Series Tests - Complete Summary

Standard Series

1. Geometric Series $\sum_{n=0}^{\infty} A r^{n}=A+A r+A r^{2}+\cdots= \begin{cases}\frac{A}{1-r} & \text { if }|r|<1 \\ \text { diverges } & \text { if }|r| \geq 1\end{cases}$
2. p-Series $\sum^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$ (e.g. $\sum \frac{1}{n^{2}}$ converges, $\sum \frac{1}{\sqrt{n}}$ diverges).
3. Constant Series $\sum^{\infty} c=c+c+c+\cdots$ diverges (unless $c=0$)
4. Exponential Series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=e^{x}$ (converges for any x by the ratio test).

Our Tests

1. Integral Test: If $f(x)$ is a continuous, non-negative, decreasing function, then

$$
\sum_{n=1}^{\infty} f(n) \text { converges } \Longleftrightarrow \int_{1}^{\infty} f(x) d x \quad \text { is finite. }
$$

2. Comparison Test: If $0 \leq a_{n} \leq b_{n}$ for all large n, then $\left\{\begin{array}{l}\sum b_{n} \text { converges } \Longrightarrow \sum a_{n} \text { converges } \\ \sum a_{n} \text { diverges } \Longrightarrow \sum b_{n} \text { diverges }\end{array}\right.$
3. Limit Comparison Test: If $a_{n}, b_{n} \geq 0$ and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \quad \text { with } L \neq 0 \text { or } \infty
$$

then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.
This makes precise the intuition that " $a_{n} \approx L b_{n}$ for large n ". To apply it, take $\sum b_{n}$ to be one of the "Standard Series" or one that can be handled with the integral test.
4. Ratio Test: If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=r$ then $\begin{cases}\text { if } r<1 & \text { then } \sum a_{n} \text { converges absolutely } \\ \text { if } r>1 & \text { then } \sum a_{n} \text { diverges } \\ \text { if } r=1 & \text { can't tell }\end{cases}$ This is useful for series involving expondentials (like 2^{n}) and factorials (liken!).
5. Alternating Series Test: If the a_{n} are non-negative ($a_{n} \geq 0$), decreasing ($a_{1} \geq a_{2} \geq a_{3} \geq \cdots$), and $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum(-1)^{n} a_{n}$ converges.

Testing for Convergence

Check the convergence of a series $\sum a_{n}$ by the following steps.
(1) Check that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. If not the series diverges.
(2) Check $\sum\left|a_{n}\right|$ by any test. If this converges $\sum a_{n}$ is absolutely convergent.
(3) If the series is alternating (i.e. of the form $\sum(-1)^{n}\left|a_{n}\right|$) and the $\left|a_{n}\right|$ are decreasing (for example, if derivative <0 for large x) then the series is conditionally convergent by the A.S.T.

Note: If you apply the the ratio or root test to $\sum\left|a_{n}\right|$ and get a limiting ratio $r>1$, the series diverges and Step (3) is not needed.

For (2) ask yourself:

- Can I do the corresponding integral? If so, use the integral test.
- Can I simplify by dropping 'lower order terms'? If so, justify this simplification by the L.C.T.
- Try the ratio test - especially if the terms involve factorials.
- Can I find an inequality comparing $\sum a_{n}$ to a standard series? If so use the C.T.

$$
\text { Power Series } \sum a_{n}(x-a)^{n}
$$

Always apply the Ratio Test to the series $\sum\left|a_{n}(x-a)^{n}\right|$. The condition $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x-a)^{n+1}}{a_{n}(x-a)^{n}}\right|<1$ gives the inequality $|x-a|<R$ for some R (possibly ∞). The power series converges absolutely for each x inside the interval $(a-R, a+R)$ and diverges for each x outside the interval.
(The values $x=a \pm R$ on the boundary of this interval must be checked separately, but you won't be asked to do this.)

Taylor Series

Theorem If $f(x)$ has $n+1$ derivatives on an interval $[a, x]$ then

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}+R_{n}
$$

where the remainder satisfies

$$
\left|R_{n}\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!} \quad \text { where } \quad M=\max . \text { of }\left|f^{(n+1)}(t)\right| \text { for } t \text { between } a \text { and } x .
$$

Important Taylor Series

These series converge for any x :

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

and these converge on the interval $|x|<1$:

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n} \\
\ln (1-x) & =x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots=\sum_{n=1}^{\infty} \frac{x^{n}}{n} \\
(1+x)^{m} & =1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} x^{3}+\cdots=1+\sum_{n=1}^{\infty}\binom{m}{n} x^{n} .
\end{aligned}
$$

