- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

Definition as an integral

Recall:

(a) The derivative of $y=x^{n}$ is $y^{\prime}=n x^{(n-1)}$, for n integer.
(b) The integral of $y=x^{n}$ is $\int x^{n} d x=\frac{x^{(n+1)}}{(n+1)}$, for $n \neq-1$.
(c) Case $n=-1$: $\int \frac{d x}{x}$ is neither rational nor trigonometric function. This is a new function.

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)
$$

In particular: $\ln (1)=0$.

Definition as an integral

Definition

The natural logarithm is the function

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t}, \quad x \in(0, \infty)
$$

In particular: $\ln (1)=0$.

Definition

The number e is the number satisfying $\ln (e)=1$, that is,

$$
\int_{1}^{e} \frac{d t}{t}=1
$$

($e=2.718281 \ldots$..

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

The derivative and properties
Theorem (Derivative of In)
The Fundamental Theorem of Calculus implies $\ln ^{\prime}(x)=\frac{1}{x}$.
Proof:

$$
\ln (x)=\int_{1}^{x} \frac{d t}{t} \Rightarrow \ln ^{\prime}(x)=\frac{1}{x} .
$$

Theorem (Chain rule)
For every differentiable function u holds $[\ln (u)]^{\prime}=\frac{u^{\prime}}{u}$.
Proof:

$$
\frac{d \ln (u)}{d x}=\frac{d \ln }{d u}(u) \frac{d u}{d x}=\frac{1}{u} u^{\prime} \quad \Rightarrow \quad \frac{d \ln (u)}{d x}(x)=\frac{u^{\prime}(x)}{u(x)}
$$

The derivative and properties

Example

Find the derivative of $y(x)=\ln (3 x)$, and $z(x)=\ln \left(2 x^{2}+\cos (x)\right)$.
Solution: We use the chain rule.

$$
y^{\prime}(x)=\frac{1}{(3 x)}(3)=\frac{1}{x} \quad \Rightarrow \quad y^{\prime}(x)=\frac{1}{x}
$$

We also use chain rule,

$$
\begin{gather*}
z^{\prime}(x)=\frac{1}{\left(2 x^{2}+\cos (x)\right)}(4 x-\sin (x)) \\
z^{\prime}(x)=\frac{4 x-\sin (x)}{2 x^{2}+\cos (x)}
\end{gather*}
$$

Remark: $y(x)=\ln (3 x)$, satisfies $y^{\prime}(x)=\ln ^{\prime}(x)$.

The derivative and properties

Theorem (Algebraic properties)
For every positive real numbers a and b holds,
(a) $\ln (a b)=\ln (a)+\ln (b)$, (product rule);
(b) $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$, (quotient rule);
(c) $\ln \left(\frac{1}{a}\right)=-\ln (a), \quad$ (reciprocal rule);
(d) $\ln \left(a^{b}\right)=b \ln (a), \quad$ (power rule).

Proof of (a): (only)
The function $y(x)=\ln (a x)$ satisfies $y^{\prime}(x)=\frac{1}{a x} a=\frac{1}{x}=\ln ^{\prime}(x)$
Therefore $\ln (a x)=\ln (x)+c$. Evaluating at $x=1$ we obtain c.

$$
\ln (a)=\ln (1)+c \Rightarrow c=\ln (a) \Rightarrow \ln (a x)=\ln (x)+\ln (a) .
$$

The derivative and properties

Example

Compute the derivative of $y(x)=\ln \left[\frac{(x+1)^{2}}{3(x+2)}\right]$.
Solution: Before computing the derivative of y, we simplify it,

$$
\begin{gathered}
y=\ln \left[(x+1)^{2}\right]-\ln [3(x+2)] \\
y=2 \ln (x+1)-[\ln (3)+\ln (x+2)]
\end{gathered}
$$

The derivative of function y is: $\quad y^{\prime}=2 \frac{1}{(x+1)}-\frac{1}{(x+2)}$.

$$
y^{\prime}=\frac{2(x+2)-(x+1)}{(x+1)(x+2)} \Rightarrow y^{\prime}=\frac{(x+3)}{(x+1)(x+2)}
$$

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

The graph of the natural logarithm

Remarks:
The graph of In function has:
(a) A vertical asymptote at $x=0$.
(b) No horizontal asymptote.

Proof: Recall $e=2.718281 \ldots>1$ and $\ln (e)=1$.
(a): If $x=e^{n}$, then $\ln \left(e^{n}\right)=n \ln (e)=n$. Hence

$$
\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

(b): If $x=\frac{1}{e^{n}}$, then $\ln \left(\frac{1}{e^{n}}\right)=-\ln \left(e^{n}\right)-n \ln (e)=-n$. Hence

$$
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty
$$

Natural Logarithms (Sect. 7.2)

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

Integrals involving logarithms.

Remark: It holds $\int \frac{d x}{x}=\ln (|x|)+c$ for $x \neq 0$ and $c \in \mathbb{R}$.
Indeed, for $x>0$ this is the definition of logarithm.
And for $x<0$, we have that $-x>0$, then,

$$
\int \frac{d x}{x}=\int \frac{(-d x)}{(-x)}=\ln (-x)+c, \quad-x>0
$$

We conclude,

$$
\int \frac{d x}{x}=\left\{\begin{aligned}
\ln (-x)+c & \text { if } x<0 \\
\ln (x)+c & \text { if } x>0
\end{aligned}\right.
$$

Remark: It also holds $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln (|f(x)|)+c$, for $f(x) \neq 0$.

Integrals involving logarithms.

Remarks:
(a) $\int \tan (x) d x=-\ln (|\cos (x)|)+c$. Indeed,

$$
\begin{aligned}
& \int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)} d x \quad u=\cos (x), \quad d u=-\sin (x) d x \\
& \int \tan (x) d x=-\int \frac{d u}{u}=-\ln (|u|)+c=-\ln (|\cos (x)|)+c
\end{aligned}
$$

(b) $\int \cot (x) d x=\ln (|\sin (x)|)+$ c. Indeed,

$$
\begin{gathered}
\int \cot (x) d x=\int \frac{\cos (x)}{\sin (x)} d x \quad u=\sin (x), \quad d u=\cos (x) d x \\
\int \cot (x) d x=\int \frac{d u}{u}=\ln (|u|)+c=\ln (|\sin (x)|)+c
\end{gathered}
$$

Integrals involving logarithms.

Example

Find $y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t$.
Solution:

$$
\begin{gathered}
y(t)=\int \frac{3 \sin (t)}{(2+\cos (t))} d t, \quad u=2+\cos (t), \quad d u=-\sin (t) d t \\
y(t)=\int \frac{3(-d u)}{u}=-3 \int \frac{d u}{u}=-3 \ln (|u|)+c
\end{gathered}
$$

We conclude that $y(t)=-3 \ln (|2+\cos (t)|)+c$.

- Definition as an integral.
- The derivative and properties.
- The graph of the natural logarithm.
- Integrals involving logarithms.
- Logarithmic differentiation.

Logarithmic differentiation

Remark: Logarithms can be used to simplify the derivative of complicated functions.

Example

Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: First compute $\ln [y(x)]=\ln \left[\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}\right]$,

$$
\begin{gathered}
\ln [y(x)]=\ln \left[x^{3}(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right] \\
\ln [y(x)]=\ln \left[x^{3}\right]+\ln \left[(x+2)^{2}\right]-\ln \left[\cos ^{3}(x)\right] \\
\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]
\end{gathered}
$$

Logarithmic differentiation

Example

Find the derivative of $y(x)=\frac{x^{3}(x+2)^{2}}{\cos ^{3}(x)}$.
Solution: Recall: $\ln [y(x)]=3 \ln (x)+2 \ln (x+2)-3 \ln [\cos (x)]$.

$$
\begin{gathered}
\frac{y^{\prime}(x)}{y(x)}=\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)} . \\
y^{\prime}(x)=\left[\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)}\right] y(x) .
\end{gathered}
$$

We conclude that

$$
y^{\prime}(x)=\left[\frac{3}{x}+\frac{2}{(x+2)}+\frac{3 \sin (x)}{\cos (x)}\right] \frac{\cos ^{3}(x)}{x^{3}(x+2)^{2}}
$$

