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I Volumes integrating cross-sections:

I The general case.
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The volume of simple regions in space

Remark: Volumes of simple regions in space are easy to compute.

Example

Find the volume of a rectangular box with sides a, b, and c .

Solution:

b
a

c

The area of an horizontal cross-section is

A = ab.

(Constant along the vertical direction.)
The volume of the box is

V = Ac . C

Remark: We have added up along the vertical direction each
horizontal cross-section.

V =

∫ c

0
A(z) dz = A

∫ c

0
dz ⇒ V = Ac .
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Volumes integrating cross-sections: General case.

Remark: This interpretation of the calculation above is a good
definition of volume for arbitrary shaped regions in space.

Definition
A cross-section of a 3-dimensional region in space is the
2-dimensional intersection of a plane with the region.

Example

S
S

R

S

Remark: Like in the last case above, the area of a cross section is
a function of the direction normal to the cross-section.
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Volumes integrating cross-sections: General case.

Definition
The volume of a region in space with integrable cross-section area
A(x) for x ∈ [a, b] is given by

V =

∫ b

a
A(x) dx .

Example

Find the volume of a pyramid with square base side a and height h.

Solution:

h

a

a

(1) Choose simple cross-sections.
Here, horizontal cross-sections.
(2) Choose a coordinate system where
the cross-section areas have simple
expressions.
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Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h.

Solution:

S

z

h

a / 2

a / 2

x

y

y(z)

z

a / 2

z = m y + bh

y

A(z) =
[
2y(z)

]2

We must find and invert

z(y) = my + b.

h = z(0) = b, 0 = z(a/2) = m
a

2
+ h ⇒ m = −2h

a
.

z(y) = −2h

a
y + h ⇒ y(z) = − a

2h
(z − h).

V =

∫ h

0

[
−2

a

2h
(z − h)

]2
dz =

a2

h2

[(z − h)3

3

∣∣∣h
0

]
⇒ V =

1

3
a2h.

C
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The volume of simple regions in space

Example

Find the volume of the tetrahedra: S

x

z

yb
y

a
x

c

z

Solution: The area of the triangular cross section above is

A(y) =
1

2
x(y)z(y), x(y) = −a

b
y + a, z(y) = −c

b
y + c .

A(y) =
1

2

(
−a

b

)
(y − b)

(
−c

b

)
(y − b) =

ac

2b2
(y − b)2.

V =
ac

2b2

∫ b

0
(y − b)2 dy =

ac

2b2

[(y − b)3

3

∣∣∣b
0

]
⇒ V =

1

6
abc .

C
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Volumes as integrals of cross-sections (Sect. 6.1)

I The volume of simple regions in space
I Volumes integrating cross-sections:

I The general case.
I Regions of revolution.
I Certain regions with holes.



Regions of revolution

Definition
A region of revolution is a 3-dimensional region in space obtained
by rotating a plane region about an axis in that plane.

Example

z

f(y)

y

z

  

x

f(y)

S

y

A(y) = pi  [f(y)]
2

Remark:

I The cross-sections of region of revolution are disks: A = πR2.

I In the example, R(y) = f (y). Therefore, A(y) = π
[
f (y)

]2
.
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Regions of revolution

Theorem
The volume of a region of revolution defined by rotating the
function values z = f (y) for y ∈ [a, b] about the y-axis is

V = π

∫ b

a

[
f (y)

]2
dy .

Example

Find the volume of a sphere of radius R by rotating a half circle
with the same radius.

Solution:

yR

f(y) =   R  − yz 2 2

V = π

∫ R

−R

[
f (y)]2 dy = π

∫ R

−R
(R2 − y2) dy

V = π
(
R2

[
y
∣∣∣R
−R

]
−

[y3

3

∣∣∣R
−R

])
V = π

[
2R3 − 2

3
R3

]
⇒ V =

4

3
πR3. C
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Regions of revolution
Remark: The axis of rotation could be any axis in space.

Example

Find the volume of a cone with base of radius R and height h.

Solution:

S(z)

x

y

R

h

z

z = − (h/R) y +h

y(z)

We choose z as the rotation axis.

V = π

∫ h

0

[
y(z)

]2
dz .

Since y = −R

h
(z − h), we get

V = π

∫ h

0

R2

h2
(z − h)2 dz = π

R2

h2

[(z − h)3

3

∣∣∣h
0

]
= π

R2

h2

h3

3

We conclude that V =
1

3
πR2h. C
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Regions of revolution

Example

Find the volume of the region bounded by z = −y2 + 4 for
y ∈ [0, 2] when it is rotated about the z axis.

Solution:

y(z)

x

y

z 2

2

4

z = 4  − y

S(z)

V = π

∫ 4

0

[
y(z)

]2
dz .

Since y2 = −z + 4, we get

V = π

∫ 4

0
(−z + 4) dz = π

[(−z2)

2

∣∣∣4
0
+ (4z)

∣∣∣4
0

]
= π[−8 + 16]

We conclude that V = 8π. C
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Find the volume of the region bounded by z = −y2 + 4 for
y ∈ [0, 2] when it is rotated about the z axis.
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Volumes as integrals of cross-sections (Sect. 6.1)

I The volume of simple regions in space
I Volumes integrating cross-sections:

I The general case.
I Regions of revolution.
I Certain regions with holes.



Certain regions with holes (washer method)

Definition
A washer region is a region of revolution with a hole, where the
exterior and interior surfaces are obtained by rotating the function
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Certain regions with holes (washer method)

Theorem
The volume of a washer region about the z-axis with exterior and
interior surfaces generated by z = fext(y) and z = fint(y) for
y ∈ [a, b], respectively, is given by

V = Vext − Vint ⇔ V = π

∫ b

a

([
fext(y)

]2 −
[
fint(y)

]2
)

dy .

Example

Find the volume of the washer region in the previous example.

Solution:

V = Vp − Vc , Vp = 8π, Vc =
1

3
π(22)(4) =

16

3
π.

V =
(1

2
− 1

3

)
16π ⇒ V =

8

3
π. C
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The arc-length of curves in the plane (Sect. 6.3)

I The main arc-length formula.

I Curves with vertical asymptotes.

I The arc-length function.



The main length formula

Remark: The length of a straight
segment can be obtained with
Pythagoras Theorem.

L =
√

(∆x)2 + (∆y)2.

L

x

y

x1
x 2 x

y

y
2

y
1

Remark: Calculus is needed to compute, and even define, the
length of non-straight curves, called arc-length.

Definition
The arc-length of a curve in the plane given by a differentiable
function y = f (x), for x ∈ [a, b], is

L =

∫ b

a

√
1 +

[
f ′(x)

]2
dx .
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The main length formula

Remark: The origin of the square-root in the expression above is
Pythagoras Theorem.

Remark: The definition of arc-length is the result of a limit
procedure. We mention two of such limits.

(a)

y = f(x)
y

xxx
k k+1

y
k

xk

y
k+1

k
y

k
L

The length of the curve will be approximated by the red lines,

LN =
N−1∑
k=0

∆Lk =
N−1∑
k=0

√(
∆xk

)2
+

(
∆yk

)2
.
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The main length formula
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(
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.
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yk+1 − yk

)2(
xk+1 − xk
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∆xk

LN =
N−1∑
k=0

√
1 +

[ f (xk+1)− f (xk)

xk+1 − xk

]2
∆xk

One can show that in the limit N →∞ holds xk+1 → xk and

LN →
∫ b

a

√
1 +

[
f ′(x)

]2
dx = L.
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The main length formula
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Recall: dyk = f ′(xk) ∆xk . Now the length of the curve will be
approximated by the red lines

L̃N =
N−1∑
k=0

∆̃Lk =
N−1∑
k=0

√(
∆xk

)2
+

(
dyk

)2
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The main length formula

Example

Find the arc-length of the curve y = x3/2, for x ∈ [0, 4].

Solution: Recall: L =

∫ b

a

√
1 +

[
f ′(x)

]2
dx . We start with

f (x) = x3/2 ⇒ f ′(x) =
3

2
x1/2 ⇒

[
f ′(x)

]2
=

9

4
x .

L =

∫ 4

0

√
1 +

9

4
x dx , u = 1 +

9

4
x , du =

9

4
dx .

L =

∫ 10

1

4

9

√
u du =

4

9

2

3

(
u3/2

∣∣∣10

1

)
.

We conclude that L =
8

27
(103/2 − 1). C
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The arc-length of curves in the plane (Sect. 6.3)

I The main arc-length formula.

I Curves with vertical asymptotes.

I The arc-length function.



Curves with vertical asymptotes

Remark: The arc-length of curves having a vertical asymptote
should be computed using the inverse function.

Example

Find the arc-length of y(x) =
√

2(x − 1), for x ∈ [1, 3].

Solution: Recall: L =

∫ b

a

√
1 +

[
y ′(x)

]2
dx .

y ′(x) =
√

2
(√

x − 1
)′

=
√

2
1

2

1√
x − 1

=
1√

2(x − 1)
.

Hence, y ′(x)→∞ as x → 1+. Therefore, it is not clear how to
compute

L =

∫ 3

1

√
1 +

1

2(x − 1)
dx .
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Curves with vertical asymptotes

Remark: Describe the curve with the inverse function.

3

y =    2(x−1)

y

x1

2

2

2

1

y

3

x
x = (y  /2) +1

We now use L =

∫ 2

0

√
1 +

[
x ′(y)

]2
dy . Since x ′(y) = y ,

L =

∫ 2

0

√
1 + y2 dy =

[y

2

√
1 + y2 +

1

2
ln

(
y +

√
1 + y2

)]∣∣∣2
0
.
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]2
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√
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√
1 + y2 +

1

2
ln
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y +

√
1 + y2
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0
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Curves with vertical asymptotes

Example

Find the length of y(x) =
√

2(x − 1), for x ∈ [1, 3].

Solution: Recall:
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The arc-length of curves in the plane (Sect. 6.3)

I The main arc-length formula.

I Curves with vertical asymptotes.

I The arc-length function.



The arc-length function.

Remark: It is useful to introduce a function that measures a curve
arc-length from a fix starting point to any other point in the curve.

Definition
The arc-length function of a differentiable curve y = f (x), for
x ∈ [a, b] is given by

L(x) =

∫ x

a

√
1 +

[
f ′(x̂)

]2
dx̂ .

Remark: The Fundamental Theorem of Calculus implies that

L′(x) =

√
1 +

[
f ′(x)

]2

Remark: Using differential notation, dL = L′(x) dx , we get

dL =

√
1 +

[
f ′(x)

]2
dx .



The arc-length function.

Remark: It is useful to introduce a function that measures a curve
arc-length from a fix starting point to any other point in the curve.

Definition
The arc-length function of a differentiable curve y = f (x), for
x ∈ [a, b] is given by

L(x) =

∫ x

a

√
1 +

[
f ′(x̂)

]2
dx̂ .

Remark: The Fundamental Theorem of Calculus implies that

L′(x) =

√
1 +

[
f ′(x)

]2

Remark: Using differential notation, dL = L′(x) dx , we get

dL =

√
1 +

[
f ′(x)

]2
dx .



The arc-length function.

Remark: It is useful to introduce a function that measures a curve
arc-length from a fix starting point to any other point in the curve.

Definition
The arc-length function of a differentiable curve y = f (x), for
x ∈ [a, b] is given by

L(x) =

∫ x

a

√
1 +

[
f ′(x̂)

]2
dx̂ .

Remark: The Fundamental Theorem of Calculus implies that

L′(x) =

√
1 +

[
f ′(x)

]2

Remark: Using differential notation, dL = L′(x) dx , we get

dL =

√
1 +

[
f ′(x)

]2
dx .



The arc-length function.

Remark: It is useful to introduce a function that measures a curve
arc-length from a fix starting point to any other point in the curve.

Definition
The arc-length function of a differentiable curve y = f (x), for
x ∈ [a, b] is given by

L(x) =

∫ x

a

√
1 +

[
f ′(x̂)

]2
dx̂ .

Remark: The Fundamental Theorem of Calculus implies that

L′(x) =

√
1 +

[
f ′(x)

]2

Remark: Using differential notation, dL = L′(x) dx , we get

dL =

√
1 +

[
f ′(x)

]2
dx .



The arc-length function.

Example

Find the arc-length function of the curve y = x3/2, for x ∈ [0, 4].

Solution: Recall: f ′(x) = 3
2 x1/2, so

[
f ′(x)

]2
= 9

4 x .

L(x) =

∫ x

0

√
1 +

9

4
x̃ d x̃ , u = 1 +

9

4
x̃ , du =

9

4
dx̃ .

L(x) =

∫ 1+ 9
4

x

1

4

9

√
u du =

4

9

2

3

(
u3/2

∣∣∣1+ 9
4
x

1

)
.

We conclude that L(x) =
8

27

[(
1 +

9

4
x
)3/2

− 1
]
. C
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Work on solids and fluids (Sect. 6.5)

I Moving things around.

I Forces made by springs.

I Pumping liquids.



Moving Things around: Constant forces

Remarks:

I Moving things around requires some work.

I Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by
a constant force F in the direction of motion, then the work done
on the particle is

W = Fd .

Example

Find the work done to lift an object with mass of m = 20 Kgr
from the ground to a height of d = 1 ft.

Solution: The force to lift the object is F = mg , with g ' 10
m

s2
.

Then, F = (20) Kgr (10)
m

s2
= 200 N, so

W = Fd = 200 N
3

10
m ⇒ W = 60 J. C
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Moving Things around: Variable forces

Definition
The work done on a particle moving on the x-axis by a
non-constant force F along the x-axis for x ∈ [a, b] is

W =

∫ b

a
F (x) dx .

Remarks:

I The formula above is obtained in the standard way: Introduce
a partition in [a, b] and compute the limit of partial sums

WN =
N−1∑
k=0

F (xk) ∆xk .

I The simplest variable force is the one produced by a spring. In
1660 Robert Hooke discovered that F (x) = kx , where k is
called the spring constant, and x is the displacement from the
spring rest position.
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Work on solids and fluids (Sect. 6.5)

I Moving things around.

I Forces made by springs.

I Pumping liquids.



Forces made by springs

Remark: The force of a spring, F (x) = k x is called Hooke’s Law.

Example

Find the minimum work needed to compress a spring with constant
k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F (x) = kx , then

W =

∫ d

0
kx dx = k

x2

2

∣∣∣d
0

⇒ W =
kd2

2
. C .

Example

If a force of 60 N stretches a spring 3 m from its rest position, how
much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke’s Law we know that 60 N = k (3) m, that is,
k = 20 N/m. The previous problem implies W = kd2/2, that is,

W = 20
N

m

42

2
m2 ⇒ W = 160 J. C
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Solution: From Hooke’s Law we know that 60 N = k (3) m, that is,
k = 20 N/m. The previous problem implies W = kd2/2, that is,

W = 20
N

m
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Work on solids and fluids (Sect. 6.5)

I Moving things around.

I Forces made by springs.

I Pumping liquids.



Pumping liquids

Remark: Pumping liquids in or out an arbitrary shaped container is
a typical problem with variable forces.

Theorem
Consider an arbitrary shaped container with horizontal cross
section area A(z), for z ∈ [0, h], and let g = 9.81 m/s2.

(a) If a liquid of density δ Kgr/m3 is resting at the bottom of the
container, then the work done to pump the liquid in the
container, initially empty, up to a height h1 6 h is

W =

∫ h1

0
δ g A(z) z dz .

(b) The work done to pump the liquid out from the top of a
container, initially filled with liquid up to a height h1 6 h is

W =

∫ h1

0
δ g A(z) (h − z) dz .



Pumping liquids

Proof: (a) Show: W =

∫ h1

0
δ g A(z) z dz .

h

z

x

S(z),

y

A(z)

The amount of liquid that can be
placed at cross-section S(z) is

L = δ A(z) dz .

The force that must be done to
lift that amount of liquid is

F = δ g A(z) dz .

The work done to lift that liquid to height z from z = 0 is

W (z) = δ g A(z) z dz .

The work to fill in the container up to h1 is W =

∫ h1

0
δ g A(z) z dz .
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Proof: (b) Show: W =

∫ h1

0
δ g A(z) (h − z) dz .

h

z

x

S(z),

y

A(z)

The force that must be done to
lift the liquid in S(z) is
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from a height z to h is
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Pumping liquids

Example

A tank has the shape of an inverted circular cone with height
h = 10 m and base radius R = 4 m. It is filled with water to a
height h1 = 8 m. Recalling that the water density is
1 gr/cm3 = 1000 Kgr/m3, find the work required to empty the
tank pumping the water from the top.

Solution:

h = 10

z

y

x

h  = 8,
1

R = 4
Recall: W =

∫ h1

0
δ g A(z) (h − z) dz .

Here A(z) = π
[
R(z)

]2
= π

[
y(z)]2.

z(y) =
10

4
y , so y =

2

5
z . Hence

W = δgπ
4

25

∫ 8

0
z2(10− z) dz .
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That is, W = 3.4 x 106 J. C
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