Series Tests — Complete Summary

Standard Series

1. **Geometric Series**
 \[\sum_{n=0}^{\infty} Ar^n = A + Ar + Ar^2 + \cdots = \begin{cases}
 \frac{A}{1-r} & \text{if } |r| < 1 \\
 \text{diverges} & \text{if } |r| \geq 1
\end{cases} \]

2. **p-Series**
 \[\sum_{n=1}^{\infty} \frac{1}{n^p} \] converges if and only if \(p > 1 \) (e.g. \(\sum \frac{1}{n^2} \) converges, \(\sum \frac{1}{\sqrt{n}} \) diverges).

3. **Constant Series**
 \[\sum_{n=0}^{\infty} c = c + c + c + \cdots \] diverges (unless \(c = 0 \)).

4. **Exponential Series**
 \[\sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x \] (converges for any \(x \) by the ratio test).

Our Tests

1. **Integral Test:** If \(f(x) \) is a continuous, non-negative, decreasing function, then
 \[\sum_{n=1}^{\infty} f(n) \] converges \(\iff \int_1^{\infty} f(x) \, dx \) is finite.

2. **Comparison Test:** If \(0 \leq a_n \leq b_n \) for all large \(n \), then
 \[\sum b_n \] converges \(\implies \sum a_n \) converges
 \[\sum a_n \] diverges \(\implies \sum b_n \) diverges

3. **Limit Comparison Test:** If \(a_n, b_n \geq 0 \) and
 \[\lim_{n \to \infty} \frac{a_n}{b_n} = L \] with \(L \neq 0 \) or \(\infty \)
 then \(\sum a_n \) and \(\sum b_n \) either both converge or both diverge.

 This makes precise the intuition that \(a_n \approx L b_n \) for large \(n \). To apply it, take \(\sum b_n \) to be one of the “Standard Series” or one that can be handled with the integral test.

4. **Ratio Test:** If \(a_n \geq 0 \) and \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = r \) then
 \[\begin{cases}
 \text{if } r < 1 & \text{then } \sum a_n \text{ converges absolutely} \\
 \text{if } r > 1 & \text{then } \sum a_n \text{ diverges} \\
 \text{if } r = 1 & \text{can’t tell}
\end{cases} \]

 This is useful for series involving exponentials (like \(2^n \)) and factorials (like \(n! \)).

5. **Alternating Series Test:** If the \(a_n \) are non-negative (\(a_n \geq 0 \)), decreasing (\(a_1 \geq a_2 \geq a_3 \geq \cdots \)), and \(\lim_{n \to \infty} a_n = 0 \), then \(\sum (-1)^n a_n \) converges.
Testing for Convergence

Check the convergence of a series $\sum a_n$ by the following steps.

1. Check that $\lim_{n \to \infty} |a_n| = 0$. If not the series diverges.

2. Check $\sum |a_n|$ by any test. If this converges $\sum a_n$ is absolutely convergent.

3. If the series is alternating (i.e. of the form $\sum (-1)^n|a_n|$) and the $|a_n|$ are decreasing (for example, if derivative < 0 for large x) then the series is conditionally convergent by the A.S.T.

Note: If you apply the the ratio or root test to $\sum |a_n|$ and get a limiting ratio $r > 1$, the series diverges and Step (3) is not needed.

For (2) ask yourself:
- Can I do the corresponding integral? If so, use the integral test.
- Can I simplify by dropping 'lower order terms'? If so, justify this simplification by the L.C.T.
- Try the ratio test — especially if the terms involve factorials.
- Can I find an inequality comparing $\sum a_n$ to a standard series? If so use the C.T.

Power Series $\sum a_n(x-a)^n$

Always apply the Ratio Test to the series $\sum |a_n(x-a)^n|$. The condition $\lim_{n \to \infty} \left| \frac{a_{n+1}(x-a)^{n+1}}{a_n(x-a)^n} \right| < 1$ gives the inequality $|x-a| < R$ for some R (possibly ∞). The power series converges absolutely for each x inside the interval $(a-R, a+R)$ and diverges for each x outside the interval.

(The values $x = a \pm R$ on the boundary of this interval must be checked separately, but you won’t be asked to do this.)

Taylor Series

Theorem If $f(x)$ has $n+1$ derivatives on an interval $[a, x]$ then

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 + \ldots + \frac{1}{n!} f^{(n)}(a)(x-a)^n + R_n$$

where the remainder satisfies

$$|R_n| \leq M \frac{|x-a|^{n+1}}{(n+1)!}$$

where $M = \max.$ of $|f^{(n+1)}(t)|$ for t between a and x.
Important Taylor Series

These series converge for any x:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots = \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

and these converge on the interval $|x| < 1$:

$$\frac{1}{1 - x} = 1 + x + x^2 + x^3 + \cdots = \sum_{n=0}^{\infty} x^n$$

$$\ln(1 - x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$(1 + x)^m = 1 + mx + \frac{m(m-1)}{2!} x^2 + \frac{m(m-1)(m-2)}{3!} x^3 + \cdots = 1 + \sum_{n=1}^{\infty} \binom{m}{n} x^n.$$