

Review: Arc-length of a curve

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the curve y = f(x) can be described by the parametric functions (x(t), y(t)), for $t \in I \subset \mathbb{R}$, and if $x'(t) \neq 0$ for $t \in I$, then holds

 $\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$

Remark: The arc-length of a continuously differentiable curve (x(t), y(y)), for $t \in [a, b]$ is the number

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

Review: Arc-length of a curve

Remark:

▶ The formula for the arc-length

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

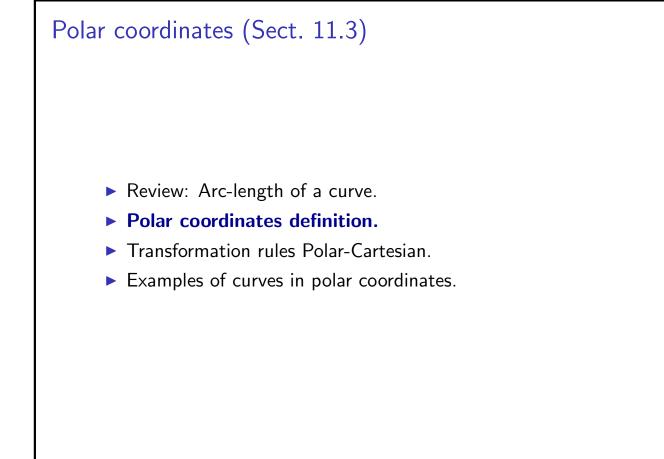
can be used in a curve of the form y = f(x).

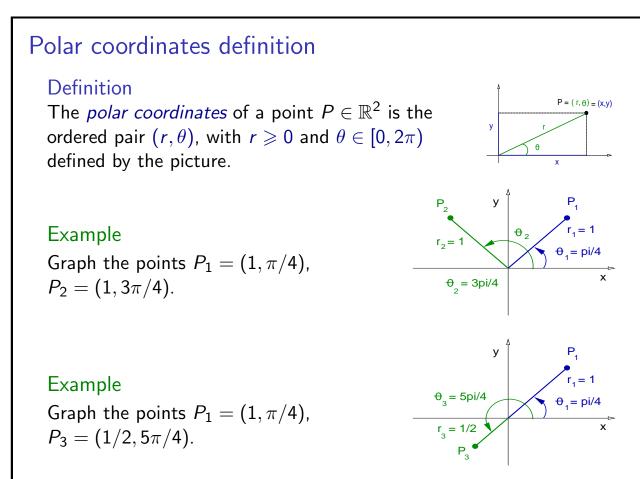
Just choose the trivial parametrization:

$$x(t) = t,$$
 $y(t) = f(t).$

• Then x'(t) = 1, y'(t) = f'(t), and the arc-length formula is

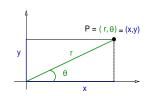
$$L = \int_a^b \sqrt{1 + \left[f'(t)\right]^2} \, dt.$$





Polar coordinates definition

Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.

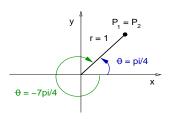


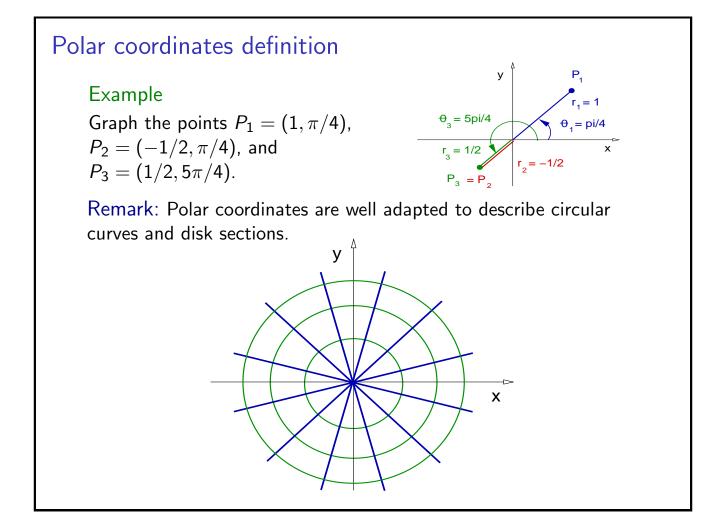
Remark:

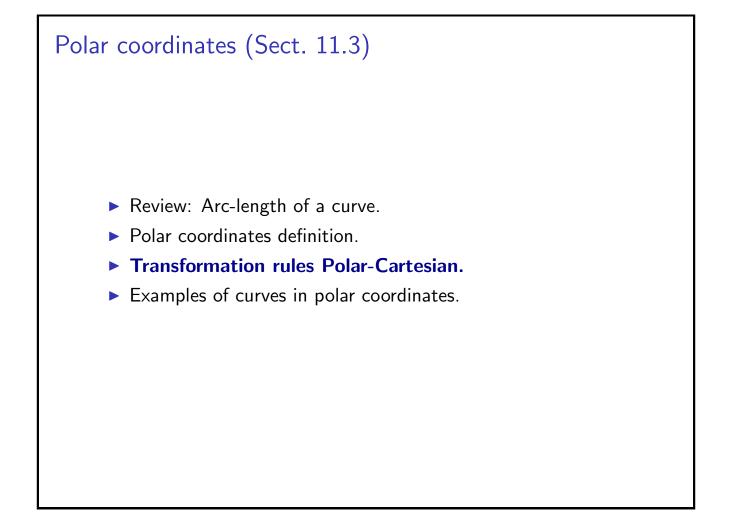
- This restriction implies that for every point P ≠ (0,0) there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}$, $\theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

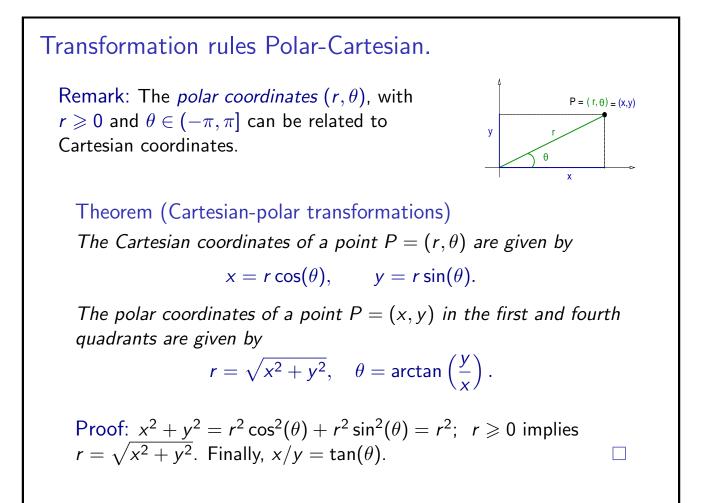
Example

Graph the points $P_1 = (1, \pi/4)$ and $P_2 = (1, -7\pi/4)$.





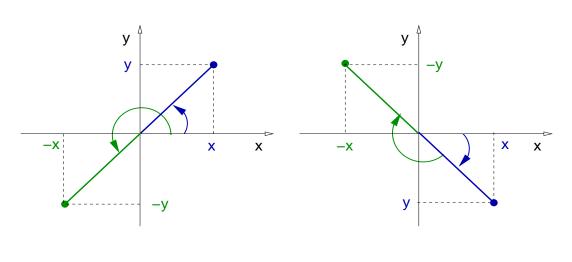


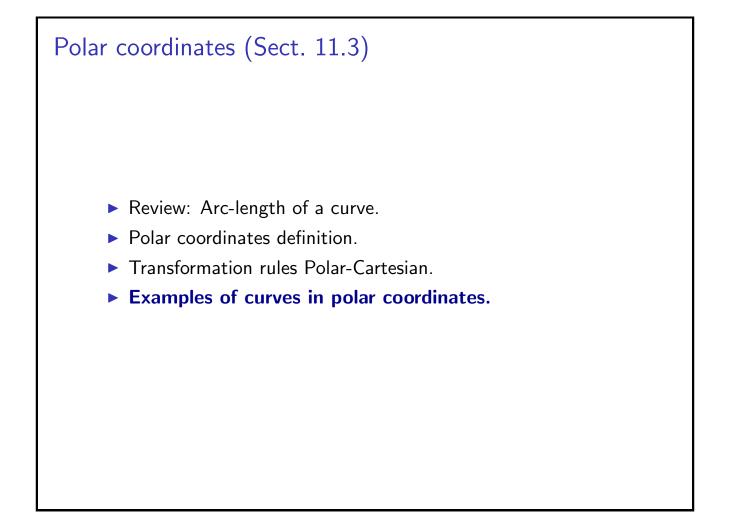


Transformation rules Polar-Cartesian.

Remark:

- If (x, y) satisfies either $x \ge 0$, $y \ge 0$, or $x \le 0$, $y \le 0$, then $\theta = \arctan(x/y)$ is in the first quadrant.
- If (x, y) satisfies either $x \ge 0$, $y \le 0$, or $x \le 0$, $y \ge 0$, then $\theta = \arctan(x/y)$ is in the fourth quadrant.





Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

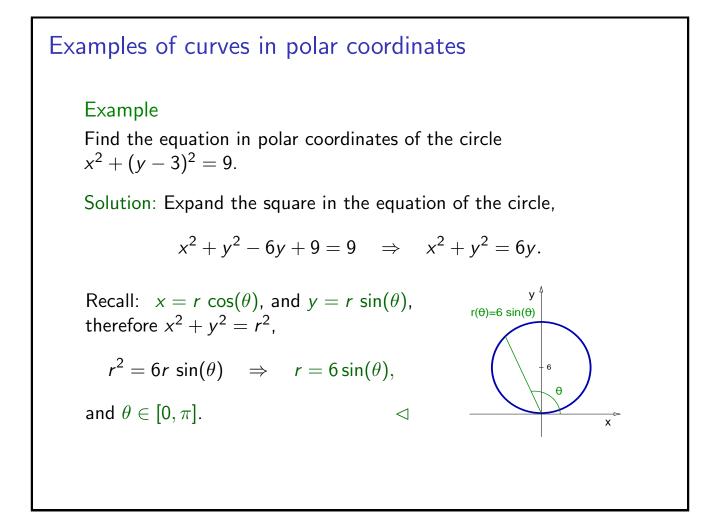
$$x^2 + y^2 = 3^2$$
, $r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} r = 3, \\ \theta \in [0, 2\pi). \end{cases}$

Example

Find the equation in polar coordinates of the line $y = \sqrt{3}x$.

Solution: From the transformation laws,

$$\theta = \arctan(y/x) = \arctan(\sqrt{3}) \quad \Rightarrow \quad \begin{cases} \theta = \pi/3, \\ r \in \mathbb{R}, \end{cases} <$$



Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$. Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

This is the equation of a circle radius r = 2 with center at (2, 0).

