
Series Tests — Complete Summary

Standard Series

1. Geometric Series
∞∑

n=0

Arn = A + Ar + Ar2 + · · · =
{

A
1−r if |r| < 1
diverges if |r| ≥ 1

2. p-Series
∞∑ 1

np
converges if and only if p > 1 (e.g.

∑ 1
n2 converges,

∑ 1√
n

diverges).

3. Constant Series
∑∞ c = c + c + c + · · · diverges (unless c = 0)

4. Exponential Series
∞∑

n=1

xn

n!
= ex (converges for any x by the ratio test).

Our Tests

1. Integral Test: If f(x) is a continuous, non-negative, decreasing function, then

∞∑
n=1

f(n) converges⇐⇒
∫ ∞
1

f(x)dx is finite.

2. Comparison Test: If 0 ≤ an ≤ bn for all large n, then

{ ∑
bn converges =⇒

∑
an converges∑

an diverges =⇒
∑

bn diverges

3. Limit Comparison Test: If an, bn ≥ 0 and

lim
n→∞

an

bn
= L with L 6= 0 or ∞

then
∑

an and
∑

bn either both converge or both diverge.

This makes precise the intuition that “an ≈ Lbn for large n”. To apply it, take
∑

bn to be one of
the “Standard Series” or one that can be handled with the integral test.

4. Ratio Test: If an ≥ 0 and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = r then


if r < 1 then

∑
an converges absolutely

if r > 1 then
∑

an diverges
if r = 1 can’t tell

This is useful for series involving expondentials (like 2n) and factorials (liken!).

5. Alternating Series Test: If the an are non-negative (an ≥ 0), decreasing (a1 ≥ a2 ≥ a3 ≥ · · ·),
and lim

n→∞
an = 0, then

∑
(−1)nan converges.



Testing for Convergence

Check the convergence of a series
∑

an by the following steps.

(1) Check that lim
n→∞

|an| = 0. If not the series diverges.

(2) Check
∑
|an| by any test. If this converges

∑
an is absolutely convergent.

(3) If the series is alternating (i.e. of the form
∑

(−1)n|an|) and the |an| are decreasing
(for example, if derivative < 0 for large x) then the series is conditionally convergent by the A.S.T.

Note: If you apply the the ratio or root test to
∑
|an| and get a limiting ratio r > 1, the series diverges

and Step (3) is not needed.

For (2) ask yourself:

• Can I do the corresponding integral? If so, use the integral test.

• Can I simplify by dropping ‘lower order terms’? If so, justify this simplification by the L.C.T.

• Try the ratio test — especially if the terms involve factorials.

• Can I find an inequality comparing
∑

an to a standard series? If so use the C.T.

Power Series
∑

an(x− a)n

Always apply the Ratio Test to the series
∑
|an(x− a)n|. The condition lim

n→∞

∣∣∣∣∣an+1(x− a)n+1

an(x− a)n

∣∣∣∣∣ < 1

gives the inequality |x − a| < R for some R (possibly ∞). The power series converges absolutely for
each x inside the interval (a−R, a + R) and diverges for each x outside the interval.

(The values x = a± R on the boundary of this interval must be checked separately, but you won’t
be asked to do this.)

Taylor Series

Theorem If f(x) has n + 1 derivatives on an interval [a, x] then

f(x) = f(a) + f ′(a) (x− a) +
1
2
f ′′(a) (x− a)2 + . . . +

1
n!

f (n)(a) (x− a)n + Rn

where the remainder satisfies

|Rn| ≤ M
|x− a|n+1

(n + 1)!
where M = max. of |f (n+1)(t)| for t between a and x.



Important Taylor Series

These series converge for any x:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=1

xn

n!

sin x = x− x3

3!
+

x5

5!
+ · · · =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!

cos x = 1− x2

2!
+

x4

4!
+ · · · =

∞∑
n=0

(−1)n x2n

(2n)!

and these converge on the interval |x| < 1:

1
1− x

= 1 + x + x2 + x3 + · · · =
∞∑

n=0

xn

ln(1− x) = x +
x2

2
+

x3

3
+

x4

4
+ · · · =

∞∑
n=1

xn

n

(1 + x)m = 1 + mx +
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)
3!

x3 + · · · = 1 +
∞∑

n=1

(
m

n

)
xn.


