Natural Logarithms (Sect. 7.2)

Definition as an integral.
The derivative and properties.
The graph of the natural logarithm.

Integrals involving logarithms.

vV v v vY

Logarithmic differentiation.



Definition as an integral

Recall:

(a) The derivative of y = x" is



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.

(b) The integral of y = x" is



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.
x(n+1)

(n+1)

(b) The integral of y = x" is /x” dx =



Definition as an integral

Recall:
(a) The derivative of y = x" is y' = nx("=1) for n integer.
x(n+1)

m, for n # —1.

(b) The integral of y = x" is /x” dx =



Definition as an integral

Recall:
(a) The derivative of y = x" is y' = nx("=1) for n integer.
x(n+1)

m, for n # —1.

(b) The integral of y = x" is /x” dx =

dx

(c) Case n=—1: .



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.

x(n+1)
(b) The integral of y = x" is /x” dx = m for n £ —1.
dx . . . . .
(c) Case n= —1: [ — is neither rational nor trigonometric
X

function.



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.

x(n+1)
(b) The integral of y = x" is /x” dx = m for n £ —1.
dx . . . . .
(c) Case n= —1: [ — is neither rational nor trigonometric
X

function. This is a new function.



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.

x(n+1)
(b) The integral of y = x" is /x” dx = m for n £ —1.
dx . . . . .
(c) Case n= —1: [ — is neither rational nor trigonometric
X

function. This is a new function.

Definition
The natural logarithm is the
function
X dt
In(x) = - x € (0,00).
1



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.

x(n+1)
(b) The integral of y = x" is /x” dx = m for n £ —1.
dx . . . . .
(c) Case n= —1: [ — is neither rational nor trigonometric
X

function. This is a new function.

Definition
The natural logarithm is the
function
X dt
In(x) = - x € (0,00).

1

In particular: In(1) = 0.



Definition as an integral

Recall:

(a) The derivative of y = x" is y' = nx("=1) for n integer.

, x(n+1)
b) The integral of y = x"is | x"dx = ——, for n # —1.
(b) g y / CE) #
dx . ) ) . .
(c) Case n=—1: — is neither rational nor trigonometric
X
function. This is a new function.
Definition
The natural logarithm is the
function
X dt
In(x)=[| —, x € (0,00).
1t
In particular: In(1) = 0.




Definition as an integral

Definition
The natural logarithm is the
function

" de

In(x) = ., x€(0,00). / : x
1t
In particular: In(1) = 0.




Definition as an integral

Definition
The natural logarithm is the
function

" de

()= [ . xe©00) / : N

In particular: In(1) = 0.

Definition
The number e is the number
satisfying In(e) = 1,



Definition as an integral

Definition
The natural logarithm is the
function

" de

()= [ . xe©00) / : N

In particular: In(1) = 0.

Definition

The number e is the number

satisfying In(e) = 1, that is,
e ﬂ B
1t

1.



Definition as an integral

Definition

The natural logarithm is the

function -\
X dt /T

In(x) = —, x € (0,00). /1 x x
1t

In particular: In(1) = 0.

Definition

The number e is the number

satisfying In(e) = 1, that is,
e ﬂ B
1t

1.

(e =2.718281...).



Definition as an integral

Definition
The natural logarithm is the
function
X dt
In(x) = - x € (0,00).
1

In particular: In(1) = 0.

Definition

The number e is the number

satisfying In(e) = 1, that is,
e ﬂ B
1t

1.

(e =2.718281...).

y=1In(x)




Natural Logarithms (Sect. 7.2)

Definition as an integral.
The derivative and properties.
The graph of the natural logarithm.

Integrals involving logarithms.

vV v v v .Y

Logarithmic differentiation.



The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In'(x) = —.
X



The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In'(x) = —.
X
Proof:
X dt

In(x) = T



The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In'(x) =

Proof: . gt .
— _ / —
In(x) = T = In’(x) "



The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In’(x)

Proof: X oo
—_— P I —_—
In(x) = T = In'(x) = <

Theorem (Chain rule)

For every differentiable function u holds [In(u)], ——
u



The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In’(x)

Proof: X oo
—_— P I —_—
In(x) = T = In'(x) = <

Theorem (Chain rule)

For every differentiable function u holds [In(u)], ——
u

Proof:
din(u)

dx



The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In’(x)

Proof: X oo
—_— P I —_—
In(x) = T = In'(x) = <

Theorem (Chain rule)

For every differentiable function u holds [In(u)], ——
u

Proof:
din(u) din, ' du

ol Oy




The derivative and properties

Theorem (Derivative of In)

The Fundamental Theorem of Calculus implies In’(x)

Proof: X oo
—_— P I —_—
In(x) = T = In'(x) = <

Theorem (Chain rule)

For every differentiable function u holds [In(u)], ——
u

Proof:
din(u) din, du 1,

o Clbraiatll




The derivative and properties

Theorem (Derivative of In)

1
The Fundamental Theorem of Calculus implies In'(x) = —.
X
Proof: J .
X dt
I = — In’(x) = —.
n(x) T = In’(x) ~
Theorem (Chain rule)
/
For every differentiable function u holds [In(u)], S
u
Proof:
din(u) din, du 1, din(u), | uv(x)
dx  du u)dx_uu - dx (X)_u(x)'



The derivative and properties

Example
Find the derivative of y(x) = In(3x), and z(x) = In(2x? + cos(x)).



The derivative and properties

Example
Find the derivative of y(x) = In(3x), and z(x) = In(2x? + cos(x)).

Solution: We use the chain rule.

x) = 1
V)= 535 )



The derivative and properties

Example
Find the derivative of y(x) = In(3x), and z(x) = In(2x? + cos(x)).

Solution: We use the chain rule.

PR P
V()= 5 3=



The derivative and properties

Example
Find the derivative of y(x) = In(3x), and z(x) = In(2x? + cos(x)).

Solution: We use the chain rule.
1 1 1
oy _* 1) — =
Y= ga@®=5 = Y=



The derivative and properties

Example
Find the derivative of y(x) = In(3x), and z(x) = In(2x? + cos(x)).

Solution: We use the chain rule.

V)= (B = = ()=

1
(3x) X X
We also use chain rule,
1

7 = (2x2 + cos(x))

(4x — sin(x))



The derivative and properties

Example
Find the derivative of y(x) = In(3x), and z(x) = In(2x? + cos(x)).

Solution: We use the chain rule.

V)= (B = = ()=

1
(3x) X X
We also use chain rule,
1

7 = (2x2 + cos(x))

(4x — sin(x))

1y Ax—sin(x)
Z'(x) = 32+ cos(x)’ §



The derivative and properties

Example
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(a) /tan(x) dx = —In(| cos(x)|) + c. Indeed,

/tan(x) dx = / sin(x) dx u=cos(x), du= —sin(x)dx.

cos(x)

/tan(x) dx = — % = —In(Ju]) + ¢ = —In(] cos(x)|) + c.

(b) /cot(x) dx = In(| sin(x)|) + c. Indeed,

/ cot(x) dx = / €0509) e u=sin(x), du = cos(x) dx.
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(a) /tan(x) dx = —In(| cos(x)|) + c. Indeed,

/tan(x) dx = / sin(x) dx u=cos(x), du= —sin(x)dx.

cos(x)

/tan(x) dx = — % = —In(Ju]) + ¢ = —In(] cos(x)|) + c.

(b) /cot(x) dx = In(| sin(x)|) + c. Indeed,
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Remarks:
(a) /tan(x) dx = —In(| cos(x)|) + c. Indeed,

/tan(x) dx = / sin(x) dx u=cos(x), du= —sin(x)dx.

cos(x)

/tan(x) dx = — % = —In(Ju]) + ¢ = —In(] cos(x)|) + c.

(b) /cot(x) dx = In(| sin(x)|) + c. Indeed,




Integrals involving logarithms.

Example
3sin(t)

Find y(t):/(2+cos(t))dt'



Integrals involving logarithms.

Example
. _ 3sin(t)
Solution:

v = [ (3“) dt,

2 + cos(t))



Integrals involving logarithms.

Example
_ B 3sin(t)
Solution:

y(t):/(zg_‘:'icr;(:()t))dt, u=2+ cos(t),



Integrals involving logarithms.

Example
_ B 3sin(t)
Solution:

y(t):/(zfﬁi%dt, u=2+4cos(t), du= —sin(t)dt.



Integrals involving logarithms.

Example
_ B 3sin(t)
Solution:

y(t):/(Qi—Sicrl)(:()t))dt’ u=2+4cos(t), du= —sin(t)dt.

y(t)Z/?’(_du)

u



Integrals involving logarithms.

Example
_ B 3sin(t)
Solution:

y(t):/(Zi—Sicrl)(:()t))dt’ u=2+4cos(t), du= —sin(t)dt.



Integrals involving logarithms.

Example
_ B 3sin(t)
Solution:

y(t):/(Zi—Sicrl)(:()t))dt’ u=2+4cos(t), du= —sin(t)dt.

y(t):/?’(_du):—3/iu:—3 In(|u]) + ¢

u



Integrals involving logarithms.

Example
_ B 3sin(t)
Solution:

y(t):/(Qi—Sicrl)(:()t))dt’ u=2+4cos(t), du= —sin(t)dt.

y(t):/B(—du):_?’/ciu:_?’ In(|u]) + ¢

u

We conclude that y(t) = —3 In(|2 + cos(t)]) + c. <



Natural Logarithms (Sect. 7.2)

Definition as an integral.
The derivative and properties.
The graph of the natural logarithm.

Integrals involving logarithms.
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Logarithmic differentiation.
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Find the derivative of y(x) = w
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Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example
. o x3(x + 2)?
Find the derivative of y(x) = o)
_ _ x3(x +2)?
Solution: First compute In[y(x)] = In [W]



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example
. o x3(x + 2)?
Find the derivative of y(x) = o)
_ _ x3(x +2)?
Solution: First compute In[y(x)] = In [W]

In[y(x)] = In [x3(x + 2)2} —1In [cos3(x)],



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example
x3(x +2)?

Find the derivative of y(x) = cos3(x)

x3(x + 2)2]

Solution: First compute In[y(x)] = In{ cos3(x)
X

In[y(x)] = In [x3(x + 2)2} —1In [cos3(x)],

In[y(x)] = In [x3] +In[(x + 2)2] —In [cos3(x)],



Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of
complicated functions.

Example
3 2)2
Find the derivative of y(x) = XC(O);;(_X)).
. s 2y
Solution: First compute In[y(x)] = In [W]

In[y(x)] = In [x3(x + 2)2} —1In [cos3(x)],

In[y(x)] = In [x3] +In[(x + 2)2] —In [cos3(x)],

In[y(x)] = 3In(x) 4+ 2In(x + 2) — 3In[cos(x)].



Logarithmic differentiation

Example
x3(x +2)2

Find the derivative of y(x) = w0si(x)

Solution: Recall: In[y(x)] = 3In(x) 4 2In(x 4 2) — 3In[cos(x)].



Logarithmic differentiation

Example

3 2 2
Find the derivative of y(x) = X+ 2)

cos3(x)
Solution: Recall: In[y(x)] = 3In(x) + 2In(x + 2) — 3In[cos(x)].

y'(x) 3 2 3sin(x)
y(x)  x + (x+2) cos(x)




Logarithmic differentiation

Example

3 2 2
Find the derivative of y(x) = X+ 2)

cos3(x)
Solution: Recall: In[y(x)] = 3In(x) + 2In(x + 2) — 3In[cos(x)].

y'(x) 3 2 3sin(x)
y(x)  x + (x+2) cos(x)

oy [3 2 3sin(x) N
v = X + (x+2) + cos(x) } y(x)



Logarithmic differentiation

Example

3 2 2
Find the derivative of y(x) = X+ 2)

cos3(x)

Solution: Recall: In[y(x)] = 3In(x) + 2In(x + 2) — 3In[cos(x)].

y'(x) 3 2 3sin(x)
y(x)  x + (x+2) cos(x)

ve)=[3+ (x : 2) " i::(ix))} y().

[3 2 3 sin(x)} cos(x)
x  (x+2)  cos(x) ) x3(x+2)?2

<



The inverse function (Sect. 7.1)

» One-to-one functions.
» The inverse function
» The graph of the inverse function.

» Derivatives of the inverse function.
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A function f : D — R is called one-to-one (injective) iff for every
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x1#x2 = f(x)# f(x).
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Remark:
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» Only one-to-one functions are invertible.
Definition
A function f : D — R is called one-to-one (injective) iff for every
x1, X2 € D holds

x1#x2 = f(x)# f(x).

Example
Invertible:

1. y:x3,forx€R



One-to-one functions

Remark:
» Not every function is invertible.
» Only one-to-one functions are invertible.
Definition
A function f : D — R is called one-to-one (injective) iff for every
x1, X2 € D holds

x1#x2 = f(x)# f(x).

Example
Invertible:
1. y:x3, for x € R.
2. y = x2, for x € [0, b].
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» Only one-to-one functions are invertible.
Definition
A function f : D — R is called one-to-one (injective) iff for every
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One-to-one functions

Remark:
» Not every function is invertible.
» Only one-to-one functions are invertible.
Definition
A function f : D — R is called one-to-one (injective) iff for every
x1, X2 € D holds

x1#x2 = f(x)# f(x).
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4.y =sin(x), x€[-5,5



One-to-one functions

Remark:
» Not every function is invertible.
» Only one-to-one functions are invertible.
Definition
A function f : D — R is called one-to-one (injective) iff for every
x1, X2 € D holds

x1#x2 = f(x)# f(x).

Example

Invertible: Not Invertible:
1. y=x3 forx € R. 1.y =x2 for x € [~a,a].
2.y =x?, for x € [0, b]. 2. y =|x|, for x € [—a, a].
3. y =/, for x € [0, 0). 3. y =cos(x), x € [—a, a.

4.y =sin(x), x€[-5,5



One-to-one functions

Remark:
» Not every function is invertible.
» Only one-to-one functions are invertible.
Definition
A function f : D — R is called one-to-one (injective) iff for every
x1, X2 € D holds

x1#x2 = f(x)# f(x).

Example

Invertible: Not Invertible:
1. y=x3 forx € R. 1.y =x2 for x € [~a,a].
2.y =x?, for x € [0, b]. 2. y =|x|, for x € [—a, a].
3. y =/, for x € [0, 0). 3. y =cos(x), x € [—a, a.

4.y =sin(x), x€[-5,5 4. y =sin(x), for x € [0, ].



One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].
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(a) For x;1 = —1, x, = 1 we have that x; # x2 and



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].
(b) y = cos(x), x € [—a, al.
(c) y =sin(x), for x € [0,7].

Solution:
(a) For x;1 = —1, x, = 1 we have that x; # x2 and

fxa) = (-1)°



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
fx1)=(-1)2=1



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
fx1)=(-1)2=1=1?



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—8),



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].
(b) y = cos(x), x € [—a, al.
(c) y =sin(x), for x € [0,7].
Solution:
(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).
(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,
f(—0) = cos(—0)



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,
f(—0) = cos(—0) = cos(6)



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,
f(—0) = cos(—0) = cos(f) = f(0).



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,
f(—0) = cos(—0) = cos(f) = f(0).

(c) Since sin(f) = sin(m — 0),



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].

(b) y = cos(x), x € [—a, al.

(c) y =sin(x), for x € [0,7].

Solution:

(a) For x;1 = —1, x, = 1 we have that x; # x2 and
f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,
f(—0) = cos(—0) = cos(f) = f(0).

(c) Since sin(f) = sin(m — 6), and taking x; = 7/4, xo = 37 /4,



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].
(b) y = cos(x), x € [—a, al.
(c) y =sin(x), for x € [0,7].

Solution:
(a) For x;1 = —1, x, = 1 we have that x; # x2 and

f(x1) =(-1)2=1=1%= f(x).
(b) Recalling that cos(#) = cos(—6), and taking x; = —f, x» = 6,
f(—0) = cos(—0) = cos(0) = F(6).
(c) Since sin(f) = sin(r — 6), and taking x; = 7/4, xo = 37 /4,
f(m/4) = sin(m/4)



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].
(b) y = cos(x), x € [—a, al.
(c) y =sin(x), for x € [0,7].

Solution:
(a) For x;1 = —1, x, = 1 we have that x; # x2 and

f(x1) =(-1)2=1=1%= f(x).

(b) Recalling that cos(f) = cos(—#0), and taking x; = —0, xo = 0,
f(—0) = cos(—0) = cos(f) = f(0).

(c) Since sin(f) = sin(m — 6), and taking x; = 7/4, xo = 37 /4,

f(r/4) =sin(w/4) = sin(m — 7/4)



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].
(b) y = cos(x), x € [—a, al.
(c) y =sin(x), for x € [0,7].

Solution:
(a) For x;1 = —1, x, = 1 we have that x; # x2 and

f(x1) =(-1)2=1=1%= f(x).
(b) Recalling that cos(#) = cos(—6), and taking x; = —f, x» = 6,
f(—0) = cos(—0) = cos(0) = F(6).
(c) Since sin(f) = sin(r — 6), and taking x; = 7/4, xo = 37 /4,
f(m/4) = sin(m/4) = sin(m — 7/4) = sin(37/4)



One-to-one functions

Example
Verify that the functions below are not one-to-one:

(a) y = x2, for x € [—a, a].
(b) y = cos(x), x € [—a, al.
(c) y =sin(x), for x € [0,7].

Solution:
(a) For x;1 = —1, x, = 1 we have that x; # x2 and

f(x1) =(-1)2=1=1%= f(x).
(b) Recalling that cos(#) = cos(—6), and taking x; = —f, x» = 6,
f(—0) = cos(—0) = cos(0) = F(6).
(c) Since sin(f) = sin(r — 6), and taking x; = 7/4, xo = 37 /4,
f(m/4) = sin(w/4) = sin(m — 7/4) = sin(37/4) = f(3n/4).
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intersects every horizontal line at most once.



One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1, f(x1)) and (x2, f(x2)),



One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1,f(x1)) and (x2, f(x2)), with x1 # xo,



One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1,f(x1)) and (x2, f(x2)), with x; # x2, that means
yo = f(x1) = f(x2).



One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1,f(x1)) and (x2, f(x2)), with x; # x2, that means
yo = f(x1) = f(x2). Hence f is not one-to-one.



One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1,f(x1)) and (x2, f(x2)), with x; # x2, that means
yo = f(x1) = f(x2). Hence f is not one-to-one.

Example

y y=><3

-




One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1,f(x1)) and (x2, f(x2)), with x; # x2, that means
yo = f(x1) = f(x2). Hence f is not one-to-one.
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One-to-one functions

Remark: By looking at the graph of the function one can
determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function f : D — R is one-to-one iff the function graph
intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line y = yq at
(x1,f(x1)) and (x2, f(x2)), with x; # x2, that means
yo = f(x1) = f(x2). Hence f is not one-to-one.
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The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).
Example
Find the inverse of f(x) = 2x — 3.



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).
Example
Find the inverse of f(x) = 2x — 3.

Solution: Denote y = f(x),



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).
Example
Find the inverse of f(x) = 2x — 3.

Solution: Denote y = f(x), that is, y = 2x — 3.



The inverse function

Remark: Only one-to-one functions are invertible.

Definition

The inverse of a one-to-one function f : D — R is the function

f~1: R — D defined for all x € D and all y € R as follows
fly)=x <« y=Ff(x).

Example

Find the inverse of f(x) = 2x — 3.

Solution: Denote y = f(x), that is, y = 2x — 3. Find x in the
expression above,



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).

Example
Find the inverse of f(x) = 2x — 3.

Solution: Denote y = f(x), that is, y = 2x — 3. Find x in the
expression above,

2x=y+3



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).

Example
Find the inverse of f(x) = 2x — 3.

Solution: Denote y = f(x), that is, y = 2x — 3. Find x in the
expression above,

1 3
2x = 3 = == =
X=y+ X 2y—|—2



The inverse function

Remark: Only one-to-one functions are invertible.

Definition
The inverse of a one-to-one function f : D — R is the function
f~1: R — D defined for all x € D and all y € R as follows

fly)=x <« y=Ff(x).
Example
Find the inverse of f(x) = 2x — 3.

Solution: Denote y = f(x), that is, y = 2x — 3. Find x in the
expression above,

1 3
2x = 3 = == =
X=y+ X 2y—|—2

Then, the inverse function is £ 1(y) = = y + =.
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The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Frof)x)=x (FofNy)=y.
» Equivalently,
Ff1 (f(x)) = x, f(f_l(y)) =y.

Example
Verify the relations above for f(x) = 2x — 3.



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Frof)x)=x, (Fof)y)=y.
» Equivalently,
Ff1 (f(x)) = x, f(f_l(y)) =y.

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2.



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FH(F(x))



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FH(f(x)) = F1(2x = 3)



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FY(f(x) = FL(2x—3) = %[(2x ~3)+3]



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FUA0) = £ 2x = 3) = L[(2x~3) +3] = x.



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FUA0) = £ 2x = 3) = L[(2x~3) +3] = x.

F(FH(y))



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FUA0) = £ 2x = 3) = L[(2x~3) +3] = x.

(o) = (50 +3)



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FUA0) = £ 2x = 3) = L[(2x~3) +3] = x.

Ao = (50 +3) =2 [0 +3)] -3



The inverse function

Remark:

» If =1 is the inverse of f, then holds
(Flof)x)=x, (Fof N(y)=y.

» Equivalently,

Example
Verify the relations above for f(x) = 2x — 3.

Solution: Recall: f~1(y) = (y +3)/2. Hence

FUA0) = £ 2x = 3) = L[(2x~3) +3] = x.

(o) = (50 +3) =2[50+3)] ~3=y.



The inverse function (Sect. 7.1)

» One-to-one functions.
» The inverse function
» The graph of the inverse function.

» Derivatives of the inverse function.
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Remark: The graph of the function £~ is obtained reflecting the
graph of f along the line y = x.
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Remark: The graph of the function £~ is obtained reflecting the
graph of f along the line y = x.
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The inverse function (Sect. 7.1)

» One-to-one functions.
» The inverse function
» The graph of the inverse function.

» Derivatives of the inverse function.



Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are
deeply related.
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Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are

deeply related.
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Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f~1 : R — D is differentiable.




Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are
deeply related.
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Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f~1 : R — D is differentiable.
Furthermore, for every y € R holds
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Derivatives of the inverse function.

Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f —1. R — D is differentiable.
Furthermore, for every y € R holds
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Derivatives of the inverse function.

Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f —1. R — D is differentiable.
Furthermore, for every y € R holds

—1\/ 1
)0 ey

Example
Verify the Theorem above for f(x) = 2x — 3.



Derivatives of the inverse function.

Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f —1. R — D is differentiable.
Furthermore, for every y € R holds

() 0) =

FIFHy))

Example
Verify the Theorem above for f(x) = 2x — 3.

Solution: This case is simple because f'(x) = 2, constant.
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Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f —1. R — D is differentiable.
Furthermore, for every y € R holds

() 0) =

FIFHy))

Example
Verify the Theorem above for f(x) = 2x — 3.

Solution: This case is simple because f'(x) = 2, constant.

1
Since f_l(y) =3 (y +3),



Derivatives of the inverse function.

Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f —1. R — D is differentiable.
Furthermore, for every y € R holds

() 0) =

FIFHy))

Example
Verify the Theorem above for f(x) = 2x — 3.

Solution: This case is simple because f'(x) = 2, constant.

1
Since f(y) = %(y + 3), then (f_l)/(y) =5 constant.



Derivatives of the inverse function.

Theorem (Derivative for inverse functions)

If the invertible function f : D — R is differentiable and f'(x) # 0
for every x € D, then the function f —1. R — D is differentiable.
Furthermore, for every y € R holds

() 0) =

FIFHy))

Example
Verify the Theorem above for f(x) = 2x — 3.

Solution: This case is simple because f'(x) = 2, constant.

1 1
Since f(y) = 5 (y +3), then (f_l)/(y) =5 constant.
1
Therefore, (fﬁl)/ = rz
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Verify the Theorem above for f(x) = x3.
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Derivatives of the inverse function.

Example

Verify the Theorem above for f(x) = x3.

Solution:

We first compute the inverse function. Denote y = f(x), then

y=x



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then

y:x3 = x:y1/3



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then

y=x = x=y* = fly)=y"



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then

3 13 FL(y) = Y13,

y=x> = x=y
Compute now the derivative of the inverse function,



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then

3 13 FL(y) = Y13,

y=x> = x=y
Compute now the derivative of the inverse function,

(FY () =5y



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then
3 _
y=x* = x=y"* = fly)=y"
Compute now the derivative of the inverse function,

1 11
—1\/ —-2/3
(F0 =3y /Zgﬁ'



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then
y=x> = x=y"* = fly)=y"
Compute now the derivative of the inverse function,
1 11
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Compute now the derivative of the original function,



Derivatives of the inverse function.

Example

Verify the Theorem above for f(x) = x3.

Solution:

We first compute the inverse function. Denote y = f(x), then

y=x = x=y* = fly)=y"

Compute now the derivative of the inverse function,
1 11
1\ _ + —2/3_*
Compute now the derivative of the original function,

f'(x) = 3x°



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then
y=x = x=y* = fly)=y"
Compute now the derivative of the inverse function,
1 11
1oy _ + —2/3 1
(f )(y)—3y T 323
Compute now the derivative of the original function,

Fx)=3x2 = F(fFYy) =3(F))?



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then
y=x = x=y* = fly)=y"
Compute now the derivative of the inverse function,
1 11
1oy _ + —2/3 1
(f )(y)—3y T 323
Compute now the derivative of the original function,

) =3 = f(F() =3(F') =30"")"



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then
3 _
y=x* = x=y"* = fly)=y"
Compute now the derivative of the inverse function,

. 1,5 11
(F) ) =3y =

T3y

Compute now the derivative of the original function,

) =3 = f(F() =3(F') =30"")"
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We conclude that ?’}/72/3 = (f ) (v)



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3.

Solution:
We first compute the inverse function. Denote y = f(x), then
3 _
y=x* = x=y"* = fly)=y"
Compute now the derivative of the inverse function,

. 1,5 11
(F) ) =3y =

— 3 y2/3°
Compute now the derivative of the original function,
Fix)=3x2 = F(F ) =3(F)° =3("%)"

1

1 IRV
We conclude that 3’}/72/3 = (f 1) (v) = W



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.
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Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
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Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.

Compute now the derivative of the original function,



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.

Compute now the derivative of the original function,

f'(x) =3x>+ 1.



Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.
Compute now the derivative of the original function,

f'(x) =3x>+1.

1
Then the formula in the Theorem, (fﬁl)/(y) = m
y
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Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.
Compute now the derivative of the original function,

f'(x) =3x>+1.
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y

for y =9 implies




Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.
Compute now the derivative of the original function,

f'(x) =3x>+1.

1
Then the formula in the Theorem, (fﬁl)/(y) = m
y

for y =9 implies




Derivatives of the inverse function.

Example
Verify the Theorem above for f(x) = x3 + x — 1 at x = 2.

Solution: In this case is difficult to find f~1(y) for y € R.
But at x = 2 we have f(2) =23 +2 — 1, that is, f(2) = 9.
Therefore f1(9) = 2.
Compute now the derivative of the original function,
f'(x) =3x>+1.
. 1y 1
Then the formula in the Theorem, (1) (y) = 1))’

1N/ 1 1 1
(F) () = FF19)  F(2) 3(4)+1
1
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for y =9 implies

We conclude that (fﬁl)/(y) =



