
Area of regions in polar coordinates (Sect. 11.5)

I Review: Few curves in polar coordinates.

I Formula for the area or regions in polar coordinates.

I Calculating areas in polar coordinates.

Transformation rules Polar-Cartesian.

Definition
The polar coordinates of a point P ∈ R2 is the
ordered pair (r , θ), with r > 0 and θ ∈ [0, 2π)
defined by the picture.
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Formula for the area or regions in polar coordinates

Theorem
If the functions r1, r2 : [α, β]→ R are continuous and 0 6 r1 6 r2,
then the area of a region D ⊂ R2 given by

D =
{
(r , θ) ∈ R2 : r ∈ [r1(θ), r2(θ)], θ ∈ [α, β]

}
.

is given by the integral

A(D) =

∫ β

α
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([
r2(θ)

]2 −
[
r1(θ)

]2
)

dθ.
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Remark: This result includes the
case of r1 = 0, which are fan-shaped
regions.



Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition θk = k ∆θ, with

k = 1, · · · , n, and ∆θ =
β − α

n
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The area of each fan-shaped region on
the figure is,

Ak =
1

2

[
r(θk)

]2
∆θ.

A Riemann sum that approximates the green region area is
n∑

k=1

Ak =
n∑

k=1

1

2

[
r(θk)

]2
∆θ.

Refining the partition and taking a limit n →∞ one can prove
that the Riemann sum above converges and the limit is called

A(D) =

∫ β

α

1

2

[
r(θ)

]2
dθ.
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Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution:

r = 1 − sin(0)
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The Theorem implies

A =

∫ β

α

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

We need to find α and β. They
are the intersection of the circle
and the cardiod:

1 = 1− sin(θ) ⇒ sin(θ) = 0 ⇒

{
α = 0,

β = π.

Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0
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2
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1− sin(θ)

]2)
dθ.
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Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions
bounded by the curves r = cos(θ) and r = sin(θ).

Solution: We first review that these curves are actually circles.

r = cos(θ) ⇔ r2 = r cos(θ) ⇔ x2 + y2 = x .

Completing the square in x we obtain(
x − 1

2

)2
+ y2 =

(1

2

)2
.

Analogously, r = sin(θ) is the circle

x2 +
(
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2

)2
=

(1

2

)2
.
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Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions
bounded by the curves r = cos(θ) and r = sin(θ).

Solution: The Theorem implies: A = 2

∫ π/4
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2
sin2(θ) dθ;

A =
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;
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Also works: A =

∫ π/4

0

1

2
sin2(θ) dθ +

∫ π/2

π/4

1

2
cos2(θ) dθ.


