

Transformation rules Polar-Cartesian.

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with $r \ge 0$ and $\theta \in [0, 2\pi)$ defined by the picture.

Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right)$$

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

This is the equation of a circle radius r = 2 with center at (2, 0).

у

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

$$\frac{df}{dx} = \frac{dy/dt}{dx/dt}$$

Remark: If the curve is given in polar coordinates, $r = r(\theta)$, then

$$x(\theta) = r(\theta) \cos(\theta)$$
 $y(\theta) = r(\theta) \sin(\theta)$.

The formula for the slope is then

$$\frac{df}{dx} = \frac{y'(\theta)}{x'(\theta)} \quad \Rightarrow \quad \frac{df}{dx} = \frac{r'(\theta)\sin(\theta) + r(\theta)\cos(\theta)}{r'(\theta)\cos(\theta) - r(\theta)\sin(\theta)}$$

If the curve passes through the origin, $r(\theta_0) = 0$, then

$$\frac{df}{dx}\Big|_{\theta_0} = \frac{r'(\theta_0)\sin(\theta_0)}{r'(\theta_0)\cos(\theta_0)}.$$

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the *x*-axis, or the *y*-axis, or the origin, then the work needed to graph of the curve can be reduced.

- *x-axis symmetry:* (r, θ) and $(r, -\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.
- *y*-axis symmetry: (r, θ) and $(-r, -\theta)$ belong to the graph.

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, $\theta \in [0, 2\pi)$.

2 x

уʻ

Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve $r = 4\cos(\theta), \ \theta \in [0, 2\pi).$

Solution: Back to Cartesian:

Graphing the Cardiod

Example

Graph on the xy-plane the curve $r = 1 + \cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution: We first graph the function $r = 1 + \cos(\theta)$.

From the previous graph we obtain the curve: on the *xy*-plane:

x

