- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Review: Arc-length of a curve

Definition

A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the curve $y=f(x)$ can be described by the parametric functions $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, and if $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

Remark: The arc-length of a continuously differentiable curve $(x(t), y(y))$, for $t \in[a, b]$ is the number

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

Review: Arc-length of a curve

Remark:

- The formula for the arc-length

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

can be used in a curve of the form $y=f(x)$.

- Just choose the trivial parametrization:

$$
x(t)=t, \quad y(t)=f(t)
$$

- Then $x^{\prime}(t)=1, y^{\prime}(t)=f^{\prime}(t)$, and the arc-length formula is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Polar coordinates definition

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Graph the points $P_{1}=(1, \pi / 4)$,
$P_{2}=(1,3 \pi / 4)$.

Example

Graph the points $P_{1}=(1, \pi / 4)$,
$P_{3}=(1 / 2,5 \pi / 4)$.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Remark:

- This restriction implies that for every point $P \neq(0,0)$ there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}, \theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Example

Graph the points $P_{1}=(1, \pi / 4)$ and $P_{2}=(1,-7 \pi / 4)$.

Polar coordinates definition

Example

Graph the points $P_{1}=(1, \pi / 4)$,
$P_{2}=(-1 / 2, \pi / 4)$, and
$P_{3}=(1 / 2,5 \pi / 4)$.

Remark: Polar coordinates are well adapted to describe circular curves and disk sections.

Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right) .
$$

Proof: $x^{2}+y^{2}=r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=r^{2} ; r \geqslant 0$ implies $r=\sqrt{x^{2}+y^{2}}$. Finally, $x / y=\tan (\theta)$.

Transformation rules Polar-Cartesian.

Remark:

- If (x, y) satisfies either $x \geqslant 0, y \geqslant 0$, or $x \leqslant 0, y \leqslant 0$, then $\theta=\arctan (x / y)$ is in the first quadrant.
- If (x, y) satisfies either $x \geqslant 0, y \leqslant 0$, or $x \leqslant 0, y \geqslant 0$, then $\theta=\arctan (x / y)$ is in the fourth quadrant.

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}} \quad \Rightarrow \quad\left\{\begin{array}{l}
r=3 \\
\theta \in[0,2 \pi)
\end{array} \quad \triangleleft\right.
$$

Example

Find the equation in polar coordinates of the line $y=\sqrt{3} x$.
Solution: From the transformation laws,

$$
\theta=\arctan (y / x)=\arctan (\sqrt{3}) \quad \Rightarrow \quad\left\{\begin{array}{l}
\theta=\pi / 3 \\
r \in \mathbb{R}
\end{array}\right.
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y
$$

Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
r^{2}=6 r \sin (\theta) \quad \Rightarrow \quad r=6 \sin (\theta)
$$

and $\theta \in[0, \pi]$.

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4
\end{gathered}
$$

This is the equation of a circle radius $r=2$ with center at $(2,0)$.

