Taylor Series (Sect. 10.8)

- Review: Power series define functions.
- Functions define power series.
- Taylor series of a function.
- Taylor polynomials of a function.

Review: Power series define functions

Remarks:

- Power series define functions on domains where the series converge.
- Given a sequence $\left\{c_{n}\right\}$ and a number x_{0}, the function $y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ is defined for every $x \in \mathbb{R}$ where the series converges.

The power series $y(x)=\sum_{n=0}^{\infty} x^{n}$ converges to the function $f(x)=\frac{1}{1-x}$ only on the domain given by $|x|<1$.

Review: Power series define functions

Theorem (Term by term derivation and integration)
If the power series $y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ has radius of convergence $\rho>0$, then function y is both differentiable with derivative

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}\left(x-x_{0}\right)^{(n-1)}
$$

and function y is integrable with primitive

$$
\int y(x) d x=\sum_{n=0}^{\infty} \frac{\left(x-x_{0}\right)^{(n+1)}}{(n+1)}+c
$$

where both expressions above converge on $\left(x_{0}-\rho, x_{0}+\rho\right)$.

Taylor Series (Sect. 10.8)

- Review: Power series define functions.
- Functions define power series.
- Taylor series of a function.
- Taylor polynomials of a function.

Functions define power series

Theorem

If an infinitely differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ has a power series representation at $a \in D$ with convergence radius $\rho>0$,

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

then the series coefficients are given by

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

Remark: If we only assume that f is infinitely differentiable, we can always construct the series

$$
y(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

However, it is not clear whether this series converges at all, and if it does, whether it satisfies that $f(x)=y(x)$ for $x \neq a$.

Functions define power series

Remark: The proof is simple because the assumptions are big.
Proof: Since the function f has a power series representation,

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

we can differentiate on both sides many times,

$$
\begin{aligned}
f^{\prime}(x) & =c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots \\
f^{\prime \prime}(x) & =2 c_{2}+(3)(2) c_{3}(x-a)+(4)(3)(x-a)^{2}+\cdots
\end{aligned}
$$

And evaluating the expressions above at $x=a$ we have

$$
f(a)=c_{0}, \quad f^{\prime}(a)=c_{1}, \quad f^{\prime \prime}(a)=2 c_{2}, \quad f^{(n)}(a)=n!c_{n}
$$

Therefore, $c_{n}=\frac{f^{(n)}(a)}{n!}$.

Taylor Series (Sect. 10.8)

- Review: Power series define functions.
- Functions define power series.
- Taylor series of a function.
- Taylor polynomials of a function.

Taylor series of a function

Remark: The Theorem above suggests the following definition.

Definition

The Taylor series centered at $a \in D$ of an infinitely differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Remarks:

- Right now we have no idea whether the Taylor series of a function has a positive radius of convergence.
- And even if the Taylor series has a positive radius of convergence, we do not know if the series T converges to f.
- The particular case $a=0$ is called the Maclaurin series.

Taylor series of a function

Example

Find the Taylor series of the function $f(x)=\frac{1}{x}$ centered at $x=3$.
Solution: We need to compute the function derivatives,

$$
f^{\prime}(x)=-\frac{1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}, \quad f^{\prime \prime \prime}(x)=-\frac{(2)(3)}{x^{4}}
$$

therefore: $f^{(n)}(x)=(-1)^{n} \frac{n!}{x^{n+1}}$. Evaluating at $x=3$,

$$
\begin{aligned}
& f(3)=\frac{1}{3}, \quad f^{\prime}(3)=-\frac{1}{3^{2}}, \quad f^{\prime \prime}(3)=\frac{2}{3^{3}}, \quad f^{(n)}(3)=(-1)^{n} \frac{n!}{3^{n+1}}, \\
& \frac{f^{(n)}(3)}{n!}=\frac{(-1)^{n}}{3^{n+1}}, \quad T(x)=\frac{1}{3}-\frac{1}{3^{2}}(x-3)+\frac{1}{3^{3}}(x-3)^{2}-\cdots .
\end{aligned}
$$

We conclude: $T(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}}(x-3)^{n}$.

Taylor series of a function

Example

Find the radius of convergence ρ of the Taylor series T centered at $x=a$ of the function $f(x)=\frac{1}{x}$.

Solution: It is simple to see that $T(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{a^{n+1}}(x-a)^{n}$.
The ratio test on $b_{n}=\left|\frac{(-1)^{n}}{a^{n+1}}(x-a)^{n}\right|$ says that,

$$
\frac{b_{n+1}}{b_{n}}=\frac{|x-a|^{n+1}}{a^{n+2}} \frac{a^{n+1}}{|x-a|^{n}}=\frac{|x-a|}{a} \rightarrow \frac{|x-a|}{a} .
$$

The condition $\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}<1$ implies $\frac{|x-a|}{a}<1$, that is $|x-a|<a$. We conclude that $\rho=a$.

Taylor Series (Sect. 10.8)

- Review: Power series define functions.
- Functions define power series.
- Taylor series of a function.
- Taylor polynomials of a function.

Taylor polynomials of a function

Remark: A truncated Taylor series is called a Taylor polynomial.

Definition

The Taylor polynomial of order n centered at $a \in D$ of an n-differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Remarks:

- $T_{1}(x)=f(a)+f^{\prime}(a)(x-a)$ is the linearization of f.
- The Taylor polynomial is called of order n instead of degree n, because $f^{(n)}(a)$ may vanish.
- The Taylor polynomial of order n centered at $a=0$ is called the $n+1$ Maclaurin polynomial.

Taylor polynomials of a function

Example

Find the first four Maclaurin polynomials of the function $f(x)=e^{3 x}$.

Solution: Since $f^{(n)}(x)=3^{n} e^{3 x}$, and the polynomials are centered at $a=0$, the first 4 Maclaurin polynomials are

$$
T_{0}, \quad T_{1}, \quad T_{2}, \quad T_{3}
$$

Since $T_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}$, then

$$
\begin{gathered}
T_{0}(x)=1, \quad T_{1}(x)=1+3 x, \quad T_{2}(x)=1+3 x+\frac{3^{2}}{2} x^{2} \\
T_{3}(x)=1+3 x+\frac{3^{2}}{2} x^{2}+\frac{3^{3}}{6} x^{3}
\end{gathered}
$$

Taylor polynomials of a function

Example

Find the first seven Maclaurin polynomials of $f(x)=\cos (x)$.
Solution: $f(x)=\cos (x), \quad f^{\prime}(x)=-\sin (x), \quad f^{\prime \prime}(x)=-\cos (x)$, $f^{\prime \prime \prime}(x)=\sin (x), f^{(4)}(x)=\cos (x)$, and then the derivatives repeat, $f(0)=1, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=-1, \quad f^{\prime \prime \prime}(0)=0, \quad f^{(4)}(0)=1$.

Since $T_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f(n)(0)}{n!} x^{n}$, then

$$
T_{0}(x)=1=T_{1}(x), \quad T_{2}(x)=1-\frac{x^{2}}{2}=T_{3}(x)
$$

$$
T_{4}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}=T_{5}(x), \quad T_{6}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

Taylor polynomials of a function

Remark: The Taylor polynomial order n centered at any point $x=a$ of a polynomial degree n, say P_{n}, is the same polynomial.
That is, $T_{n}(x)=P_{n}(x)$.

Example

Find the T_{2} centered at $x=a$ of $f(x)=x^{2}+x+1$.
Solution: Since $f^{\prime}(x)=2 x+1$ and $f^{\prime \prime}(x)=2$, then

$$
f(a)=a^{2}+a+1, \quad f^{\prime}(a)=2 a+1, \quad f^{\prime \prime}(a)=2
$$

Since $T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}$, then

$$
\begin{gather*}
T_{2}(x)=\left(a^{2}+a+1\right)+(2 a+1)(x-a)+\frac{2}{2}(x-a)^{2} \\
T_{2}(x)=\left(a^{2}+a+1\right)+\left(2 a x-2 a^{2}+x-a\right)+\left(x^{2}-2 a x+a^{2}\right)
\end{gather*}
$$

Hence $T_{2}(x)=1+x+x^{2}$.

