

Review for Final Exam.

- ▶ 10 or 14 problems.
- ► No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.

Exam covers:

- ▶ Sections 6.1, 6.3, 6.5.
- Sections 7.1-7.7.
- Sections 8.1-8.5, 8.7.
- Sections 10.1-10.10.
- ► Sections 11.1-11.5.

Volumes using cross-sections (6.1)

Example

Find the volume of the solid between the planes x = 3 and x = -3 with cross-sections perpendicular to the x-axis given by squares inscribed in the circle $x^2 + y^2 = 9$.

Solution: Let a(x) denote the side of a cross-section perpendicular at the x-axis. The area of such section is

$$A(x) = [a(x)]^2, \qquad a(x) = 2\sqrt{9-x^2}.$$

The volume of such solid is

$$V = \int_{-3}^{3} A(x) \, dx = \int_{-3}^{3} 4(9 - x^2) \, dx = 4\left(9x - \frac{x^3}{3}\right)\Big|_{-3}^{3}$$

Then, V = 4[(9)(6) - (9)(2)], that is, V = (9)(16).

\triangleleft

Volumes using cross-sections (6.1)

Example

Find the volume of the region obtained by rotation the curve $x(y) = \tan(\pi y/8)$ for $y \in [0, 2]$ about the y-axis.

Solution:

To graph the function

$$x=\tan(\pi y/8),\ y\in[0,2],$$

one can graph

$$y = (8/\pi) \arctan(x)$$
.

Notice that

$$y \in [0,2] \Rightarrow x \in [0,1].$$

Therefore,
$$V = \pi \int_0^2 [x(y)]^2 dy = \pi \int_0^2 \left[\tan\left(\frac{\pi y}{8}\right) \right]^2 dy$$
.

Volumes using cross-sections (6.1) Example Find the volume of the region obtained by rotation the curve $x(y) = \tan(\pi y/8)$ for $y \in [0, 2]$ about the y-axis. Solution: Recall: $V = \pi \int_0^2 \tan^2\left(\frac{\pi y}{8}\right) dy$. Introduce the substitution $u = \pi y/8$, so $du = (\pi/8) dy$, $V = \pi \frac{8}{\pi} \int_0^{\pi/4} \tan^2(u) du = 8 \int_0^{\pi/4} \frac{[1 - \cos^2(u)]}{\cos^2(u)} du$ $V = 8 \int_0^{\pi/4} \left[\frac{1}{\cos^2(u)} - 1\right] du = 8 \int_0^{\pi/4} [\tan'(u) - 1] du$. $V = 8 [\tan(u) - u] \Big|_0^{\pi/4} \Rightarrow V = 8 \left(1 - \frac{\pi}{4}\right)$.

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h.

 \triangleleft

We conclude that L = 9 - 1/6.

 \triangleleft

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides *a*, *b*, and height *h*, is filled with kerosene weighing k = 51.3 lb per cubic ft. Find the work needed to empty the container if the kerosene is pumped out from the top of the tank.

Solution:

h S(z) A(z) y The force is the kerosene weight:

$$F = k A(z) dz = k (ab) dz$$

The work done to lift that liquid from a height z to h is

$$W(z) = k (ab)(h-z) dz.$$

To empty the container: W = k

$$k(ab)\int_0^h(h-z)\,dz=k\,(ab)rac{h^2}{2}$$

Review for Final Exam.

- ▶ 10 or 14 problems.
- ► No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.

Exam covers:

- Sections 6.1, 6.3, 6.5.
- ► Sections 7.1-7.7.
- Sections 8.1-8.5, 8.7.
- Sections 10.1-10.10.
- Sections 11.1-11.5.

The inverse function (7.1).

Example

Find the inverse of $f(x) = 6x^2 - 24x + 24$ for $x \leq 2$.

Solution: We call y = f(x), and we find x(y).

$$y = 6(x^2 - 4 + 4) = 6(x - 2)^2 \Rightarrow (x - 2)^2 = rac{y}{6}$$

 $x_{\pm} - 2 = \pm \sqrt{rac{y}{6}} \Rightarrow x_{\pm} = 2 \pm \sqrt{rac{y}{6}}.$

Since we are interested in the inverse for $x \leq 2$,

$$x=2-\sqrt{\frac{y}{6}}.$$

We can rewrite the answer as $f^{-1}(y) = 2 - \sqrt{y/6}$.

It is also correct to write $f^{-1}(x) = 2 - \sqrt{x/6}$.

The inverse function (7.1).

Example

Given $f(x) = 2x^3 + 3x^2 + 3$ for $x \ge 0$, find $\frac{df^{-1}}{dx}$ at x = 8. Solution: We use y for the variable of f^{-1} . Find $\frac{df^{-1}}{dy}$ at y = 8.

Recall the main formula: $(f^{-1})'(y=8) = \frac{1}{f'(f^{-1}(y=8))}$. We need to find $x = f^{-1}(y=8)$. Since

$$8 = y = f(x) = 2x^3 + 3x^2 + 3,$$

by trial an error, x = 1. So, f(x = 1) = 8 and $f^{-1}(y = 8) = 1$.

$$(f^{-1})'(y=8) = \frac{1}{f'(f^{-1}(y=8))} = \frac{1}{f'(x=1)}$$

We need f'(x = 1). But $f'(x) = 6x^2 + 6x \implies f'(x = 1) = 12$. We obtain $(f^{-1})'(8) = 1/12$.

 \triangleleft

The natural logarithm (7.2)
Example
Evaluate
$$I = \int_{1}^{e^{\pi}} \sin(\ln(x)) dx$$
.
Solution: We try the substitution $u = \ln(x)$, hence $du = dx/x$.
Notice $dx = x du = e^{u} du$. Therefore, $I = \int_{0}^{\pi} e^{u} \sin(u) du$.
Integrate by parts twice, first, $f = e^{u}$, $g' = \sin(u)$
 $\int e^{u} \sin(u) du = -e^{u} \cos(u) + \int e^{u} \cos(u) du$
 $\int e^{u} \sin(u) du = -e^{u} \cos(u) + e^{u} \sin(u) - \int e^{u} \sin(u) du$.
 $\int e^{u} \sin(u) du = \frac{1}{2} e^{u} (\sin(u) - \cos(u))$.
So, $I = \frac{1}{2} e^{u} (\sin(u) - \cos(u)) \Big|_{0}^{\pi}$, hence $I = \frac{1}{2} (e^{\pi} - 1)$.

The natural logarithm (7.2)

Example

Simplify $f(x) = \ln\left(\frac{\sin^5(2t)}{7}\right)$, and find the derivatives of $g(x) = 3\ln(6\ln(x))$, and $h(x) = \ln(\sqrt{25\sin(x)\cos(x)})$. Solution: First: $f(x) = \ln(\sin^5(2t)) - \ln(7)$, so we conclude that $f(x) = 5\ln(\sin(2t)) - \ln(7)$. Second, $g'(x) = 3\frac{1}{6\ln(x)}(6\ln(x))'$, that is, $g'(x) = 3\frac{1}{\ln(x)}\frac{1}{x}$. Sometimes it is better simplify first and derivate later, $h(x) = \frac{1}{2}[\ln(25) + \ln(\sin(x)) + \ln(\cos(x)]],$ $h'(x) = \frac{1}{2}[\frac{\cos(x)}{\sin(x)} - \frac{\sin(x)}{\cos(x)}].$

The natural logarithm (7.2)
Example
Find
$$I = \int \frac{\sec(x)}{\sqrt{\ln(\sec(x) + \tan(x))}} dx$$
.
Solution: We try the substitution $u = \ln(\sec(x) + \tan(x))$. Recall
 $\sec(x) + \tan(x) = \frac{1}{\cos(x)} + \frac{\sin(x)}{\cos(x)} = \frac{1 + \sin(x)}{\cos(x)}$,
 $du = \frac{\cos(x)}{1 + \sin(x)} \left[\frac{\cos(x)\cos(x) - (1 + \sin(x))(-\sin(x))}{\cos^2(x)} \right] dx$
 $du = \frac{\cos(x)}{[1 + \sin(x)]} \frac{[1 + \sin(x)]}{\cos^2(x)} dx = \frac{1}{\cos(x)} dx = \sec(x) dx$.
 $I = \int \frac{du}{u^{1/2}} = 2 u^{1/2} \Rightarrow I = 2\sqrt{\ln(\sec(x) + \tan(x))}$.