Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.
- Calculating areas in polar coordinates.

Transformation rules Polar-Cartesian.

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.
- Calculating areas in polar coordinates.

Formula for the area or regions in polar coordinates
Theorem
If the functions $r_{1}, r_{2}:[\alpha, \beta] \rightarrow \mathbb{R}$ are continuous and $0 \leqslant r_{1} \leqslant r_{2}$, then the area of a region $D \subset \mathbb{R}^{2}$ given by

$$
D=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[r_{1}(\theta), r_{2}(\theta)\right], \theta \in[\alpha, \beta]\right\} .
$$

is given by the integral

$$
A(D)=\int_{\alpha}^{\beta} \frac{1}{2}\left(\left[r_{2}(\theta)\right]^{2}-\left[r_{1}(\theta)\right]^{2}\right) d \theta
$$

Remark: This result includes the case of $r_{1}=0$, which are fan-shaped regions.

Formula for the area or regions in polar coordinates
Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with $k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

The area of each fan-shaped region on the figure is,

$$
A_{k}=\frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

A Riemann sum ${ }^{\times}$that approximates the green region area is

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

Refining the partition and taking a limit $n \rightarrow \infty$ one can prove that the Riemann sum above converges and the limit is called

$$
A(D)=\int_{\alpha}^{\beta} \frac{1}{2}[r(\theta)]^{2} d \theta
$$

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.
- Calculating areas in polar coordinates.

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod
$r=1-\sin (\theta)$.
Solution:

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.
We need to find α and β. They are the intersection of the circle and the cardiod:
$1=1-\sin (\theta) \Rightarrow \sin (\theta)=0 \Rightarrow\left\{\begin{array}{l}\alpha=0, \\ \beta=\pi .\end{array}\right.$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta \\
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\frac{1}{2}[1-\cos (2 \theta)]\right) d \theta \\
A=\frac{1}{2}\left(-\left.2 \cos (\theta)\right|_{0} ^{\pi}-\frac{1}{2}\left[\pi-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi}\right]\right) \\
A=\frac{1}{2}\left(4-\frac{\pi}{2}\right) \Rightarrow A=2-\frac{\pi}{4} .
\end{gathered}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta) \quad \Leftrightarrow \quad x^{2}+y^{2}=x
$$

Completing the square in x we obtain

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
$$

Analogously, $r=\sin (\theta)$ is the circle

$$
x^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2} .
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
\begin{gathered}
A=\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right] ; \\
A=\frac{1}{2}\left[\frac{\pi}{4}-\left(\frac{1}{2}-0\right)\right]=\frac{\pi}{8}-\frac{1}{4} \quad \Rightarrow \quad A=\frac{1}{8}(\pi-2) .
\end{gathered}
$$

Also works: $A=\int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta+\int_{\pi / 4}^{\pi / 2} \frac{1}{2} \cos ^{2}(\theta) d \theta$.

