Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Transformation rules Polar-Cartesian.

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right) .
$$

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4
\end{gathered}
$$

This is the equation of a circle radius $r=2$ with center at $(2,0)$.
y

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Remark: If the curve is given in polar coordinates, $r=r(\theta)$, then

$$
x(\theta)=r(\theta) \cos (\theta) \quad y(\theta)=r(\theta) \sin (\theta)
$$

The formula for the slope is then

$$
\frac{d f}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)} \Rightarrow \frac{d f}{d x}=\frac{r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)}{r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)} .
$$

If the curve passes through the origin, $r\left(\theta_{0}\right)=0$, then

$$
\left.\frac{d f}{d x}\right|_{\theta_{0}}=\frac{r^{\prime}\left(\theta_{0}\right) \sin \left(\theta_{0}\right)}{r^{\prime}\left(\theta_{0}\right) \cos \left(\theta_{0}\right)} .
$$

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis, or the y-axis, or the origin, then the work needed to graph of the curve can be reduced.

- x-axis symmetry: (r, θ) and $(r,-\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.
- y-axis symmetry: (r, θ) and $(-r,-\theta)$ belong to the graph.

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve
$r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: Back to Cartesian:

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example

Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.

Solution:

Notice that $r(\theta)=r(-\theta)$.
(Reflection about x-axis symmetry.)
The graph of $r=4 \cos (\theta)$ is

The graph above helps to do the curve on the $x y$-plane. We actually cover the circle twice!

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1-\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1-\cos (\theta)$.

From the previous graph we obtain the curve: on the xy-plane:

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1+\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1+\cos (\theta)$.

From the previous graph we obtain the curve: on the $x y$-plane:

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Graphing the Lemniscate

Example

Graph on the $x y$-plane the curve $r^{2}=\sin (2 \theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r= \pm \sqrt{\sin (2 \theta)}$.

From the previous graph we obtain the curve: on the $x y$-plane:

