Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Review: Curves on the plane

Remarks:

- Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$
F(x, y)=0 .
$$

- A particular case is the graph of a function $y=f(x)$. In this case: $F(x, y)=y-f(x)$.

Example

- Circle centered at $P=(0,0)$ radius r :

$$
x^{2}+y^{2}=r^{2} .
$$

- Circle centered at $P=\left(x_{0}, y_{0}\right)$ radius r :

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} .
$$

Review: Curves on the plane

Example

- An ellipse centered at $P=(0,0)$ with radius a and b,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

A sphere is the particular case $a=b=r$.

- A hyperbola with asymptotes $y= \pm x$,

$$
x^{2}-y^{2}=1
$$

- A hyperbola with asymptotes $y= \pm \frac{b}{a} x$,

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Review: Curves on the plane

Example

- A parabola with minimum at $(0,0)$,

$$
y=x^{2}
$$

- A parabola with minimum at (a, b),

$$
y=c(x-a)^{2}+b, \quad c>0 .
$$

- A parabola with maximum at (a, b),

$$
y=-c(x-a)^{2}+b, \quad c>0 .
$$

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Parametric equations of a curve

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- Every curve given by $F(x, y)=0$ can be described as the set of points $(x(t), y(t))$ traveled by a particle for $t \in[a, b]$.

Definition

A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the interval I is closed, $I=[a, b]$, then $(x(a), y(a))$ and $(x(b), y(b))$ are called the initial and terminal points of the curve.

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Examples of curves on the plane

Example

Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is a circle.

This is the equation of a circle radius $r=1$, centered at $(0,0)$.
The circle is traversed in counterclockwise direction, starting and ending at (1,0).

Examples of curves on the plane

Example

Describe the curve $x(t)=\sin (t), \quad y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\sin ^{2}(t)+\cos ^{2}(t)=1
\end{gathered}
$$

This is a circle.

This is the equation of a circle radius $r=1$, centered at $(0,0)$.
The circle is traversed in clockwise direction, starting and ending at $(0,1)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(t)+3^{2} \sin ^{2}(t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

This is the equation of a $1 / 4$ circle radius $r=3$, centered at $(0,0)$.
The circle is traversed in counterclockwise direction, starting at
$(3,0)$ and ending at $(0,3)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(2 t)+3^{2} \sin ^{2}(2 t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

This is the equation of a $1 / 2$ circle radius $r=3$, centered at $(0,0)$. The circle is traversed in counterclockwise direction, starting at $(3,0)$ and ending at $(-3,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}= \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is an ellipse.
This is the equation of an ellipse with x-radius 3 and y-radius 1 , centered at $(0,0)$. The ellipse is traversed in counterclockwise direction, starting and ending at $(3,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a
 hyperbola.

This is the equation of a hyperbola with asymptotes $y= \pm x$.
The hyperbola portion starts at $(1,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$.
Therefore,

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\sec ^{2}(t)-\tan ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y= \pm x$.
The hyperbola portion starts at $(-1,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

This is a parabola.

This is the equation of a parabola opening to the right.
Passing through $(1,0)$ (for $t=-1)$, then $(0,1)($ for $t=0)$, and then $(1,2)$ (for $t=1$).

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.

Remarks:

- This is not the equation of a circle.
- The point $(x(t), y(t))$ belongs to a moving circle.
- The cycloid played an important role in designing precise pendulum clocks, needed for navigation in the 17th century.

