Volumes as integrals of cross-sections (Sect. 6.1)

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

- The volume of simple regions in space
- Volumes integrating cross-sections:
 - The general case.
 - Regions of revolution.
 - Certain regions with holes.

Volumes as integrals of cross-sections (Sect. 6.1)

► The volume of simple regions in space

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

- Volumes integrating cross-sections:
 - ► The general case.
 - Regions of revolution.
 - Certain regions with holes.

Remark: Volumes of simple regions in space are easy to compute.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: Volumes of simple regions in space are easy to compute.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Find the volume of a rectangular box with sides a, b, and c.

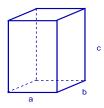
Remark: Volumes of simple regions in space are easy to compute.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:

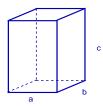


Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:



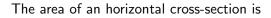
$$A = ab.$$

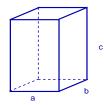
Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:





A = ab.

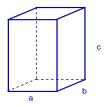
(Constant along the vertical direction.)

Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:



The area of an horizontal cross-section is

$$A = ab.$$

(Constant along the vertical direction.) The volume of the box is

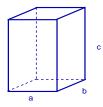
$$V = Ac.$$

Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:



The area of an horizontal cross-section is

$$A = ab.$$

(Constant along the vertical direction.) The volume of the box is

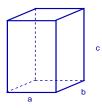
V = Ac.

Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:



The area of an horizontal cross-section is

$$A = ab.$$

(Constant along the vertical direction.) The volume of the box is

V = Ac.

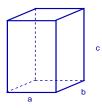
$$V=\int_0^c A(z)\,dz$$

Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:



The area of an horizontal cross-section is

$$A = ab.$$

(Constant along the vertical direction.) The volume of the box is

V = Ac.

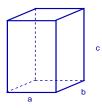
$$V = \int_0^c A(z) \, dz = A \, \int_0^c dz$$

Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c.

Solution:



The area of an horizontal cross-section is

$$A = ab.$$

(Constant along the vertical direction.) The volume of the box is

V = Ac.

$$V = \int_0^c A(z) \, dz = A \, \int_0^c dz \quad \Rightarrow \quad V = Ac.$$

Volumes as integrals of cross-sections (Sect. 6.1)

- The volume of simple regions in space
- Volumes integrating cross-sections:

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

- ► The general case.
- Regions of revolution.
- Certain regions with holes.

Remark: This interpretation of the calculation above is a good definition of volume for arbitrary shaped regions in space.

Remark: This interpretation of the calculation above is a good definition of volume for arbitrary shaped regions in space.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

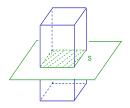
A *cross-section* of a 3-dimensional region in space is the 2-dimensional intersection of a plane with the region.

Remark: This interpretation of the calculation above is a good definition of volume for arbitrary shaped regions in space.

Definition

A *cross-section* of a 3-dimensional region in space is the 2-dimensional intersection of a plane with the region.

Example

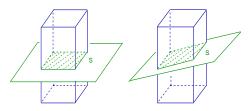


Remark: This interpretation of the calculation above is a good definition of volume for arbitrary shaped regions in space.

Definition

A *cross-section* of a 3-dimensional region in space is the 2-dimensional intersection of a plane with the region.

Example

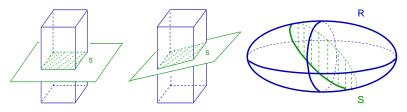


Remark: This interpretation of the calculation above is a good definition of volume for arbitrary shaped regions in space.

Definition

A *cross-section* of a 3-dimensional region in space is the 2-dimensional intersection of a plane with the region.

Example



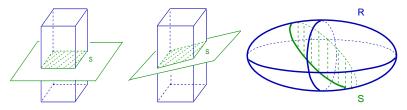
・ロト ・四ト ・ヨト ・ヨト ・ヨ

Remark: This interpretation of the calculation above is a good definition of volume for arbitrary shaped regions in space.

Definition

A *cross-section* of a 3-dimensional region in space is the 2-dimensional intersection of a plane with the region.

Example



Remark: Like in the last case above, the area of a cross section is a function of the direction normal to the cross-section.

Definition

The volume of a region in space with integrable cross-section area A(x) for $x \in [a, b]$ is given by

$$V=\int_a^b A(x)\,dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The *volume* of a region in space with integrable cross-section area A(x) for $x \in [a, b]$ is given by

$$V=\int_a^b A(x)\,dx.$$

Example

Find the volume of a pyramid with square base side a and height h.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

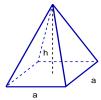
The *volume* of a region in space with integrable cross-section area A(x) for $x \in [a, b]$ is given by

$$V=\int_a^b A(x)\,dx.$$

Example

Find the volume of a pyramid with square base side a and height h.

Solution:



Definition

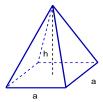
The *volume* of a region in space with integrable cross-section area A(x) for $x \in [a, b]$ is given by

$$V=\int_a^b A(x)\,dx.$$

Example

Find the volume of a pyramid with square base side a and height h.

Solution:



(1) Choose simple cross-sections.

Definition

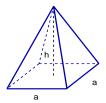
The *volume* of a region in space with integrable cross-section area A(x) for $x \in [a, b]$ is given by

$$V=\int_a^b A(x)\,dx.$$

Example

Find the volume of a pyramid with square base side a and height h.

Solution:



(1) Choose simple cross-sections. Here, horizontal cross-sections.

Definition

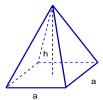
The *volume* of a region in space with integrable cross-section area A(x) for $x \in [a, b]$ is given by

$$V=\int_a^b A(x)\,dx.$$

Example

Find the volume of a pyramid with square base side a and height h.

Solution:



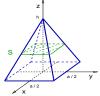
 Choose simple cross-sections.
 Here, horizontal cross-sections.
 Choose a coordinate system where the cross-section areas have simple expressions.

Example

Find the volume of a pyramid with square base side a and height h.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

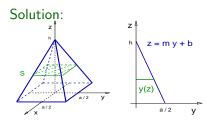


Example

Find the volume of a pyramid with square base side a and height h.

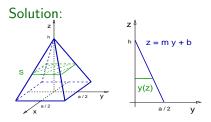
(日)、

- 3



Example

Find the volume of a pyramid with square base side a and height h.



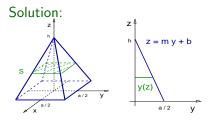
$$A(z) = \left[2y(z)\right]^2$$

(日)、

- 3

Example

Find the volume of a pyramid with square base side a and height h.



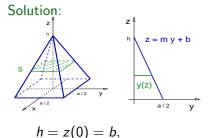
$$A(z) = \left[2y(z)\right]^2$$

We must find and invert

$$z(y)=my+b.$$

Example

Find the volume of a pyramid with square base side a and height h.



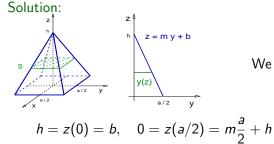
$$A(z) = \left[2y(z)\right]^2$$

We must find and invert

$$z(y)=my+b.$$

Example

Find the volume of a pyramid with square base side a and height h.



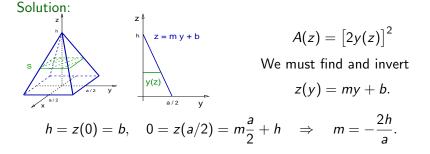
$$A(z) = \left[2y(z)\right]^2$$

We must find and invert

$$z(y)=my+b.$$

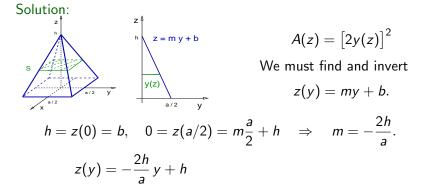
Example

Find the volume of a pyramid with square base side a and height h.



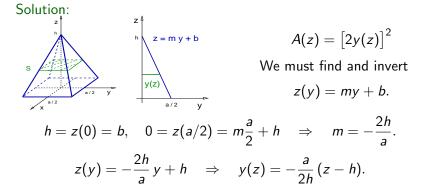
Example

Find the volume of a pyramid with square base side a and height h.



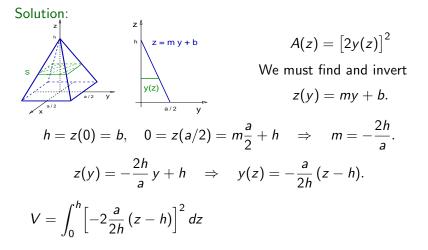
Example

Find the volume of a pyramid with square base side a and height h.



Example

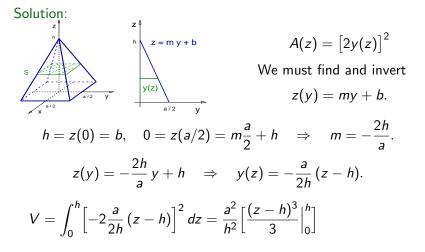
Find the volume of a pyramid with square base side a and height h.



▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

Example

Find the volume of a pyramid with square base side a and height h.

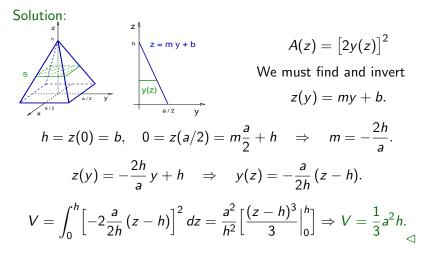


▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

Volumes integrating cross-sections: General case.

Example

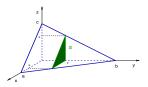
Find the volume of a pyramid with square base side a and height h.



◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Example

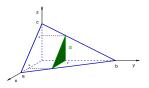
Find the volume of the tetrahedra:



◆□> ◆□> ◆豆> ◆豆> 「豆

Example

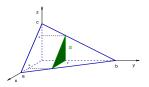
Find the volume of the tetrahedra:



(日) (個) (目) (日) (三)

Example

Find the volume of the tetrahedra:

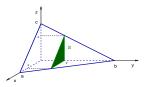


(日) (個) (目) (日) (三)

$$A(y)=\frac{1}{2}x(y)z(y),$$

Example

Find the volume of the tetrahedra:

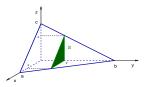


(日) (個) (目) (日) (三)

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a,$$

Example

Find the volume of the tetrahedra:

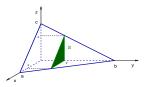


(日) (個) (目) (日) (三)

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a, \quad z(y) = -\frac{c}{b}y + c.$$

Example

Find the volume of the tetrahedra:

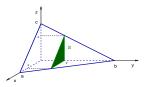


(日) (個) (目) (日) (三)

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a, \quad z(y) = -\frac{c}{b}y + c.$$
$$A(y) = \frac{1}{2}\left(-\frac{a}{b}\right)(y - b)\left(-\frac{c}{b}\right)(y - b)$$

Example

Find the volume of the tetrahedra:

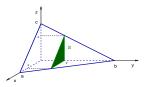


(日) (個) (目) (日) (三)

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a, \quad z(y) = -\frac{c}{b}y + c.$$
$$A(y) = \frac{1}{2}\left(-\frac{a}{b}\right)(y - b)\left(-\frac{c}{b}\right)(y - b) = \frac{ac}{2b^2}(y - b)^2.$$

Example

Find the volume of the tetrahedra:



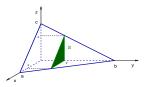
(日) (雪) (日) (日) (日)

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a, \quad z(y) = -\frac{c}{b}y + c.$$
$$A(y) = \frac{1}{2}\left(-\frac{a}{b}\right)(y - b)\left(-\frac{c}{b}\right)(y - b) = \frac{ac}{2b^2}(y - b)^2.$$

$$V = \frac{ac}{2b^2} \int_0^b (y-b)^2 \, dy$$

Example

Find the volume of the tetrahedra:



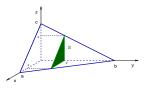
(日) (雪) (日) (日) (日)

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a, \quad z(y) = -\frac{c}{b}y + c.$$
$$A(y) = \frac{1}{2}\left(-\frac{a}{b}\right)(y - b)\left(-\frac{c}{b}\right)(y - b) = \frac{ac}{2b^2}(y - b)^2.$$

$$V = \frac{ac}{2b^2} \int_0^b (y-b)^2 \, dy = \frac{ac}{2b^2} \left[\frac{(y-b)^3}{3} \Big|_0^b \right]$$

Example

Find the volume of the tetrahedra:



(日)、

$$A(y) = \frac{1}{2}x(y)z(y), \quad x(y) = -\frac{a}{b}y + a, \quad z(y) = -\frac{c}{b}y + c.$$
$$A(y) = \frac{1}{2}\left(-\frac{a}{b}\right)(y - b)\left(-\frac{c}{b}\right)(y - b) = \frac{ac}{2b^2}(y - b)^2.$$

$$V = rac{ac}{2b^2} \int_0^b (y-b)^2 \, dy = rac{ac}{2b^2} \Big[rac{(y-b)^3}{3} \Big|_0^b \Big] \Rightarrow V = rac{1}{6} abc.$$

Volumes as integrals of cross-sections (Sect. 6.1)

- The volume of simple regions in space
- Volumes integrating cross-sections:

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

- The general case.
- ► Regions of revolution.
- Certain regions with holes.

Definition

A *region of revolution* is a 3-dimensional region in space obtained by rotating a plane region about an axis in that plane.

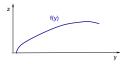
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A *region of revolution* is a 3-dimensional region in space obtained by rotating a plane region about an axis in that plane.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

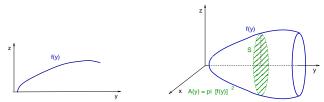
Example



Definition

A *region of revolution* is a 3-dimensional region in space obtained by rotating a plane region about an axis in that plane.

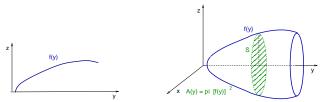
Example



Definition

A *region of revolution* is a 3-dimensional region in space obtained by rotating a plane region about an axis in that plane.

Example



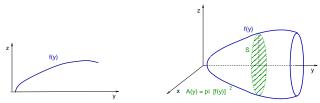
Remark:

• The cross-sections of region of revolution are disks: $A = \pi R^2$.

Definition

A *region of revolution* is a 3-dimensional region in space obtained by rotating a plane region about an axis in that plane.

Example



Remark:

• The cross-sections of region of revolution are disks: $A = \pi R^2$.

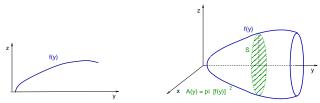
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• In the example, R(y) = f(y).

Definition

A *region of revolution* is a 3-dimensional region in space obtained by rotating a plane region about an axis in that plane.

Example



Remark:

- The cross-sections of region of revolution are disks: $A = \pi R^2$.
- ▶ In the example, R(y) = f(y). Therefore, $A(y) = \pi [f(y)]^2$.

Theorem

The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Theorem

The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Example

Find the volume of a sphere of radius R by rotating a half circle with the same radius.

Theorem

The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

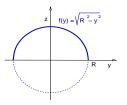
$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Example

Find the volume of a sphere of radius R by rotating a half circle with the same radius.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution:



Theorem

The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

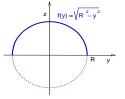
$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Example

Find the volume of a sphere of radius R by rotating a half circle with the same radius.

Solution:

$$V = \pi \int_{-R}^{R} [f(y)]^2 \, dy$$



Theorem

The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Example

Find the volume of a sphere of radius R by rotating a half circle with the same radius.

Solution:

f(y) =

$$V = \pi \int_{-R}^{R} [f(y)]^2 \, dy = \pi \int_{-R}^{R} (R^2 - y^2) \, dy$$

Theorem

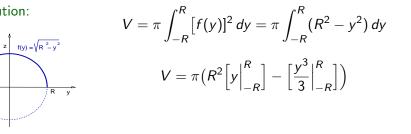
The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Example

Find the volume of a sphere of radius R by rotating a half circle with the same radius.

Solution:



Theorem

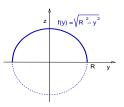
The volume of a region of revolution defined by rotating the function values z = f(y) for $y \in [a, b]$ about the y-axis is

$$V = \pi \int_a^b \big[f(y)\big]^2 \, dy.$$

Example

Find the volume of a sphere of radius R by rotating a half circle with the same radius.

Solution:



$$V = \pi \int_{-R}^{R} [f(y)]^{2} dy = \pi \int_{-R}^{R} (R^{2} - y^{2}) dy$$
$$V = \pi \left(R^{2} \left[y \Big|_{-R}^{R} \right] - \left[\frac{y^{3}}{3} \Big|_{-R}^{R} \right] \right)$$
$$V = \pi \left[2R^{3} - \frac{2}{3}R^{3} \right] \Rightarrow V = \frac{4}{3}\pi R^{3}. \triangleleft$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 通 = のへ⊙

Remark: The axis of rotation could be any axis in space.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Remark: The axis of rotation could be any axis in space.

Example

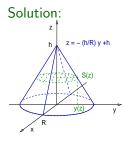
Find the volume of a cone with base of radius R and height h.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: The axis of rotation could be any axis in space.

Example

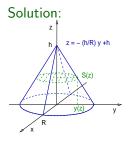
Find the volume of a cone with base of radius R and height h.



Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.



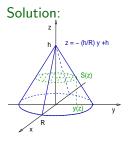
We choose z as the rotation axis.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.



We choose z as the rotation axis.

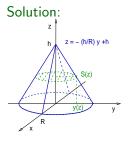
$$V=\pi\int_0^h \big[y(z)\big]^2\,dz.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.



We choose z as the rotation axis.

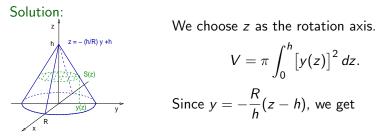
$$V = \pi \int_0^h [y(z)]^2 dz.$$

Since $y = -\frac{R}{h}(z - h)$, we get

Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.



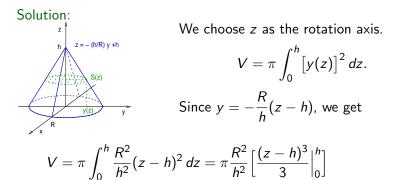
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$V = \pi \int_0^h \frac{R^2}{h^2} (z-h)^2 dz$$

Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.

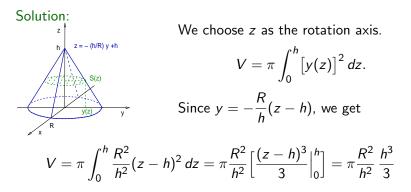


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.

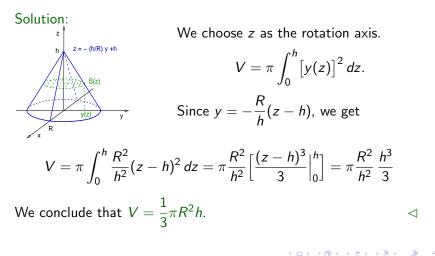


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.



Example

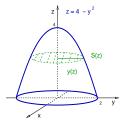
Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0,2]$ when it is rotated about the z axis.

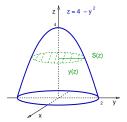
◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇



Example

Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.

Solution:



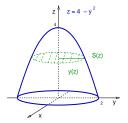
$$V=\pi\int_0^4 \big[y(z)\big]^2\,dz.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.

Solution:



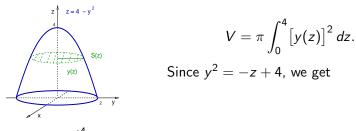
$$V = \pi \int_0^4 \big[y(z) \big]^2 \, dz.$$
 Since $y^2 = -z + 4$, we get

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.

Solution:



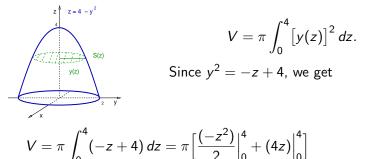
(日) (雪) (日) (日) (日)

$$V=\pi\int_0^4(-z+4)\,dz$$

Example

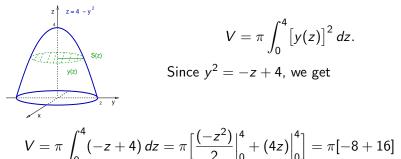
Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.

Solution:



Example

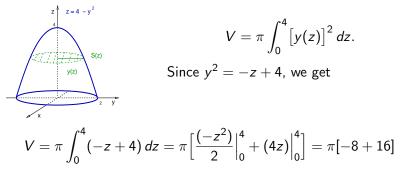
Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.



Example

Find the volume of the region bounded by $z = -y^2 + 4$ for $y \in [0, 2]$ when it is rotated about the z axis.

Solution:



<1

・ロト ・ 一下・ ・ ヨト・

We conclude that $V = 8\pi$.

Volumes as integrals of cross-sections (Sect. 6.1)

- The volume of simple regions in space
- Volumes integrating cross-sections:
 - The general case.
 - Regions of revolution.
 - Certain regions with holes.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Definition

A *washer region* is a region of revolution with a hole, where the exterior and interior surfaces are obtained by rotating the function values $z = f_{ext}(y)$ and $z = f_{int}(y)$ along the y axis.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A washer region is a region of revolution with a hole, where the exterior and interior surfaces are obtained by rotating the function values $z = f_{ext}(y)$ and $z = f_{int}(y)$ along the y axis.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Sketch the washer region bounded by z = -2y + 4 and $z = -y^2 + 4$ for $y \in [0, 2]$, rotated about the z-axis.

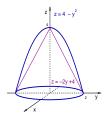
Definition

A *washer region* is a region of revolution with a hole, where the exterior and interior surfaces are obtained by rotating the function values $z = f_{ext}(y)$ and $z = f_{int}(y)$ along the y axis.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Sketch the washer region bounded by z = -2y + 4 and $z = -y^2 + 4$ for $y \in [0, 2]$, rotated about the z-axis.

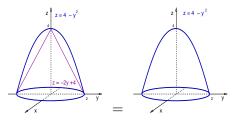


Definition

A *washer region* is a region of revolution with a hole, where the exterior and interior surfaces are obtained by rotating the function values $z = f_{ext}(y)$ and $z = f_{int}(y)$ along the y axis.

Example

Sketch the washer region bounded by z = -2y + 4 and $z = -y^2 + 4$ for $y \in [0, 2]$, rotated about the z-axis.

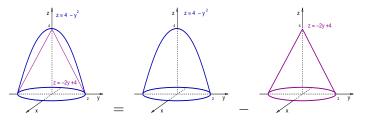


Definition

A *washer region* is a region of revolution with a hole, where the exterior and interior surfaces are obtained by rotating the function values $z = f_{ext}(y)$ and $z = f_{int}(y)$ along the y axis.

Example

Sketch the washer region bounded by z = -2y + 4 and $z = -y^2 + 4$ for $y \in [0, 2]$, rotated about the z-axis.



Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{\text{ext}} - V_{\text{int}} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{\text{ext}}(y) \right]^{2} - \left[f_{\text{int}}(y) \right]^{2} \right) dy.$$

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^2 - \left[f_{int}(y) \right]^2 \right) dy.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the volume of the washer region in the previous example.

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^{2} - \left[f_{int}(y) \right]^{2} \right) dy.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the volume of the washer region in the previous example.

$$V=V_p-V_c,$$

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^{2} - \left[f_{int}(y) \right]^{2} \right) dy.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the volume of the washer region in the previous example.

$$V = V_p - V_c, \quad V_p = 8\pi,$$

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^{2} - \left[f_{int}(y) \right]^{2} \right) dy.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the volume of the washer region in the previous example.

$$V = V_p - V_c$$
, $V_p = 8\pi$, $V_c = \frac{1}{3}\pi(2^2)(4)$

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^{2} - \left[f_{int}(y) \right]^{2} \right) dy.$$

Example

Find the volume of the washer region in the previous example.

Solution:

$$V = V_p - V_c$$
, $V_p = 8\pi$, $V_c = \frac{1}{3}\pi(2^2)(4) = \frac{16}{3}\pi$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^{2} - \left[f_{int}(y) \right]^{2} \right) dy.$$

Example

Find the volume of the washer region in the previous example.

Solution:

$$V = V_p - V_c, \quad V_p = 8\pi, \quad V_c = \frac{1}{3}\pi(2^2)(4) = \frac{16}{3}\pi.$$

 $V = \left(\frac{1}{2} - \frac{1}{3}\right)16\pi$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

The volume of a washer region about the z-axis with exterior and interior surfaces generated by $z = f_{ext}(y)$ and $z = f_{int}(y)$ for $y \in [a, b]$, respectively, is given by

$$V = V_{ext} - V_{int} \quad \Leftrightarrow \quad V = \pi \int_{a}^{b} \left(\left[f_{ext}(y) \right]^{2} - \left[f_{int}(y) \right]^{2} \right) dy.$$

Example

Find the volume of the washer region in the previous example.

Solution:

$$V = V_p - V_c, \quad V_p = 8\pi, \quad V_c = \frac{1}{3}\pi(2^2)(4) = \frac{16}{3}\pi.$$

 $V = \left(\frac{1}{2} - \frac{1}{3}\right)16\pi \quad \Rightarrow \quad V = \frac{8}{3}\pi.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The arc-length of curves in the plane (Sect. 6.3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

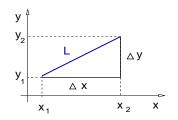
- ▶ The main arc-length formula.
- Curves with vertical asymptotes.
- ► The arc-length function.

Remark: The length of a straight segment can be obtained with Pythagoras Theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: The length of a straight segment can be obtained with Pythagoras Theorem.

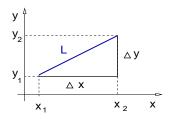
 $L = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$



・ロト ・ 一下・ ・ ヨト・

Remark: The length of a straight segment can be obtained with Pythagoras Theorem.

$$L = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$$

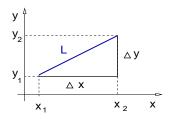


(日)、

Remark: Calculus is needed to compute, and even define, the length of non-straight curves, called arc-length.

Remark: The length of a straight segment can be obtained with Pythagoras Theorem.

$$L = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$$



Remark: Calculus is needed to compute, and even define, the length of non-straight curves, called arc-length.

Definition

The *arc-length* of a curve in the plane given by a differentiable function y = f(x), for $x \in [a, b]$, is

$$L = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx.$$

Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Remark: The definition of arc-length is the result of a limit procedure.

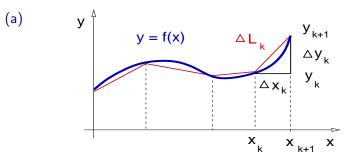
Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Remark: The definition of arc-length is the result of a limit procedure. We mention two of such limits.

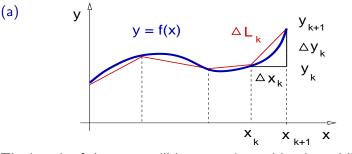
Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

Remark: The definition of arc-length is the result of a limit procedure. We mention two of such limits.



Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

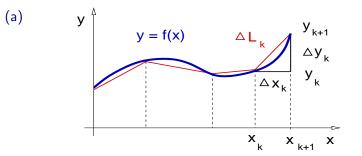
Remark: The definition of arc-length is the result of a limit procedure. We mention two of such limits.



The length of the curve will be approximated by the red lines,

Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

Remark: The definition of arc-length is the result of a limit procedure. We mention two of such limits.

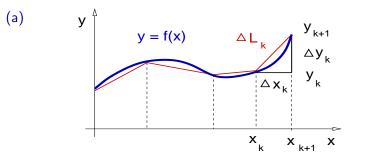


The length of the curve will be approximated by the red lines,

$$L_N = \sum_{k=0}^{N-1} \Delta L_k$$

Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

Remark: The definition of arc-length is the result of a limit procedure. We mention two of such limits.



The length of the curve will be approximated by the red lines,

$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}}.$$

000

$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}}.$$

<□ > < @ > < E > < E > E のQ @

$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}}.$$

<□ > < @ > < E > < E > E のQ @

$$L_N = \sum_{k=0}^{N-1} \sqrt{1 + rac{\left(\Delta y_k
ight)^2}{\left(\Delta x_k
ight)^2}} \, \Delta x_k$$

$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}}.$$

$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{(\Delta y_{k})^{2}}{(\Delta x_{k})^{2}}} \, \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{(y_{k+1} - y_{k})^{2}}{(x_{k+1} - x_{k})^{2}}} \, \Delta x_{k}$$

<□ > < @ > < E > < E > E のQ @

$$L_N = \sum_{k=0}^{N-1} \Delta L_k = \sum_{k=0}^{N-1} \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}.$$

$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{(\Delta y_{k})^{2}}{(\Delta x_{k})^{2}}} \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{(y_{k+1} - y_{k})^{2}}{(x_{k+1} - x_{k})^{2}}} \Delta x_{k}$$

$$L_N = \sum_{k=0}^{N-1} \sqrt{1 + \left[\frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k}\right]^2 \Delta x_k}$$

<□ > < @ > < E > < E > E のQ @

$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(\Delta y_{k}\right)^{2}}.$$
$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(\Delta y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(y_{k+1} - y_{k}\right)^{2}}{\left(x_{k+1} - x_{k}\right)^{2}}} \Delta x_{k}$$
$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \left[\frac{f(x_{k+1}) - f(x_{k})}{x_{k+1} - x_{k}}\right]^{2}} \Delta x_{k}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

One can show that in the limit $N \to \infty$ holds $x_{k+1} \to x_k$

$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(\Delta y_{k}\right)^{2}}.$$
$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(\Delta y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(y_{k+1} - y_{k}\right)^{2}}{\left(x_{k+1} - x_{k}\right)^{2}}} \Delta x_{k}$$
$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \left[\frac{f(x_{k+1}) - f(x_{k})}{x_{k+1} - x_{k}}\right]^{2}} \Delta x_{k}$$

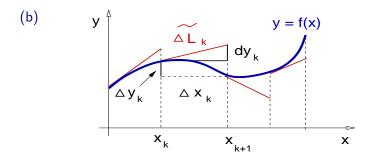
One can show that in the limit $N \to \infty$ holds $x_{k+1} \to x_k$ and

$$L_N \to \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx$$

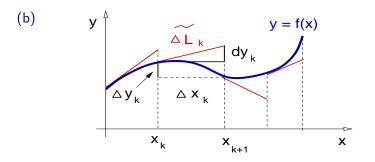
$$L_{N} = \sum_{k=0}^{N-1} \Delta L_{k} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(\Delta y_{k}\right)^{2}}.$$
$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(\Delta y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(y_{k+1} - y_{k}\right)^{2}}{\left(x_{k+1} - x_{k}\right)^{2}}} \Delta x_{k}$$
$$L_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \left[\frac{f(x_{k+1}) - f(x_{k})}{x_{k+1} - x_{k}}\right]^{2}} \Delta x_{k}$$

One can show that in the limit $N \to \infty$ holds $x_{k+1} \to x_k$ and

$$L_N \to \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx = L.$$

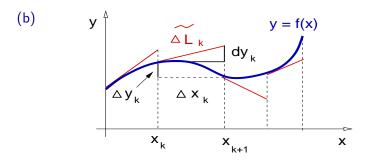


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□



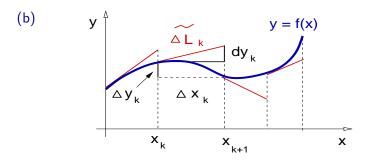
・ロト ・ 理 ト ・ ヨト ・ ヨー

Recall: $dy_k = f'(x_k) \Delta x_k$.



Recall: $dy_k = f'(x_k) \Delta x_k$. Now the length of the curve will be approximated by the red lines

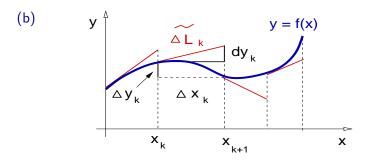
◆□> ◆□> ◆豆> ◆豆> 「豆



Recall: $dy_k = f'(x_k) \Delta x_k$. Now the length of the curve will be approximated by the red lines

◆□> ◆□> ◆豆> ◆豆> 「豆

$$\widetilde{L}_N = \sum_{k=0}^{N-1} \widetilde{\Delta L_k}$$



Recall: $dy_k = f'(x_k) \Delta x_k$. Now the length of the curve will be approximated by the red lines

$$\widetilde{L}_{N} = \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}$$

◆□> ◆□> ◆豆> ◆豆> 「豆

$$\widetilde{L}_{N} = \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}.$$

<□ > < @ > < E > < E > E のQ @

$$\widetilde{L}_{N} = \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}.$$

$$ilde{L}_N = \sum_{k=0}^{N-1} \sqrt{1 + rac{\left(dy_k\right)^2}{\left(\Delta x_k\right)^2}} \, \Delta x_k$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\widetilde{L}_{N} = \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}.$$

$$\tilde{L}_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(dy_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left[f'(x_{k})\Delta x_{k}\right]^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\widetilde{L}_{N} = \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}.$$

$$\tilde{L}_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{(dy_{k})^{2}}{(\Delta x_{k})^{2}}} \, \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{[f'(x_{k})\Delta x_{k}]^{2}}{(\Delta x_{k})^{2}}} \, \Delta x_{k}$$

$$ilde{L}_N = \sum_{k=0}^{N-1} \sqrt{1 + \left[f'(x_k)
ight]^2} \, \Delta x_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\tilde{L}_{N} = \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}.$$
$$\tilde{L}_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(dy_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left[f'(x_{k})\Delta x_{k}\right]^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k}$$
$$\tilde{L}_{N} = \sum_{k=0}^{N-1} \sqrt{1 + \left[f'(x_{k})\right]^{2}} \Delta x_{k}$$

...

One can show that in the limit $N \to \infty$ holds

$$\tilde{L}_N \to \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx$$

$$\begin{split} \tilde{L}_{N} &= \sum_{k=0}^{N-1} \widetilde{\Delta L_{k}} = \sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2} + \left(dy_{k}\right)^{2}}.\\ \tilde{L}_{N} &= \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left(dy_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \,\Delta x_{k} = \sum_{k=0}^{N-1} \sqrt{1 + \frac{\left[f'(x_{k})\Delta x_{k}\right]^{2}}{\left(\Delta x_{k}\right)^{2}}} \,\Delta x_{k}\\ \tilde{L}_{N} &= \sum_{k=0}^{N-1} \sqrt{1 + \left[f'(x_{k})\right]^{2}} \,\Delta x_{k} \end{split}$$

One can show that in the limit $N \to \infty$ holds

$$\tilde{L}_{N} \rightarrow \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^{2}} \, dx = L.$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$
.

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$
. We start with

(ロ)、(型)、(E)、(E)、 E、 の(の)

$$f(x) = x^{3/2}$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2} x^{1/2}$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

$$L=\int_0^4\sqrt{1+\frac{9}{4}x}\,dx,$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

$$L = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx, \quad u = 1 + \frac{9}{4}x,$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

$$L = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx, \quad u = 1 + \frac{9}{4}x, \quad du = \frac{9}{4} \, dx.$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

$$L = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx, \quad u = 1 + \frac{9}{4}x, \quad du = \frac{9}{4} \, dx.$$

$$L = \int_1^{10} \frac{4}{9} \sqrt{u} \, du$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

$$L = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx, \quad u = 1 + \frac{9}{4}x, \quad du = \frac{9}{4} \, dx.$$

$$L = \int_{1}^{10} \frac{4}{9} \sqrt{u} \, du = \frac{4}{9} \frac{2}{3} \left(u^{3/2} \Big|_{1}^{10} \right).$$

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$. We start with

$$f(x) = x^{3/2} \quad \Rightarrow \quad f'(x) = \frac{3}{2}x^{1/2} \quad \Rightarrow \quad [f'(x)]^2 = \frac{9}{4}x.$$

$$L = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx, \quad u = 1 + \frac{9}{4}x, \quad du = \frac{9}{4} \, dx.$$

$$L = \int_{1}^{10} \frac{4}{9} \sqrt{u} \, du = \frac{4}{9} \frac{2}{3} \left(u^{3/2} \Big|_{1}^{10} \right).$$

We conclude that $L = \frac{8}{27}(10^{3/2} - 1).$ <

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The arc-length of curves in the plane (Sect. 6.3)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ The main arc-length formula.
- Curves with vertical asymptotes.
- ▶ The arc-length function.

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [y'(x)]^2} dx.$$

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Solution: Recall:
$$L = \int_a^b \sqrt{1 + [y'(x)]^2} dx.$$

$$y'(x) = \sqrt{2} \left(\sqrt{x-1} \right)'$$

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [y'(x)]^2} \, dx.$$

 $y'(x) = \sqrt{2} (\sqrt{x-1})' = \sqrt{2} \frac{1}{2} \frac{1}{\sqrt{x-1}}$

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

Example

Find the arc-length of $y(x) = \sqrt{2(x-1)}$, for $x \in [1,3]$.

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [y'(x)]^2} \, dx.$$

 $y'(x) = \sqrt{2}(\sqrt{x-1})' = \sqrt{2} \frac{1}{2} \frac{1}{\sqrt{x-1}} = \frac{1}{\sqrt{2(x-1)}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

Example

Find the arc-length of $y(x) = \sqrt{2(x-1)}$, for $x \in [1,3]$.

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [y'(x)]^2} \, dx.$$

 $y'(x) = \sqrt{2} (\sqrt{x-1})' = \sqrt{2} \frac{1}{2} \frac{1}{\sqrt{x-1}} = \frac{1}{\sqrt{2(x-1)}}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence, $y'(x) \to \infty$ as $x \to 1^+$.

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

Example

Find the arc-length of $y(x) = \sqrt{2(x-1)}$, for $x \in [1,3]$.

Solution: Recall:
$$L = \int_{a}^{b} \sqrt{1 + [y'(x)]^2} \, dx.$$

 $y'(x) = \sqrt{2} (\sqrt{x-1})' = \sqrt{2} \frac{1}{2} \frac{1}{\sqrt{x-1}} = \frac{1}{\sqrt{2(x-1)}}.$

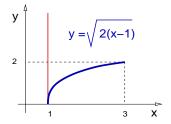
Hence, $y'(x) \to \infty$ as $x \to 1^+$. Therefore, it is not clear how to compute

$$L = \int_1^3 \sqrt{1 + \frac{1}{2(x-1)}} \, dx.$$

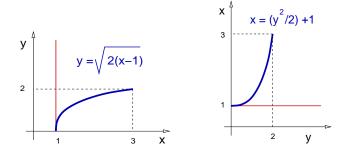
Remark: Describe the curve with the inverse function.

Remark: Describe the curve with the inverse function.

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

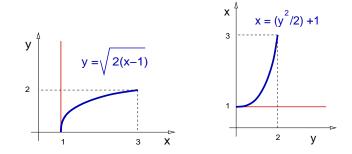


Remark: Describe the curve with the inverse function.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

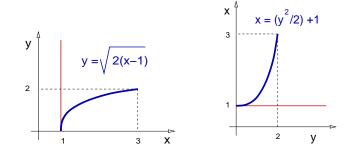
Remark: Describe the curve with the inverse function.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We now use $L = \int_0^2 \sqrt{1 + [x'(y)]^2} \, dy.$

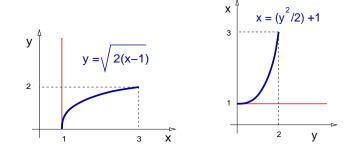
Remark: Describe the curve with the inverse function.



- ロ ト - 4 回 ト - 4 □ - 4

We now use $L = \int_0^2 \sqrt{1 + [x'(y)]^2} \, dy$. Since x'(y) = y,

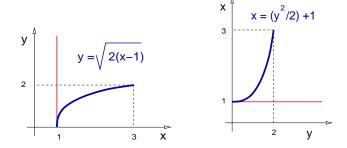
Remark: Describe the curve with the inverse function.



We now use $L = \int_{0}^{2} \sqrt{1 + [x'(y)]^2} dy$. Since x'(y) = y, $L = \int_0^2 \sqrt{1 + y^2} \, dy$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: Describe the curve with the inverse function.

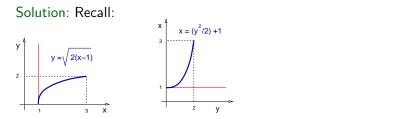


We now use $L = \int_0^2 \sqrt{1 + [x'(y)]^2} \, dy$. Since x'(y) = y, $L = \int_0^2 \sqrt{1 + y^2} \, dy = \left[\frac{y}{2}\sqrt{1 + y^2} + \frac{1}{2}\ln(y + \sqrt{1 + y^2})\right]\Big|_0^2$.

・ロット (雪) (山) (山) (山)

Example

Find the length of $y(x) = \sqrt{2(x-1)}$, for $x \in [1,3]$.

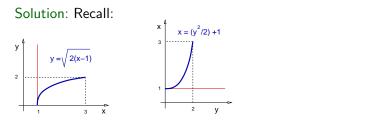


$$L = \int_0^2 \sqrt{1+y^2} \, dy = \left[\frac{y}{2}\sqrt{1+y^2} + \frac{1}{2}\ln\left(y+\sqrt{1+y^2}\right)\right]\Big|_0^2.$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

Example

Find the length of $y(x) = \sqrt{2(x-1)}$, for $x \in [1,3]$.



$$L = \int_0^2 \sqrt{1+y^2} \, dy = \left[\frac{y}{2}\sqrt{1+y^2} + \frac{1}{2}\ln\left(y + \sqrt{1+y^2}\right)\right]\Big|_0^2.$$

We conclude that $L = \sqrt{5} + \frac{1}{2} \ln(2 + \sqrt{5}).$

The arc-length of curves in the plane (Sect. 6.3)

- ▶ The main arc-length formula.
- Curves with vertical asymptotes.
- ► The arc-length function.

Remark: It is useful to introduce a function that measures a curve arc-length from a fix starting point to any other point in the curve.

Remark: It is useful to introduce a function that measures a curve arc-length from a fix starting point to any other point in the curve.

Definition

The *arc-length function* of a differentiable curve y = f(x), for $x \in [a, b]$ is given by

$$L(x) = \int_a^x \sqrt{1 + \left[f'(\hat{x})\right]^2} \, d\hat{x}$$

Remark: It is useful to introduce a function that measures a curve arc-length from a fix starting point to any other point in the curve.

Definition

The *arc-length function* of a differentiable curve y = f(x), for $x \in [a, b]$ is given by

$$L(x) = \int_a^x \sqrt{1 + \left[f'(\hat{x})\right]^2} \, d\hat{x}.$$

Remark: The Fundamental Theorem of Calculus implies that

$$L'(x) = \sqrt{1 + \left[f'(x)\right]^2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: It is useful to introduce a function that measures a curve arc-length from a fix starting point to any other point in the curve.

Definition

The *arc-length function* of a differentiable curve y = f(x), for $x \in [a, b]$ is given by

$$L(x) = \int_a^x \sqrt{1 + \left[f'(\hat{x})\right]^2} \, d\hat{x}.$$

Remark: The Fundamental Theorem of Calculus implies that

$$L'(x) = \sqrt{1 + \left[f'(x)\right]^2}$$

Remark: Using differential notation, dL = L'(x) dx, we get

$$dL = \sqrt{1 + \left[f'(x)\right]^2} \, dx.$$

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall:
$$f'(x) = \frac{3}{2} x^{1/2}$$
, so $[f'(x)]^2 = \frac{9}{4} x$.

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall:
$$f'(x) = \frac{3}{2} x^{1/2}$$
, so $[f'(x)]^2 = \frac{9}{4} x$.

$$L(x) = \int_0^x \sqrt{1 + \frac{9}{4}\tilde{x}} \, d\tilde{x},$$

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall:
$$f'(x) = \frac{3}{2} x^{1/2}$$
, so $[f'(x)]^2 = \frac{9}{4} x$.

$$L(x) = \int_0^x \sqrt{1 + \frac{9}{4}\tilde{x}} \, d\tilde{x}, \quad u = 1 + \frac{9}{4}\tilde{x},$$

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $f'(x) = \frac{3}{2} x^{1/2}$, so $[f'(x)]^2 = \frac{9}{4} x$.

$$L(x) = \int_0^x \sqrt{1 + \frac{9}{4}\tilde{x}} \, d\tilde{x}, \quad u = 1 + \frac{9}{4}\tilde{x}, \quad du = \frac{9}{4} \, d\tilde{x}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $f'(x) = \frac{3}{2} x^{1/2}$, so $[f'(x)]^2 = \frac{9}{4} x$.

$$L(x) = \int_0^x \sqrt{1 + \frac{9}{4}\tilde{x}} \, d\tilde{x}, \quad u = 1 + \frac{9}{4}\tilde{x}, \quad du = \frac{9}{4} \, d\tilde{x}.$$

- ロ ト - 4 回 ト - 4 □ - 4

$$L(x) = \int_{1}^{1+\frac{9}{4}x} \frac{4}{9} \sqrt{u} \, du$$

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $f'(x) = \frac{3}{2} x^{1/2}$, so $[f'(x)]^2 = \frac{9}{4} x$.

$$L(x) = \int_0^x \sqrt{1 + \frac{9}{4}\tilde{x}} \, d\tilde{x}, \quad u = 1 + \frac{9}{4}\tilde{x}, \quad du = \frac{9}{4} \, d\tilde{x}.$$

$$L(x) = \int_{1}^{1+\frac{9}{4}\times} \frac{4}{9} \sqrt{u} \, du = \frac{4}{9} \frac{2}{3} \left(u^{3/2} \Big|_{1}^{1+\frac{9}{4}\times} \right).$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the arc-length function of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall:
$$f'(x) = \frac{3}{2} x^{1/2}$$
, so $[f'(x)]^2 = \frac{9}{4} x$.

$$L(x) = \int_0^x \sqrt{1 + \frac{9}{4}\tilde{x}} \, d\tilde{x}, \quad u = 1 + \frac{9}{4}\tilde{x}, \quad du = \frac{9}{4} \, d\tilde{x}.$$

$$L(x) = \int_{1}^{1+\frac{9}{4}x} \frac{4}{9} \sqrt{u} \, du = \frac{4}{9} \frac{2}{3} \left(u^{3/2} \Big|_{1}^{1+\frac{9}{4}x} \right).$$

We conclude that $L(x) = \frac{8}{27} \left[\left(1 + \frac{9}{4} x \right)^{3/2} - 1 \right].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Work on solids and fluids (Sect. 6.5)

- Moving things around.
- Forces made by springs.

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

Pumping liquids.

Remarks:

Moving things around requires some work.

Remarks:

- Moving things around requires some work.
- Work is an amount of energy needed to move an object.

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

W = Fd.

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd$$
.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg,

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg, with $g \simeq 10 \frac{m}{s^2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg, with $g \simeq 10 \frac{m}{s^2}$. Then, $F = (20) \text{ Kgr} (10) \frac{m}{s^2}$

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg, with $g \simeq 10 \frac{m}{s^2}$. Then, $F = (20) \text{ Kgr} (10) \frac{m}{s^2} = 200 \text{ N}$,

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg, with $g \simeq 10 \frac{m}{s^2}$. Then, $F = (20) \text{ Kgr} (10) \frac{m}{s^2} = 200 \text{ N}$, so W = Fd

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg, with $g \simeq 10 \frac{m}{s^2}$. Then, $F = (20) \text{ Kgr} (10) \frac{m}{s^2} = 200 \text{ N}$, so $W = Fd = 200 \text{ N} \frac{3}{10} m$

Remarks:

- Moving things around requires some work.
- ▶ Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$W = Fd.$$

Example

Find the work done to lift an object with mass of m = 20 Kgr from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg, with $g \simeq 10 \frac{m}{s^2}$. Then, $F = (20) \text{ Kgr} (10) \frac{m}{s^2} = 200 \text{ N}$, so $W = Fd = 200 \text{ N} \frac{3}{10} m \implies W = 60 \text{ J}.$

Moving Things around: Variable forces

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W = \int_a^b F(x) \, dx.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Moving Things around: Variable forces

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

▶ The formula above is obtained in the standard way:

Moving Things around: Variable forces

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

The formula above is obtained in the standard way: Introduce a partition in [a, b]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

The formula above is obtained in the standard way: Introduce a partition in [a, b] and compute the limit of partial sums

$$W_N = \sum_{k=0}^{N-1} F(x_k) \, \Delta x_k.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

► The formula above is obtained in the standard way: Introduce a partition in [a, b] and compute the limit of partial sums

$$W_N = \sum_{k=0}^{N-1} F(x_k) \, \Delta x_k.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The simplest variable force is the one produced by a spring.

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

► The formula above is obtained in the standard way: Introduce a partition in [a, b] and compute the limit of partial sums

$$W_N = \sum_{k=0}^{N-1} F(x_k) \, \Delta x_k.$$

The simplest variable force is the one produced by a spring. In 1660 Robert Hooke discovered that F(x) = kx,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

► The formula above is obtained in the standard way: Introduce a partition in [*a*, *b*] and compute the limit of partial sums

$$W_N = \sum_{k=0}^{N-1} F(x_k) \, \Delta x_k.$$

► The simplest variable force is the one produced by a spring. In 1660 Robert Hooke discovered that F(x) = kx, where k is called the spring constant,

Definition

The *work* done on a particle moving on the *x*-axis by a non-constant force *F* along the *x*-axis for $x \in [a, b]$ is

$$W=\int_a^b F(x)\,dx.$$

Remarks:

► The formula above is obtained in the standard way: Introduce a partition in [a, b] and compute the limit of partial sums

$$W_N = \sum_{k=0}^{N-1} F(x_k) \, \Delta x_k.$$

► The simplest variable force is the one produced by a spring. In 1660 Robert Hooke discovered that F(x) = kx, where k is called the spring constant, and x is the displacement from the spring rest position.

Work on solids and fluids (Sect. 6.5)

- Moving things around.
- **•** Forces made by springs.

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Pumping liquids.

Remark: The force of a spring, F(x) = kx is called *Hooke's Law*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: The force of a spring, F(x) = kx is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx,

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx$$

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d$$

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that 60 N = k (3) m,

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that 60 N = k (3) m, that is, k = 20 N/m.

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that 60 N = k (3) m, that is, $k = 20 \ N/m$. The previous problem implies $W = kd^2/2$,

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that 60 N = k (3) m, that is, k = 20 N/m. The previous problem implies $W = kd^2/2$, that is,

$$W=20 \ \frac{N}{m} \ \frac{4^2}{2} \ m^2$$

Remark: The force of a spring, F(x) = k x is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \lhd .$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that 60 N = k (3) m, that is, k = 20 N/m. The previous problem implies $W = kd^2/2$, that is,

$$W = 20 \ \frac{N}{m} \ \frac{4^2}{2} \ m^2 \quad \Rightarrow \quad W = 160 \ J.$$

Work on solids and fluids (Sect. 6.5)

- Moving things around.
- Forces made by springs.

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

Pumping liquids.

Remark: Pumping liquids in or out an arbitrary shaped container is a typical problem with variable forces.

Theorem

Consider an arbitrary shaped container with horizontal cross section area A(z), for $z \in [0, h]$, and let $g = 9.81 \text{ m/s}^2$.

(a) If a liquid of density $\delta \ Kgr/m^3$ is resting at the bottom of the container, then the work done to pump the liquid in the container, initially empty, up to a height $h_1 \leq h$ is

$$W=\int_0^{h_1}\delta\,g\,A(z)\,z\,dz.$$

(b) The work done to pump the liquid out from the top of a container, initially filled with liquid up to a height $h_1 \leq h$ is

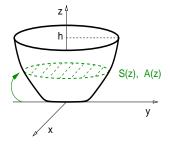
$$W = \int_0^{h_1} \delta g A(z) (h-z) dz.$$

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.

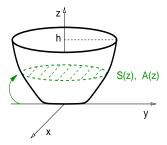
◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.

・ロト・(型ト・(型ト・(型ト・(ロト



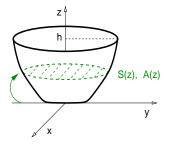
Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.



The amount of liquid that can be placed at cross-section S(z) is

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.

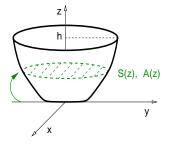


The amount of liquid that can be placed at cross-section S(z) is

 $L=\delta A(z)\,dz.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.

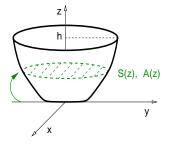


The amount of liquid that can be placed at cross-section S(z) is

$$L = \delta A(z) dz.$$

The force that must be done to lift that amount of liquid is

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.



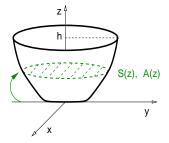
The amount of liquid that can be placed at cross-section S(z) is

$$L = \delta A(z) dz$$
.

The force that must be done to lift that amount of liquid is

 $F = \delta g A(z) dz.$

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.



The amount of liquid that can be placed at cross-section S(z) is

$$L = \delta A(z) dz$$
.

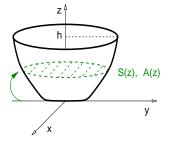
The force that must be done to lift that amount of liquid is

 $F = \delta g A(z) dz.$

(日) (雪) (日) (日) (日)

The work done to lift that liquid to height z from z = 0 is

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.



The amount of liquid that can be placed at cross-section S(z) is

$$L = \delta A(z) dz$$
.

The force that must be done to lift that amount of liquid is

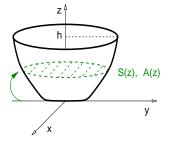
 $F = \delta g A(z) dz.$

(日) (雪) (日) (日) (日)

The work done to lift that liquid to height z from z = 0 is

$$W(z) = \delta g A(z) z dz.$$

Proof: (a) Show:
$$W = \int_0^{h_1} \delta g A(z) z dz$$
.



The amount of liquid that can be placed at cross-section S(z) is

$$L = \delta A(z) dz$$

The force that must be done to lift that amount of liquid is

 $F = \delta g A(z) dz.$

The work done to lift that liquid to height z from z = 0 is

$$W(z) = \delta g A(z) z dz.$$

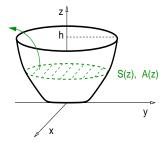
The work to fill in the container up to h_1 is $W = \int_0^{h_1} \delta g A(z) z dz$.

Proof: (b) Show:
$$W = \int_0^{h_1} \delta g A(z) (h-z) dz$$
.

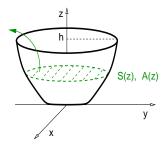
◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Proof: (b) Show:
$$W = \int_0^{h_1} \delta g A(z) (h-z) dz$$
.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ



Proof: (b) Show:
$$W = \int_0^{h_1} \delta g A(z) (h - z) dz$$
.

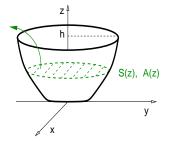


The force that must be done to lift the liquid in S(z) is

 $F = \delta g A(z) dz.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof: (b) Show:
$$W = \int_0^{h_1} \delta g A(z) (h - z) dz$$
.

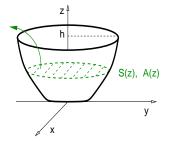


The force that must be done to lift the liquid in S(z) is

 $F = \delta g A(z) dz.$

The work done to lift that liquid from a height z to h is

Proof: (b) Show:
$$W = \int_{0}^{h_{1}} \delta g A(z) (h - z) dz$$
.



The force that must be done to lift the liquid in S(z) is

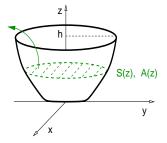
$$F = \delta g A(z) dz.$$

The work done to lift that liquid from a height z to h is

$$W(z) = \delta g A(z) (h-z) dz.$$

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

Proof: (b) Show:
$$W = \int_{0}^{h_{1}} \delta g A(z) (h - z) dz$$
.



The force that must be done to lift the liquid in S(z) is

$$F = \delta g A(z) dz.$$

The work done to lift that liquid from a height z to h is

$$W(z) = \delta g A(z) (h-z) dz.$$

The work to empty the container initially filled up to h_1 is

$$W = \int_0^{h_1} \delta g A(z) (h-z) dz$$

Example

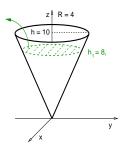
A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

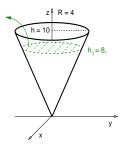
Solution:



Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution:

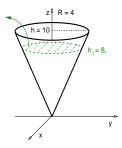


Recall:
$$W = \int_0^{h_1} \delta g A(z) (h-z) dz$$
.

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution:

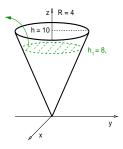


Recall:
$$W = \int_0^{h_1} \delta g A(z) (h - z) dz$$
.
Here $A(z) = \pi [R(z)]^2$

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution:

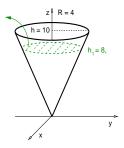


Recall:
$$W = \int_0^{h_1} \delta g A(z) (h-z) dz$$
.
Here $A(z) = \pi [R(z)]^2 = \pi [y(z)]^2$.

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution:

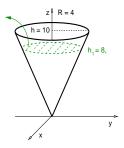


Recall:
$$W = \int_{0}^{h_{1}} \delta g A(z) (h - z) dz$$
.
Here $A(z) = \pi [R(z)]^{2} = \pi [y(z)]^{2}$.
 $z(y) = \frac{10}{4} y$,

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution:

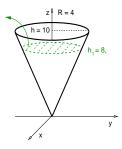


Recall:
$$W = \int_0^{h_1} \delta g A(z) (h - z) dz$$
.
Here $A(z) = \pi [R(z)]^2 = \pi [y(z)]^2$.
 $z(y) = \frac{10}{4} y$, so $y = \frac{2}{5} z$.

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution:



Recall:
$$W = \int_{0}^{h_{1}} \delta g A(z) (h - z) dz$$
.
Here $A(z) = \pi [R(z)]^{2} = \pi [y(z)]^{2}$.
 $z(y) = \frac{10}{4} y$, so $y = \frac{2}{5} z$. Hence
 $W = \delta g \pi \frac{4}{25} \int_{0}^{8} z^{2} (10 - z) dz$.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲母 ▶ ④ ▲ ◎

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution: Recall:
$$W = \delta g \pi rac{4}{25} \int_0^8 z^2 (10-z) \, dz.$$

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution: Recall:
$$W = \delta g \pi rac{4}{25} \int_0^8 z^2 (10-z) \, dz.$$

$$W = \delta g \pi \frac{4}{25} \left[10 \frac{z^3}{3} \Big|_0^8 - \frac{z^4}{4} \Big|_0^8 \right]$$

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution: Recall:
$$W = \delta g \pi \frac{4}{25} \int_0^8 z^2 (10 - z) dz.$$

$$W = \delta g \pi \frac{4}{25} \left[10 \frac{z^3}{3} \Big|_0^8 - \frac{z^4}{4} \Big|_0^8 \right] = \delta g \pi \frac{4}{25} 8^3 \left[\frac{10}{3} - \frac{8}{4} \right]$$

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution: Recall:
$$W = \delta g \pi \frac{4}{25} \int_0^8 z^2 (10 - z) \, dz.$$

 $W = \delta g \pi \frac{4}{25} \left[10 \frac{z^3}{3} \Big|_0^8 - \frac{z^4}{4} \Big|_0^8 \right] = \delta g \pi \frac{4}{25} \, 8^3 \left[\frac{10}{3} - \frac{8}{4} \right]$
 $W = \delta g \pi \frac{4}{25} \, 8^3 \frac{4}{3}$

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution: Recall:
$$W = \delta g \pi \frac{4}{25} \int_0^8 z^2 (10 - z) dz.$$

 $W = \delta g \pi \frac{4}{25} \left[10 \frac{z^3}{3} \Big|_0^8 - \frac{z^4}{4} \Big|_0^8 \right] = \delta g \pi \frac{4}{25} 8^3 \left[\frac{10}{3} - \frac{8}{4} \right]$
 $W = \delta g \pi \frac{4}{25} 8^3 \frac{4}{3} \implies W = \delta g \pi \frac{16}{25} 8^3.$

Example

A tank has the shape of an inverted circular cone with height h = 10 m and base radius R = 4 m. It is filled with water to a height $h_1 = 8 m$. Recalling that the water density is $1 gr/cm^3 = 1000 Kgr/m^3$, find the work required to empty the tank pumping the water from the top.

Solution: Recall:
$$W = \delta g \pi \frac{4}{25} \int_0^8 z^2 (10 - z) \, dz.$$

 $W = \delta g \pi \frac{4}{25} \Big[10 \frac{z^3}{3} \Big|_0^8 - \frac{z^4}{4} \Big|_0^8 \Big] = \delta g \pi \frac{4}{25} \, 8^3 \Big[\frac{10}{3} - \frac{8}{4} \Big]$
 $W = \delta g \pi \frac{4}{25} \, 8^3 \frac{4}{3} \quad \Rightarrow \quad W = \delta g \pi \frac{16}{25} \, 8^3.$

That is, $W = 3.4 \times 10^6 J$.

 \triangleleft