore $\ln(ax) = \ln(x) + c$. Evaluating at x = 1 we obtain c.

$$\ln(a) = \ln(1) + c \implies c = \ln(a)$$

Theorem (Algebraic properties) For every positive real numbers a and b holds, (a) $\ln(ab) = \ln(a) + \ln(b)$, (product rule); (b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$, (quotient rule); (c) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, (reciprocal rule); (d) $\ln(a^b) = b \ln(a)$, (power rule).

Proof of (a): (only) The function $y(x) = \ln(ax)$ satisfies $y'(x) = \frac{1}{ax}a = \frac{1}{x} = \ln'(x)$ Therefore $\ln(ax) = \ln(x) + c$. Evaluating at x = 1 we obtain c.

 $\ln(a) = \ln(1) + c \implies c = \ln(a) \implies \ln(ax) = \ln(x) + \ln(a).$

・ロト・日本・モート モー うへぐ

Example

Compute the derivative of
$$y(x) = \ln \left[\frac{(x+1)^2}{3(x+2)} \right]$$
.

Example

Compute the derivative of
$$y(x) = \ln \Big[\frac{(x+1)^2}{3(x+2)} \Big].$$

Solution: Before computing the derivative of y, we simplify it,

Example

Compute the derivative of
$$y(x) = \ln \left[\frac{(x+1)^2}{3(x+2)} \right]$$
.

Solution: Before computing the derivative of y, we simplify it,

$$y = \ln[(x+1)^2] - \ln[3(x+2)],$$

Example

Compute the derivative of
$$y(x) = \ln \left[\frac{(x+1)^2}{3(x+2)} \right]$$
.

Solution: Before computing the derivative of y, we simplify it,

$$y = \ln[(x+1)^2] - \ln[3(x+2)],$$
$$y = 2\ln(x+1) - [\ln(3) + \ln(x+2)].$$

Example

Compute the derivative of
$$y(x) = \ln \Big[\frac{(x+1)^2}{3(x+2)} \Big].$$

Solution: Before computing the derivative of y, we simplify it,

$$y = \ln[(x+1)^2] - \ln[3(x+2)],$$

$$y = 2\ln(x+1) - [\ln(3) + \ln(x+2)].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The derivative of function y is: $y' = 2 \frac{1}{(x+1)} - \frac{1}{(x+2)}$.

Example

Compute the derivative of
$$y(x) = \ln \Big[\frac{(x+1)^2}{3(x+2)} \Big].$$

Solution: Before computing the derivative of y, we simplify it,

$$y = \ln[(x+1)^2] - \ln[3(x+2)],$$

$$y = 2 \ln(x+1) - [\ln(3) + \ln(x+2)].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The derivative of function y is: $y' = 2 \frac{1}{(x+1)} - \frac{1}{(x+2)}$.

$$y' = \frac{2(x+2) - (x+1)}{(x+1)(x+2)}$$

Example

Compute the derivative of
$$y(x) = \ln \Big[\frac{(x+1)^2}{3(x+2)} \Big].$$

Solution: Before computing the derivative of y, we simplify it,

$$y = \ln[(x+1)^2] - \ln[3(x+2)],$$

$$y = 2 \ln(x+1) - [\ln(3) + \ln(x+2)].$$

The derivative of function y is: $y' = 2 \frac{1}{(x+1)} - \frac{1}{(x+2)}$.

$$y' = \frac{2(x+2) - (x+1)}{(x+1)(x+2)} \quad \Rightarrow \quad y' = \frac{(x+3)}{(x+1)(x+2)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Integrals involving logarithms.
- Logarithmic differentiation.

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Proof: Recall e = 2.718281... > 1 and $\ln(e) = 1$.

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Proof: Recall e = 2.718281... > 1 and $\ln(e) = 1$. (a): If $x = e^n$,

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Proof: Recall e = 2.718281... > 1 and $\ln(e) = 1$. (a): If $x = e^n$, then $\ln(e^n) = n \ln(e)$

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Proof: Recall e = 2.718281... > 1 and $\ln(e) = 1$. (a): If $x = e^n$, then $\ln(e^n) = n \ln(e) = n$.

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

Proof: Recall e = 2.718281... > 1 and $\ln(e) = 1$. (a): If $x = e^n$, then $\ln(e^n) = n \ln(e) = n$. Hence $\lim_{x \to \infty} \ln(x) = \infty.$

(b): If $x = \frac{1}{e^n}$,

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

(b): If
$$x = \frac{1}{e^n}$$
, then $\ln\left(\frac{1}{e^n}\right) = -\ln(e^n)$

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

(b): If
$$x = \frac{1}{e^n}$$
, then $\ln\left(\frac{1}{e^n}\right) = -\ln(e^n) - n\ln(e)$

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

(b): If
$$x = \frac{1}{e^n}$$
, then $\ln\left(\frac{1}{e^n}\right) = -\ln(e^n) - n\ln(e) = -n$.

Remarks:

The graph of In function has:

- (a) A vertical asymptote at x = 0.
- (b) No horizontal asymptote.

(b): If
$$x = \frac{1}{e^n}$$
, then $\ln\left(\frac{1}{e^n}\right) = -\ln(e^n) - n\ln(e) = -n$. Hence
$$\lim_{x \to 0^+} \ln(x) = -\infty.$$

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.

- Integrals involving logarithms.
- Logarithmic differentiation.

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Indeed, for x > 0 this is the definition of logarithm.

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

・ロト・日本・モート モー うへで

Indeed, for x > 0 this is the definition of logarithm. And for x < 0, we have that -x > 0,

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

・ロト・日本・モート モー うへで

Indeed, for x > 0 this is the definition of logarithm. And for x < 0, we have that -x > 0, then,

$$\int \frac{dx}{x} = \int \frac{(-dx)}{(-x)}$$

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

Indeed, for x > 0 this is the definition of logarithm. And for x < 0, we have that -x > 0, then,

$$\int \frac{dx}{x} = \int \frac{(-dx)}{(-x)} = \ln(-x) + c, \qquad -x > 0.$$

・ロト・日本・モート モー うへで

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

Indeed, for x > 0 this is the definition of logarithm. And for x < 0, we have that -x > 0, then,

$$\int \frac{dx}{x} = \int \frac{(-dx)}{(-x)} = \ln(-x) + c, \qquad -x > 0.$$

We conclude,

$$\int \frac{dx}{x} = \begin{cases} \ln(-x) + c & \text{if } x < 0, \\ \ln(x) + c & \text{if } x > 0. \end{cases}$$

Remark: It holds $\int \frac{dx}{x} = \ln(|x|) + c$ for $x \neq 0$ and $c \in \mathbb{R}$.

Indeed, for x > 0 this is the definition of logarithm. And for x < 0, we have that -x > 0, then,

$$\int \frac{dx}{x} = \int \frac{(-dx)}{(-x)} = \ln(-x) + c, \qquad -x > 0.$$

We conclude,

$$\int \frac{dx}{x} = \begin{cases} \ln(-x) + c & \text{if } x < 0, \\ \ln(x) + c & \text{if } x > 0. \end{cases}$$

Remark: It also holds

$$\int \frac{f'(x)}{f(x)} \, dx = \ln(|f(x)|) + c, \text{ for } f(x) \neq 0.$$

```
Remarks:
(a) \int \tan(x) dx = -\ln(|\cos(x)|) + c.
```


Remarks: (a) $\int \tan(x) dx = -\ln(|\cos(x)|) + c$. Indeed, $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$

- ロ ト - 4 回 ト - 4 □
Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$,

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u}$

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c$

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$.

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$. Indeed,
 $\int \cot(x) dx = \int \frac{\cos(x)}{\sin(x)} dx$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$. Indeed,
 $\int \cot(x) dx = \int \frac{\cos(x)}{\sin(x)} dx$ $u = \sin(x)$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$. Indeed,
 $\int \cot(x) dx = \int \frac{\cos(x)}{\sin(x)} dx$ $u = \sin(x)$, $du = \cos(x) dx$.

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$. Indeed,
 $\int \cot(x) dx = \int \frac{\cos(x)}{\sin(x)} dx$ $u = \sin(x)$, $du = \cos(x) dx$.
 $\int \cot(x) dx = \int \frac{du}{u}$

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$. Indeed,
 $\int \cot(x) dx = \int \frac{\cos(x)}{\sin(x)} dx$ $u = \sin(x)$, $du = \cos(x) dx$.
 $\int \cot(x) dx = \int \frac{du}{u} = \ln(|u|) + c$

Remarks:
(a)
$$\int \tan(x) dx = -\ln(|\cos(x)|) + c$$
. Indeed,
 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$ $u = \cos(x)$, $du = -\sin(x) dx$.
 $\int \tan(x) dx = -\int \frac{du}{u} = -\ln(|u|) + c = -\ln(|\cos(x)|) + c$.
(b) $\int \cot(x) dx = \ln(|\sin(x)|) + c$. Indeed,
 $\int \cot(x) dx = \int \frac{\cos(x)}{\sin(x)} dx$ $u = \sin(x)$, $du = \cos(x) dx$.
 $\int \cot(x) dx = \int \frac{du}{u} = \ln(|u|) + c = \ln(|\sin(x)|) + c$.

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt,$$

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt, \quad u = 2 + \cos(t),$$

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt, \quad u = 2 + \cos(t), \quad du = -\sin(t) dt.$$

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt, \quad u = 2 + \cos(t), \quad du = -\sin(t) dt.$$

$$y(t)=\int \frac{3(-du)}{u}$$

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt, \quad u = 2 + \cos(t), \quad du = -\sin(t) dt.$$

$$y(t) = \int \frac{3(-du)}{u} = -3 \int \frac{du}{u}$$

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt, \quad u = 2 + \cos(t), \quad du = -\sin(t) dt.$$

$$y(t) = \int \frac{3(-du)}{u} = -3 \int \frac{du}{u} = -3 \ln(|u|) + c$$

Example
Find
$$y(t) = \int \frac{3\sin(t)}{(2 + \cos(t))} dt$$
.

Solution:

$$y(t) = \int \frac{3\sin(t)}{(2+\cos(t))} dt, \quad u = 2 + \cos(t), \quad du = -\sin(t) dt.$$

$$y(t) = \int \frac{3(-du)}{u} = -3 \int \frac{du}{u} = -3 \ln(|u|) + c$$

 \triangleleft

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

We conclude that $y(t) = -3 \ln(|2 + \cos(t)|) + c$.

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.

- Integrals involving logarithms.
- Logarithmic differentiation.

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Remark: Logarithms can be used to simplify the derivative of complicated functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Solution: First compute $\ln[y(x)]$

Remark: Logarithms can be used to simplify the derivative of complicated functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Solution: First compute
$$\ln[y(x)] = \ln\left[\frac{x^3(x+2)^2}{\cos^3(x)}\right]$$
,

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Solution: First compute
$$\ln[y(x)] = \ln\left[\frac{x^3(x+2)^2}{\cos^3(x)}\right]$$
,

$$\ln[y(x)] = \ln[x^3(x+2)^2] - \ln[\cos^3(x)],$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Solution: First compute
$$\ln[y(x)] = \ln\left[\frac{x^3(x+2)^2}{\cos^3(x)}\right]$$
,

$$\ln[y(x)] = \ln[x^3(x+2)^2] - \ln[\cos^3(x)],$$

$$\ln[y(x)] = \ln[x^3] + \ln[(x+2)^2] - \ln[\cos^3(x)],$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Solution: First compute
$$\ln[y(x)] = \ln\left[\frac{x^3(x+2)^2}{\cos^3(x)}\right]$$
,

$$\ln[y(x)] = \ln[x^3(x+2)^2] - \ln[\cos^3(x)],$$

$$\ln[y(x)] = \ln[x^3] + \ln[(x+2)^2] - \ln[\cos^3(x)],$$

$$\ln[y(x)] = 3\ln(x) + 2\ln(x+2) - 3\ln[\cos(x)].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Find the derivative of
$$y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$$
.

Solution: Recall: $\ln[y(x)] = 3\ln(x) + 2\ln(x+2) - 3\ln[\cos(x)]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the derivative of $y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$.

Solution: Recall: $\ln[y(x)] = 3\ln(x) + 2\ln(x+2) - 3\ln[\cos(x)]$.

$$\frac{y'(x)}{y(x)} = \frac{3}{x} + \frac{2}{(x+2)} + \frac{3\sin(x)}{\cos(x)}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the derivative of $y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$.

Solution: Recall: $\ln[y(x)] = 3\ln(x) + 2\ln(x+2) - 3\ln[\cos(x)]$.

$$\frac{y'(x)}{y(x)} = \frac{3}{x} + \frac{2}{(x+2)} + \frac{3\sin(x)}{\cos(x)}.$$
$$y'(x) = \left[\frac{3}{x} + \frac{2}{(x+2)} + \frac{3\sin(x)}{\cos(x)}\right]y(x).$$

- ロ ト - 4 回 ト - 4 □ - 4

Example Find the derivative of $y(x) = \frac{x^3(x+2)^2}{\cos^3(x)}$.

Solution: Recall: $\ln[y(x)] = 3\ln(x) + 2\ln(x+2) - 3\ln[\cos(x)]$.

$$\frac{y'(x)}{y(x)} = \frac{3}{x} + \frac{2}{(x+2)} + \frac{3\sin(x)}{\cos(x)}.$$

$$y'(x) = \left\lfloor \frac{3}{x} + \frac{2}{(x+2)} + \frac{3}{\cos(x)} \right\rfloor y(x)$$

We conclude that

$$y'(x) = \left[\frac{3}{x} + \frac{2}{(x+2)} + \frac{3\sin(x)}{\cos(x)}\right] \frac{\cos^3(x)}{x^3(x+2)^2}.$$

 \triangleleft

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

One-to-one functions

Remark:

▶ Not every function is invertible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

 $x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ
Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$$

Example

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$$

Example

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$$

Example

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.
3. $y = \sqrt{x}$, for $x \in [0, \infty)$.

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$$

Example

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.
3. $y = \sqrt{x}$, for $x \in [0, \infty)$.
4. $y = \sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

 $x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$

Example

Invertible:

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.
3. $y = \sqrt{x}$, for $x \in [0, \infty)$.
4. $y = \sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Not Invertible:

1.
$$y = x^2$$
, for $x \in [-a, a]$.

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$$

Example

Invertible:

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.
3. $y = \sqrt{x}$, for $x \in [0, \infty)$.
4. $y = \sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Not Invertible:

- 1. $y = x^2$, for $x \in [-a, a]$.
- 2. y = |x|, for $x \in [-a, a]$.

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

$$x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$$

Example

Invertible:

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.
3. $y = \sqrt{x}$, for $x \in [0, \infty)$.
4. $y = \sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Not Invertible:

1. $y = x^2$, for $x \in [-a, a]$.

2.
$$y = |x|$$
, for $x \in [-a, a]$.

3.
$$y = \cos(x), x \in [-a, a].$$

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

 $x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$

Example

Invertible:

1.
$$y = x^3$$
, for $x \in \mathbb{R}$.
2. $y = x^2$, for $x \in [0, b]$.
3. $y = \sqrt{x}$, for $x \in [0, \infty)$.
4. $y = \sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Not Invertible:

1. $y = x^2$, for $x \in [-a, a]$.

2.
$$y = |x|$$
, for $x \in [-a, a]$.

3.
$$y = \cos(x), x \in [-a, a].$$

4.
$$y = \sin(x)$$
, for $x \in [0, \pi]$.

・ロト ・ 日本・ ・ 田本・ ・ 田本・ ・ 日本・

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For $x_1 = -1$, $x_2 = 1$ we have that $x_1 \neq x_2$ and

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1=-1, \ x_2=1$$
 we have that $x_1
eq x_2$ and $f(x_1)=(-1)^2$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1=-1, \ x_2=1$$
 we have that $x_1
eq x_2$ and $f(x_1)=(-1)^2=1$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1=-1, \ x_2=1$$
 we have that $x_1
eq x_2$ and $f(x_1)=(-1)^2=1=1^2$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(ロ)、(型)、(E)、(E)、 E、 の(の)

(b) Recalling that $\cos(\theta) = \cos(-\theta)$,

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(- heta) = \cos(- heta)$$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(-\theta) = \cos(-\theta) = \cos(\theta)$$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(- heta) = \cos(- heta) = \cos(heta) = f(heta).$$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that cos(θ) = cos(-θ), and taking x₁ = -θ, x₂ = θ,
f(-θ) = cos(-θ) = cos(θ) = f(θ).
(c) Since sin(θ) = sin(π - θ),

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(-\theta) = \cos(-\theta) = \cos(\theta) = f(\theta).$$

(c) Since $\sin(\theta) = \sin(\pi - \theta)$, and taking $x_1 = \pi/4$, $x_2 = 3\pi/4$,

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(-\theta) = \cos(-\theta) = \cos(\theta) = f(\theta).$$

(c) Since $sin(\theta) = sin(\pi - \theta)$, and taking $x_1 = \pi/4$, $x_2 = 3\pi/4$, $f(\pi/4) = sin(\pi/4)$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(-\theta) = \cos(-\theta) = \cos(\theta) = f(\theta).$$

(c) Since $\sin(\theta) = \sin(\pi - \theta)$, and taking $x_1 = \pi/4$, $x_2 = 3\pi/4$, $f(\pi/4) = \sin(\pi/4) = \sin(\pi - \pi/4)$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(-\theta) = \cos(-\theta) = \cos(\theta) = f(\theta).$$

(c) Since $\sin(\theta) = \sin(\pi - \theta)$, and taking $x_1 = \pi/4$, $x_2 = 3\pi/4$, $f(\pi/4) = \sin(\pi/4) = \sin(\pi - \pi/4) = \sin(3\pi/4)$

Example

Verify that the functions below are not one-to-one:

(a)
$$y = x^2$$
, for $x \in [-a, a]$.
(b) $y = \cos(x), x \in [-a, a]$.
(c) $y = \sin(x)$, for $x \in [0, \pi]$.

Solution:

(a) For
$$x_1 = -1$$
, $x_2 = 1$ we have that $x_1 \neq x_2$ and $f(x_1) = (-1)^2 = 1 = 1^2 = f(x_2).$

(b) Recalling that $\cos(\theta) = \cos(-\theta)$, and taking $x_1 = -\theta$, $x_2 = \theta$,

$$f(-\theta) = \cos(-\theta) = \cos(\theta) = f(\theta).$$

(c) Since $\sin(\theta) = \sin(\pi - \theta)$, and taking $x_1 = \pi/4$, $x_2 = 3\pi/4$, $f(\pi/4) = \sin(\pi/4) = \sin(\pi - \pi/4) = \sin(3\pi/4) = f(3\pi/4)$.

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$,

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$,

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$, that means $y_0 = f(x_1) = f(x_2)$.

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$, that means $y_0 = f(x_1) = f(x_2)$. Hence f is not one-to-one.

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$, that means $y_0 = f(x_1) = f(x_2)$. Hence f is not one-to-one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$, that means $y_0 = f(x_1) = f(x_2)$. Hence f is not one-to-one.

Example

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$, that means $y_0 = f(x_1) = f(x_2)$. Hence f is not one-to-one.

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ⊙

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The inverse function

Remark: Only one-to-one functions are invertible.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○
Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

 $f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x),

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x), that is, y = 2x - 3.

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x), that is, y = 2x - 3. Find x in the expression above,

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x), that is, y = 2x - 3. Find x in the expression above,

$$2x = y + 3$$

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x), that is, y = 2x - 3. Find x in the expression above,

$$2x = y + 3 \quad \Rightarrow \quad x = \frac{1}{2}y + \frac{3}{2}.$$

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x), that is, y = 2x - 3. Find x in the expression above,

$$2x = y + 3 \quad \Rightarrow \quad x = \frac{1}{2}y + \frac{3}{2}.$$

<1

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then, the inverse function is $f^{-1}(y) = \frac{1}{2}y + \frac{3}{2}$.

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remark:

► If
$$f^{-1}$$
 is the inverse of f , then holds
 $(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}\bigl(f(x)\bigr)=x,\quad f\bigl(f^{-1}(y)\bigr)=y.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Verify the relations above for f(x) = 2x - 3.

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$.

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

 $f^{-1}(f(x))$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x - 3)$$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x-3) = \frac{1}{2}[(2x-3)+3]$$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x-3) = \frac{1}{2}[(2x-3)+3] = x.$$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x-3) = \frac{1}{2}[(2x-3)+3] = x.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

 $f(f^{-1}(y))$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x - 3) = \frac{1}{2} [(2x - 3) + 3] = x.$$

$$f(f^{-1}(y)) = f\left(\frac{1}{2}(y + 3)\right)$$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x - 3) = \frac{1}{2}[(2x - 3) + 3] = x.$$

$$f(f^{-1}(y)) = f\left(\frac{1}{2}(y + 3)\right) = 2\left[\frac{1}{2}(y + 3)\right] - 3$$

Remark:

• If
$$f^{-1}$$
 is the inverse of f , then holds

$$(f^{-1} \circ f)(x) = x, \quad (f \circ f^{-1})(y) = y.$$

Equivalently,

$$f^{-1}(f(x)) = x, \quad f(f^{-1}(y)) = y.$$

Example

Verify the relations above for f(x) = 2x - 3.

Solution: Recall: $f^{-1}(y) = (y+3)/2$. Hence

$$f^{-1}(f(x)) = f^{-1}(2x - 3) = \frac{1}{2}[(2x - 3) + 3] = x.$$

$$f(f^{-1}(y)) = f\left(\frac{1}{2}(y + 3)\right) = 2\left[\frac{1}{2}(y + 3)\right] - 3 = y.$$

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- ► The graph of the inverse function.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derivatives of the inverse function.

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line y = x.

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line y = x.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line y = x.

Example

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line y = x.

Example

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remark: The derivative values of a function and its inverse are deeply related.

Remark: The derivative values of a function and its inverse are deeply related.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The derivative values of a function and its inverse are deeply related.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The derivative values of a function and its inverse are deeply related.

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: The derivative values of a function and its inverse are deeply related.

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Verify the Theorem above for f(x) = 2x - 3.

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Example

Verify the Theorem above for f(x) = 2x - 3.

Solution: This case is simple because f'(x) = 2, constant.

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Example

Verify the Theorem above for f(x) = 2x - 3.

Solution: This case is simple because f'(x) = 2, constant.

Since
$$f^{-1}(y) = \frac{1}{2}(y+3)$$
,

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Example

Verify the Theorem above for f(x) = 2x - 3.

Solution: This case is simple because f'(x) = 2, constant.

Since
$$f^{-1}(y) = \frac{1}{2}(y+3)$$
, then $(f^{-1})'(y) = \frac{1}{2}$, constant.
Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Example

Verify the Theorem above for f(x) = 2x - 3.

Solution: This case is simple because f'(x) = 2, constant.

Since
$$f^{-1}(y) = \frac{1}{2}(y+3)$$
, then $(f^{-1})'(y) = \frac{1}{2}$, constant.
Therefore, $(f^{-1})' = \frac{1}{f'}$.

<1

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Verify the Theorem above for $f(x) = x^3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x),

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3$$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3}$$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}.$$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compute now the derivative of the inverse function,

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3}$$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$f'(x) = 3x^2$$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$f'(x) = 3x^2 \quad \Rightarrow \quad f'(f^{-1}(y)) = 3(f^{-1}(y))^2$$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}$$

Compute now the derivative of the original function,

$$f'(x) = 3x^2 \quad \Rightarrow \quad f'(f^{-1}(y)) = 3(f^{-1}(y))^2 = 3(y^{1/3})^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}$$

Compute now the derivative of the original function,

$$f'(x) = 3x^2 \quad \Rightarrow \quad f'(f^{-1}(y)) = 3(f^{-1}(y))^2 = 3(y^{1/3})^2.$$

We conclude that $\frac{1}{3y^{2/3}} = (f^{-1})'(y)$

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}.$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}$$

Compute now the derivative of the original function,

$$f'(x) = 3x^2 \quad \Rightarrow \quad f'(f^{-1}(y)) = 3(f^{-1}(y))^2 = 3(y^{1/3})^2.$$

We conclude that
$$\frac{1}{3y^{2/3}} = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9.

・ロト・日本・モート モー うへぐ

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x)=3x^2+1.$$

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x) = 3x^2 + 1.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then the formula in the Theorem, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$,

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x) = 3x^2 + 1.$$

Then the formula in the Theorem, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$, for y = 9 implies

$$(f^{-1})'(9) = \frac{1}{f'(f^{-1}(9))}$$

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x) = 3 x^2 + 1.$$

Then the formula in the Theorem, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
for $y = 9$ implies

$$(f^{-1})'(9) = \frac{1}{f'(f^{-1}(9))} = \frac{1}{f'(2)}$$

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x) = 3x^2 + 1.$$

Then the formula in the Theorem, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
for $y = 9$ implies

$$(f^{-1})'(9) = \frac{1}{f'(f^{-1}(9))} = \frac{1}{f'(2)} = \frac{1}{3(4)+1}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$. But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x) = 3x^{2} + 1.$$

Then the formula in the Theorem, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
for $y = 9$ implies
 $(f^{-1})'(9) = \frac{1}{f'(f^{-1}(9))} = \frac{1}{f'(2)} = \frac{1}{3(4) + 1}.$

We conclude that $(f^{-1})'(y) = \frac{1}{13}$.

 \triangleleft