- Power series definition and examples.
- The radius of convergence.
- The ratio test for power series.
- Term by term derivation and integration.

Power series definition and examples

Definition

A power series centered at x_{0} is the function $y: D \subset \mathbb{R} \rightarrow \mathbb{R}$

$$
y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}, \quad c_{n} \in \mathbb{R}
$$

Remarks:

- An equivalent expression for the power series is

$$
y(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)^{2}+c_{3}\left(x-x_{0}\right)^{3}+\cdots .
$$

- A power series centered at $x_{0}=0$ is $y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, that is,

$$
y(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots .
$$

- The domain $D=\{x \in \mathbb{R}: y(x)$ converges. $\}$

Power series definition and examples

Example

The simplest example is $x_{0}=0, c_{n}=1$, that is

$$
y(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots
$$

For every $x \in \mathbb{R}$ this is a geometric series.
Geometric series converge iff $|x|<1$. and in that case:

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}, \quad|x|<1
$$

We conclude that for $|x|<1$ holds

$$
y(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3} \cdots \Rightarrow \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Power series definition and examples

Remark:
Another examples of power series $y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$.

Example

- $x_{0}=0, \quad c_{n}=\frac{1}{n!}$, that is, $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\cdots$.
- $x_{0}=1, \sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n!}=1+(x-1)+\frac{(x-1)^{2}}{2!}+\cdots$.
- $x=0, c_{n}=\frac{(-1)^{n}}{(2 n+1)!}$, that is, $y(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{(2 n+1)}$, $y(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$.

Power series definition and examples

Remark: The power series of a function may not be defined on the whole domain of the function.

Example

The function $y(x)=\frac{1}{1-x}$ is defined for $x \in \mathbb{R}-\{1\}$.

The power series
$y(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
converges only for $|x|<1$.

Power series (Sect. 10.7)

- Power series definition and examples.
- The radius of convergence.
- The ratio test for power series.
- Term by term derivation and integration.

The radius of convergence.

Definition

The power series $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has radius of convergence
$\rho \geqslant 0$ iff the following conditions hold:
(a) The series converges absolutely for $\left|x-x_{0}\right|<\rho$;
(b) The series diverges for $\left|x-x_{0}\right|>\rho$.

The interval of convergence is the open interval ($x_{0}-\rho, x_{0}+\rho$) together with the extreme points $x_{0}-\rho$ and $x_{0}+\rho$ where the series converges.

The ratio test for power series

Example

Determine the radius of convergence and the interval of convergence of the power series $y(x)=\sum_{n=0}^{\infty} x^{n}$.

Solution: The power series $y(x)$ is a geometric series for $x \in \mathbb{R}$.
Geometric series converge for $|x|<1$, and diverge for $|x|>1$.
Hence the radius of convergence is $\rho=1$.
For the interval of convergence we need to study $y(1)$ and $y(-1)$.

$$
y(1)=1+1+1+1+\cdots, \quad y(-1)=1-1+1-1+1-\cdots
$$

Both series diverge, since their partial sums do not converge.
Then the interval of convergence is $I=(-1,1)$.

The ratio test for power series

Example

Determine the radius of convergence of $y(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
Solution: We fix $x \in \mathbb{R}$ and we use the ratio test on the infinite series $\sum_{n=0}^{\infty}\left|\frac{x^{n}}{n!}\right|$. Denoting $a_{n}=\left|\frac{x^{n}}{n!}\right|$, then

$$
\frac{a_{n+1}}{a_{n}}=\left|\frac{x^{n+1}}{(n+1)!}\right|\left|\frac{n!}{x^{n}}\right|=\frac{\left|x^{n}\right||x|}{\left|x^{n}\right|} \frac{n!}{(n+1)!}=\frac{|x|}{(n+1)} \rightarrow 0
$$

as $n \rightarrow \infty$, for all $x \in \mathbb{R}$. The radius of convergence $\rho=\infty$. $<$
Remark: The interval of convergence is $I=\mathbb{R}$.

The ratio test for power series

Example

Determine the radius of convergence of $y(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n}$.
Solution: Fix $x \in \mathbb{R}$ and use the ratio test on the series $\sum_{n=1}^{\infty}\left|\frac{x^{n}}{n}\right|$. Denoting $a_{n}=\left|\frac{x^{n}}{n}\right|$, then

$$
\frac{a_{n+1}}{a_{n}}=\left|\frac{x^{n+1}}{(n+1)}\right|\left|\frac{n}{x^{n}}\right|=\frac{\left|x^{n}\right||x|}{\left|x^{n}\right|} \frac{n}{(n+1)}=|x| \frac{n}{(n+1)} \rightarrow|x|
$$

as $n \rightarrow \infty$, for all $x \in \mathbb{R}$. The ratio test says that the series with coefficients $a_{n}=\left|\frac{x^{n}}{n}\right|$ converges iff $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$.
This is a condition on x, since $|x|=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$. So $\rho=1$. \triangleleft

The ratio test for power series

Example

Determine the interval of convergence of $y(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n}$.
Solution: Recall: The radius of convergence is $\rho=1$
This means that for $x \in(-1,1)$ the power series converges, and for $x \in(-\infty,-1) \cup(1, \infty)$ the series diverges.

We need to study the series for $x= \pm 1$.

$$
\begin{aligned}
& x=1 \Rightarrow y(1)=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}=-\left(1-\frac{1}{2}+\frac{1}{3}-\cdots\right), \text { converges. } \\
& x=-1 \Rightarrow y(-1)=\sum_{n=1}^{\infty}(-1)^{n} \frac{(-1)^{n}}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots, \text { diverges. }
\end{aligned}
$$

The interval of convergence is $I=(-1,1]$.

Power series (Sect. 10.7)

- Power series definition and examples.
- The radius of convergence.
- The ratio test for power series.
- Term by term derivation and integration.

The ratio test for power series

Theorem (Ratio test for power series)

Given the power series $y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$, introduce the number $L=\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}$. Then, the following statements hold:
(1) The power series converges in the domain $\left|x-x_{0}\right| L<1$.
(2) The power series diverges in the domain $\left|x-x_{0}\right| L>1$.
(3) The power series may or may not converge at $\left|x-x_{0}\right| L=1$.

Therefore, if $L \neq 0$, then $\rho=\frac{1}{L}$ is the series radius of convergence; if $L=0$, then the radius of convergence is $\rho=\infty$.
Proof: $\left|\frac{c_{n+1}\left(x-x_{0}\right)^{n+1}}{c_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right| \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|} \rightarrow\left|x-x_{0}\right| L$.

The ratio test for power series

Example

Determine the radius of convergence of $y(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{8^{n}}$. Solution: Use the ratio test on the series $\sum_{n=0}^{\infty} a_{n}$ with $a_{n}=\left|\frac{x^{n}}{8^{n}}\right|$.

$$
\frac{a_{n+1}}{a_{n}}=\left|\frac{x^{n+1}}{8^{n+1}}\right|\left|\frac{8^{n}}{x^{n}}\right|=\frac{\left|x^{n}\right||x|}{\left|x^{n}\right|} \frac{8^{n}}{8^{n} 8}=|x| \frac{1}{8} \rightarrow \frac{|x|}{8} \quad \text { as } n \rightarrow \infty .
$$

The ratio test says that the series with coefficients $a_{n}=\left|\frac{x^{n}}{n}\right|$ converges if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$, and diverges if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$,
These are a conditions on x, since $\frac{|x|}{8}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
The series converges for $|x|<8$ and diverges for $|x|>8$.
The radius of convergence is $\rho=8$.

The ratio test for power series

Example

Determine the radius of convergence of $y(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{8^{n}}$.
Solution: Recall: The radius of convergence is $\rho=8$
This means that for $x \in(-8,8)$ the power series converges, and for $x \in(-\infty,-8) \cup(8, \infty)$ the series diverges.

We need to study the series for $x= \pm 8$.

$$
\begin{aligned}
\quad x=8 & \Rightarrow y(8)=\sum_{n=1}^{\infty} 1=1+1+1 \cdots, \text { diverges. } \\
x=8 & \Rightarrow y(-8)=\sum_{n=1}^{\infty}(-1)^{n}=1-1+1-1+\cdots, \text { diverges. }
\end{aligned}
$$

The interval of convergence is $I=(-8,8)$.

Power series (Sect. 10.7)

- Power series definition and examples.
- The radius of convergence.
- The ratio test for power series.
- Term by term derivation and integration.

Term by term derivation and integration

Theorem
If the power series $y(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ has radius of convergence $\rho>0$, then function y is both differentiable with derivative

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}\left(x-x_{0}\right)^{(n-1)}
$$

and function y is integrable with primitive

$$
\int y(x) d x=\sum_{n=0}^{\infty} \frac{\left(x-x_{0}\right)^{(n+1)}}{(n+1)}+c
$$

where both expressions above converge on $\left(x_{0}-\rho, x_{0}+\rho\right)$.

