Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$,

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1: \int \frac{d x}{x}$

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1$: $\int \frac{d x}{x}$ is neither rational nor trigonometric function.

Definition as an integral

Recall:

(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1$: $\int \frac{d x}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition as an integral

Recall:

(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1$: $\int \frac{d x}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)
$$

Definition as an integral

Recall:
(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1$: $\int \frac{d x}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)
$$

In particular: $\ln (1)=0$.

Definition as an integral

Recall:

(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1$: $\int \frac{d x}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)
$$

In particular: $\ln (1)=0$.

Definition as an integral

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)
$$

In particular: $\ln (1)=0$.

Definition as an integral

Definition

The natural logarithm is the function
$\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)$.
In particular: $\ln (1)=0$.

Definition

The number e is the number satisfying $\ln (e)=1$,

Definition as an integral

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty) .
$$

In particular: $\ln (1)=0$.

Definition

The number e is the number satisfying $\ln (e)=1$, that is,

$$
\int_{1}^{e} \frac{d t}{t}=1
$$

Definition as an integral

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty) .
$$

In particular: $\ln (1)=0$.

Definition

The number e is the number satisfying $\ln (e)=1$, that is,

$$
\int_{1}^{e} \frac{d t}{t}=1
$$

$$
(e=2.718281 \ldots)
$$

Definition as an integral

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty) .
$$

In particular: $\ln (1)=0$.

Definition

The number e is the number satisfying $\ln (e)=1$, that is,

$$
\begin{aligned}
& \int_{1}^{e} \frac{d t}{t}=1 \\
& (e=2.718281 \ldots)
\end{aligned}
$$

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\ln ^{\prime}(x)=\frac{1}{x}$.

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}
$$

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

Theorem (Chain rule)
For every differentiable function u holds $[\ln (u)]^{\prime}=\frac{u^{\prime}}{u}$.

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

Theorem (Chain rule)
For every differentiable function u holds $[\ln (u)]^{\prime}=\frac{u^{\prime}}{u}$.
Proof:

$$
\frac{d \ln (u)}{d x}=
$$

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

Theorem (Chain rule)
For every differentiable function u holds $[\ln (u)]^{\prime}=\frac{u^{\prime}}{u}$.
Proof:

$$
\frac{d \ln (u)}{d x}=\frac{d \ln }{d u}(u) \frac{d u}{d x}
$$

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

Theorem (Chain rule)
For every differentiable function u holds $[\ln (u)]^{\prime}=\frac{u^{\prime}}{u}$.
Proof:

$$
\frac{d \ln (u)}{d x}=\frac{d \ln }{d u}(u) \frac{d u}{d x}=\frac{1}{u} u^{\prime}
$$

The derivative and properties

Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\operatorname{In}^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

Theorem (Chain rule)
For every differentiable function u holds $[\ln (u)]^{\prime}=\frac{u^{\prime}}{u}$.
Proof:

$$
\frac{d \ln (u)}{d x}=\frac{d \ln }{d u}(u) \frac{d u}{d x}=\frac{1}{u} u^{\prime} \Rightarrow \frac{d \ln (u)}{d x}(x)=\frac{u^{\prime}(x)}{u(x)} .
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)=\frac{1}{x}
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)=\frac{1}{x} \quad \Rightarrow \quad y^{\prime}(x)=\frac{1}{x}
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)=\frac{1}{x} \quad \Rightarrow \quad y^{\prime}(x)=\frac{1}{x}
$$

We also use chain rule,

$$
z^{\prime}(x)=\frac{1}{\left(2 x^{2}+\cos (x)\right)}(4 x-\sin (x))
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)=\frac{1}{x} \quad \Rightarrow \quad y^{\prime}(x)=\frac{1}{x}
$$

We also use chain rule,

$$
\begin{gathered}
z^{\prime}(x)=\frac{1}{\left(2 x^{2}+\cos (x)\right)}(4 x-\sin (x)) \\
z^{\prime}(x)=\frac{4 x-\sin (x)}{2 x^{2}+\cos (x)}
\end{gathered}
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)=\frac{1}{x} \quad \Rightarrow \quad y^{\prime}(x)=\frac{1}{x}
$$

We also use chain rule,

$$
\begin{gathered}
z^{\prime}(x)=\frac{1}{\left(2 x^{2}+\cos (x)\right)}(4 x-\sin (x)) \\
z^{\prime}(x)=\frac{4 x-\sin (x)}{2 x^{2}+\cos (x)}
\end{gathered}
$$

Remark: $y(x)=\ln (3 x)$, satisfies $y^{\prime}(x)=\ln ^{\prime}(x)$.

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b)$, (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b)$, (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b), \quad$ (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a$

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b), \quad$ (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}$

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b), \quad$ (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b), \quad$ (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$
Therefore $\ln (a x)=\ln (x)+c$.

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b)$, (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$
Therefore $\ln (a x)=\ln (x)+c$. Evaluating at $x=1$ we obtain c.

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b), \quad$ (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$
Therefore $\ln (a x)=\ln (x)+c$. Evaluating at $x=1$ we obtain c.

$$
\ln (a)=\ln (1)+c
$$

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b)$, (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$
Therefore $\ln (a x)=\ln (x)+c$. Evaluating at $x=1$ we obtain c.

$$
\ln (a)=\ln (1)+c \Rightarrow c=\ln (a)
$$

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b)$, (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$
Therefore $\ln (a x)=\ln (x)+c$. Evaluating at $x=1$ we obtain c.

$$
\ln (a)=\ln (1)+c \Rightarrow c=\ln (a) \Rightarrow \ln (a x)=\ln (x)+\ln (a)
$$

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

$$
y=\ln \left[(x+1)^{2}\right]-\ln [3(x+2)],
$$

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

$$
\begin{gathered}
y=\ln \left[(x+1)^{2}\right]-\ln [3(x+2)] \\
y=2 \ln (x+1)-[\ln (3)+\ln (x+2)]
\end{gathered}
$$

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

$$
\begin{gathered}
y=\ln \left[(x+1)^{2}\right]-\ln [3(x+2)] \\
y=2 \ln (x+1)-[\ln (3)+\ln (x+2)]
\end{gathered}
$$

The derivative of function y is: $y^{\prime}=2 \frac{1}{(x+1)}-\frac{1}{(x+2)}$.

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

$$
\begin{gathered}
y=\ln \left[(x+1)^{2}\right]-\ln [3(x+2)] \\
y=2 \ln (x+1)-[\ln (3)+\ln (x+2)]
\end{gathered}
$$

The derivative of function y is: $y^{\prime}=2 \frac{1}{(x+1)}-\frac{1}{(x+2)}$.

$$
y^{\prime}=\frac{2(x+2)-(x+1)}{(x+1)(x+2)}
$$

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

$$
\begin{gathered}
y=\ln \left[(x+1)^{2}\right]-\ln [3(x+2)] \\
y=2 \ln (x+1)-[\ln (3)+\ln (x+2)]
\end{gathered}
$$

The derivative of function y is: $\quad y^{\prime}=2 \frac{1}{(x+1)}-\frac{1}{(x+2)}$.

$$
y^{\prime}=\frac{2(x+2)-(x+1)}{(x+1)(x+2)} \quad \Rightarrow \quad y^{\prime}=\frac{(x+3)}{(x+1)(x+2)}
$$

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

The graph of the natural logarithm

Remarks:
The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

The graph of the natural logarithm

Remarks:
The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.

The graph of the natural logarithm

Remarks:
The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$,

The graph of the natural logarithm

Remarks:
The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)$

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$.

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at

$$
x=0 .
$$

(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at

$$
x=0 .
$$

(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

(b): If $x=\frac{1}{e^{n}}$,

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at

$$
x=0 .
$$

(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

(b): If $x=\frac{1}{e^{n}}$, then $\ln \left(\frac{1}{e^{n}}\right)=-\ln \left(e^{n}\right)$

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at

$$
x=0 .
$$

(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

(b): If $x=\frac{1}{e^{n}}$, then $\ln \left(\frac{1}{e^{n}}\right)=-\ln \left(e^{n}\right)-n \ln (e)$

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at

$$
x=0 .
$$

(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

(b): If $x=\frac{1}{e^{n}}$, then $\ln \left(\frac{1}{e^{n}}\right)=-\ln \left(e^{n}\right)-n \ln (e)=-n$.

The graph of the natural logarithm

Remarks:

The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

(b): If $x=\frac{1}{e^{n}}$, then $\ln \left(\frac{1}{e^{n}}\right)=-\ln \left(e^{n}\right)-n \ln (e)=-n$. Hence

$$
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty
$$

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

Integrals involving logarithms.
Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$.

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$.
Indeed, for $x>0$ this is the definition of logarithm.

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$.
Indeed, for $x>0$ this is the definition of logarithm.
And for $x<0$, we have that $-x>0$,

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$.
Indeed, for $x>0$ this is the definition of logarithm.
And for $x<0$, we have that $-x>0$, then,

$$
\int \frac{d x}{x}=\int \frac{(-d x)}{(-x)}
$$

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$. Indeed, for $x>0$ this is the definition of logarithm.
And for $x<0$, we have that $-x>0$, then,

$$
\int \frac{d x}{x}=\int \frac{(-d x)}{(-x)}=\ln (-x)+c, \quad-x>0
$$

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$. Indeed, for $x>0$ this is the definition of logarithm.
And for $x<0$, we have that $-x>0$, then,

$$
\int \frac{d x}{x}=\int \frac{(-d x)}{(-x)}=\ln (-x)+c, \quad-x>0 .
$$

We conclude,

$$
\int \frac{d x}{x}=\left\{\begin{aligned}
\ln (-x)+c & \text { if } x<0 \\
\ln (x)+c & \text { if } x>0
\end{aligned}\right.
$$

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$. Indeed, for $x>0$ this is the definition of logarithm.
And for $x<0$, we have that $-x>0$, then,

$$
\int \frac{d x}{x}=\int \frac{(-d x)}{(-x)}=\ln (-x)+c, \quad-x>0 .
$$

We conclude,

$$
\int \frac{d x}{x}=\left\{\begin{aligned}
\ln (-x)+c & \text { if } x<0 \\
\ln (x)+c & \text { if } x>0
\end{aligned}\right.
$$

Remark: It also holds $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln (|f(x)|)+c$, for $f(x) \neq 0$.

Integrals involving logarithms.
Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$.

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x)
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}
\end{aligned}
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c
\end{aligned}
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+c$.

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x \quad u=\sin (x)
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x \quad u=\sin (x), \quad d u=\cos (x) d x
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\begin{aligned}
& \int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x \quad u=\sin (x), \quad d u=\cos (x) d x \\
& \int \cot (x) d x=\int \frac{d u}{u}
\end{aligned}
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\begin{aligned}
& \int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x \quad u=\sin (x), \quad d u=\cos (x) d x \\
& \int \cot (x) d x=\int \frac{d u}{u}=\ln (|u|)+c
\end{aligned}
$$

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x . \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c .
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\begin{gathered}
\int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x \quad u=\sin (x), \quad d u=\cos (x) d x \\
\int \cot (x) d x=\int \frac{d u}{u}=\ln (|u|)+c=\ln (|\sin (x)|)+c
\end{gathered}
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t,
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t),
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t), \quad d u=-\sin (t) d t
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
\begin{gathered}
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t), \quad d u=-\sin (t) d t \\
y(t)=\int \frac{3(-d u)}{u}
\end{gathered}
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
\begin{gathered}
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t), \quad d u=-\sin (t) d t \\
y(t)=\int \frac{3(-d u)}{u}=-3 \int \frac{d u}{u}
\end{gathered}
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
\begin{gathered}
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t), \quad d u=-\sin (t) d t \\
y(t)=\int \frac{3(-d u)}{u}=-3 \int \frac{d u}{u}=-3 \ln (|u|)+c
\end{gathered}
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
\begin{gathered}
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t), \quad d u=-\sin (t) d t . \\
y(t)=\int \frac{3(-d u)}{u}=-3 \int \frac{d u}{u}=-3 \ln (|u|)+c
\end{gathered}
$$

We conclude that $y(t)=-3 \ln (|2+\cos (t)|)+c$.

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: First compute $\ln [y(x)]$

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: First compute $\ln [y(x)]=\ln \left[\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}\right]$,

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: First compute $\ln [y(x)]=\ln \left[\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}\right]$,

$$
\ln [y(x)]=\ln \left[x^{3}(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right]
$$

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: First compute $\ln [y(x)]=\ln \left[\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}\right]$,

$$
\begin{gathered}
\ln [y(x)]=\ln \left[x^{3}(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right] \\
\ln [y(x)]=\ln \left[x^{3}\right]+\ln \left[(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right]
\end{gathered}
$$

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: First compute $\ln [y(x)]=\ln \left[\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}\right]$,

$$
\begin{gathered}
\ln [y(x)]=\ln \left[x^{3}(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right], \\
\ln [y(x)]=\ln \left[x^{3}\right]+\ln \left[(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right] \\
\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]
\end{gathered}
$$

Logarithmic differentiation

Example

Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: Recall: $\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]$.

Logarithmic differentiation

Example

Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: Recall: $\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]$.

$$
\frac{y^{\prime}(x)}{y(x)}=\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)}
$$

Logarithmic differentiation

Example
Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: Recall: $\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]$.

$$
\begin{gathered}
\frac{y^{\prime}(x)}{y(x)}=\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)} \\
y^{\prime}(x)=\left[\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)}\right] y(x)
\end{gathered}
$$

Logarithmic differentiation

Example

Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: Recall: $\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]$.

$$
\begin{gathered}
\frac{y^{\prime}(x)}{y(x)}=\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)} \\
y^{\prime}(x)=\left[\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)}\right] y(x)
\end{gathered}
$$

We conclude that

$$
y^{\prime}(x)=\left[\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)}\right] \frac{\cos ^{3}(x)}{x^{3}(x+2)^{2}}
$$

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

One-to-one functions

Remark:

- Not every function is invertible.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example Invertible:

$$
\text { 1. } y=x^{3} \text {, for } x \in \mathbb{R} \text {. }
$$

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example Invertible:

$$
\text { 1. } y=x^{3} \text {, for } x \in \mathbb{R} \text {. }
$$

2. $y=x^{2}$, for $x \in[0, b]$.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example Invertible:

$$
\text { 1. } y=x^{3} \text {, for } x \in \mathbb{R}
$$

2. $y=x^{2}$, for $x \in[0, b]$.
3. $y=\sqrt{x}$, for $x \in[0, \infty)$.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example Invertible:

$$
\text { 1. } y=x^{3} \text {, for } x \in \mathbb{R}
$$

2. $y=x^{2}$, for $x \in[0, b]$.
3. $y=\sqrt{x}$, for $x \in[0, \infty)$.
4. $y=\sin (x), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example

Invertible:

1. $y=x^{3}$, for $x \in \mathbb{R}$.
2. $y=x^{2}$, for $x \in[0, b]$.
3. $y=\sqrt{x}$, for $x \in[0, \infty)$.
4. $y=\sin (x), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Not Invertible:

$$
\text { 1. } y=x^{2} \text {, for } x \in[-a, a] \text {. }
$$

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example

Invertible:

1. $y=x^{3}$, for $x \in \mathbb{R}$.
2. $y=x^{2}$, for $x \in[0, b]$.
3. $y=\sqrt{x}$, for $x \in[0, \infty)$.
4. $y=\sin (x), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Not Invertible:

1. $y=x^{2}$, for $x \in[-a, a]$.
2. $y=|x|$, for $x \in[-a, a]$.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example

Invertible:

1. $y=x^{3}$, for $x \in \mathbb{R}$.
2. $y=x^{2}$, for $x \in[0, b]$.
3. $y=\sqrt{x}$, for $x \in[0, \infty)$.
4. $y=\sin (x), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Not Invertible:

1. $y=x^{2}$, for $x \in[-a, a]$.
2. $y=|x|$, for $x \in[-a, a]$.
3. $y=\cos (x), x \in[-a, a]$.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Example

Invertible:

$$
\begin{aligned}
& \text { 1. } y=x^{3} \text {, for } x \in \mathbb{R} . \\
& \text { 2. } y=x^{2} \text {, for } x \in[0, b] . \\
& \text { 3. } y=\sqrt{x} \text {, for } x \in[0, \infty) . \\
& \text { 4. } y=\sin (x), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
\end{aligned}
$$

Not Invertible:

1. $y=x^{2}$, for $x \in[-a, a]$.
2. $y=|x|$, for $x \in[-a, a]$.
3. $y=\cos (x), x \in[-a, a]$.
4. $y=\sin (x)$, for $x \in[0, \pi]$.

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$,

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right) .
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$,

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$, and taking $x_{1}=\pi / 4, x_{2}=3 \pi / 4$,

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$, and taking $x_{1}=\pi / 4, x_{2}=3 \pi / 4$,

$$
f(\pi / 4)=\sin (\pi / 4)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$, and taking $x_{1}=\pi / 4, x_{2}=3 \pi / 4$,

$$
f(\pi / 4)=\sin (\pi / 4)=\sin (\pi-\pi / 4)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$, and taking $x_{1}=\pi / 4, x_{2}=3 \pi / 4$,

$$
f(\pi / 4)=\sin (\pi / 4)=\sin (\pi-\pi / 4)=\sin (3 \pi / 4)
$$

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:
(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$, and taking $x_{1}=\pi / 4, x_{2}=3 \pi / 4$,

$$
f(\pi / 4)=\sin (\pi / 4)=\sin (\pi-\pi / 4)=\sin (3 \pi / 4)=f(3 \pi / 4)
$$

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$,

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$,

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$, that means $y_{0}=f\left(x_{1}\right)=f\left(x_{2}\right)$.

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$, that means $y_{0}=f\left(x_{1}\right)=f\left(x_{2}\right)$. Hence f is not one-to-one.

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$, that means $y_{0}=f\left(x_{1}\right)=f\left(x_{2}\right)$. Hence f is not one-to-one.

Example

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$, that means $y_{0}=f\left(x_{1}\right)=f\left(x_{2}\right)$. Hence f is not one-to-one.

Example

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$, that means $y_{0}=f\left(x_{1}\right)=f\left(x_{2}\right)$. Hence f is not one-to-one.

Example

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

The inverse function

Remark: Only one-to-one functions are invertible.

The inverse function

Remark: Only one-to-one functions are invertible.

Definition

The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x)
$$

The inverse function

Remark: Only one-to-one functions are invertible.

Definition

The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x)
$$

Example
Find the inverse of $f(x)=2 x-3$.

The inverse function

Remark: Only one-to-one functions are invertible.
Definition
The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x)
$$

Example
Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$,

The inverse function

Remark: Only one-to-one functions are invertible.
Definition
The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x) .
$$

Example
Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$, that is, $y=2 x-3$.

The inverse function

Remark: Only one-to-one functions are invertible.
Definition
The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x) .
$$

Example

Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$, that is, $y=2 x-3$. Find x in the expression above,

The inverse function

Remark: Only one-to-one functions are invertible.
Definition
The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x) .
$$

Example

Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$, that is, $y=2 x-3$. Find x in the expression above,

$$
2 x=y+3
$$

The inverse function

Remark: Only one-to-one functions are invertible.
Definition
The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x) .
$$

Example

Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$, that is, $y=2 x-3$. Find x in the expression above,

$$
2 x=y+3 \quad \Rightarrow \quad x=\frac{1}{2} y+\frac{3}{2}
$$

The inverse function

Remark: Only one-to-one functions are invertible.
Definition
The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x) .
$$

Example

Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$, that is, $y=2 x-3$. Find x in the expression above,

$$
2 x=y+3 \quad \Rightarrow \quad x=\frac{1}{2} y+\frac{3}{2}
$$

Then, the inverse function is $f^{-1}(y)=\frac{1}{2} y+\frac{3}{2}$.

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$.

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
f^{-1}(f(x))
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
f^{-1}(f(x))=f^{-1}(2 x-3)
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]=x .
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
\begin{aligned}
& f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]=x . \\
& f\left(f^{-1}(y)\right)
\end{aligned}
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
\begin{aligned}
& f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]=x . \\
& f\left(f^{-1}(y)\right)=f\left(\frac{1}{2}(y+3)\right)
\end{aligned}
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
\begin{aligned}
& f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]=x . \\
& f\left(f^{-1}(y)\right)=f\left(\frac{1}{2}(y+3)\right)=2\left[\frac{1}{2}(y+3)\right]-3
\end{aligned}
$$

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y .
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example
Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
\begin{align*}
& f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]=x \\
& f\left(f^{-1}(y)\right)=f\left(\frac{1}{2}(y+3)\right)=2\left[\frac{1}{2}(y+3)\right]-3=y
\end{align*}
$$

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

The graph of the inverse function

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line $y=x$.

The graph of the inverse function

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line $y=x$.

Example

The graph of the inverse function

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line $y=x$.

Example

The graph of the inverse function

Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line $y=x$.

Example

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are deeply related.

Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are deeply related.

Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are deeply related.

Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are deeply related.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable.

Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are deeply related.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable.
Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

Example
Verify the Theorem above for $f(x)=2 x-3$.

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

Example
Verify the Theorem above for $f(x)=2 x-3$.
Solution: This case is simple because $f^{\prime}(x)=2$, constant.

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

Example
Verify the Theorem above for $f(x)=2 x-3$.
Solution: This case is simple because $f^{\prime}(x)=2$, constant.
Since $f^{-1}(y)=\frac{1}{2}(y+3)$,

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

Example
Verify the Theorem above for $f(x)=2 x-3$.
Solution: This case is simple because $f^{\prime}(x)=2$, constant.
Since $f^{-1}(y)=\frac{1}{2}(y+3)$, then $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{2}$, constant.

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)} .
$$

Example
Verify the Theorem above for $f(x)=2 x-3$.
Solution: This case is simple because $f^{\prime}(x)=2$, constant.
Since $f^{-1}(y)=\frac{1}{2}(y+3)$, then $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{2}$, constant.
Therefore, $\left(f^{-1}\right)^{\prime}=\frac{1}{f^{\prime}}$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$,

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \quad \Rightarrow \quad x=y^{1 / 3}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}}
$$

Compute now the derivative of the original function,

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}}
$$

Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}}
$$

Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2} \quad \Rightarrow \quad f^{\prime}\left(f^{-1}(y)\right)=3\left(f^{-1}(y)\right)^{2}
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3} .
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}} .
$$

Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2} \quad \Rightarrow \quad f^{\prime}\left(f^{-1}(y)\right)=3\left(f^{-1}(y)\right)^{2}=3\left(y^{1 / 3}\right)^{2} .
$$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3} .
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}} .
$$

Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2} \quad \Rightarrow \quad f^{\prime}\left(f^{-1}(y)\right)=3\left(f^{-1}(y)\right)^{2}=3\left(y^{1 / 3}\right)^{2} .
$$

We conclude that $\frac{1}{3 y^{2 / 3}}=\left(f^{-1}\right)^{\prime}(y)$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.
Solution:
We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3} .
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}} .
$$

Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2} \quad \Rightarrow \quad f^{\prime}\left(f^{-1}(y)\right)=3\left(f^{-1}(y)\right)^{2}=3\left(y^{1 / 3}\right)^{2} .
$$

We conclude that $\frac{1}{3 y^{2 / 3}}=\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$.

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$,

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Then the formula in the Theorem, $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$,

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Then the formula in the Theorem, $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$, for $y=9$ implies

$$
\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}\left(f^{-1}(9)\right)}
$$

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Then the formula in the Theorem, $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$, for $y=9$ implies

$$
\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}\left(f^{-1}(9)\right)}=\frac{1}{f^{\prime}(2)}
$$

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Then the formula in the Theorem, $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$, for $y=9$ implies

$$
\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}\left(f^{-1}(9)\right)}=\frac{1}{f^{\prime}(2)}=\frac{1}{3(4)+1}
$$

Derivatives of the inverse function.

Example
Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Then the formula in the Theorem, $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$, for $y=9$ implies

$$
\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}\left(f^{-1}(9)\right)}=\frac{1}{f^{\prime}(2)}=\frac{1}{3(4)+1}
$$

We conclude that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{13}$.

