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Alternating series

Definition
An infinite series

∑
an is an alternating series iff holds either

an = (−1)n |an| or an = (−1)n+1 |an|.

Example

I The alternating harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · .

I The following series is an alternating series,

∞∑
n=1

cos(nπ)n2

(n + 1)!
=

∞∑
n=1

(−1)n
n2

(n + 1)!
= −1

2
+

4

6
− 9

24
+ · · · .



Alternating series

Theorem (Leibniz’s test)

If the sequence {an} satisfies: 0 < an, and an+1 6 an, and an → 0,
then the alternating series

∑∞
n=1(−1)n+1an converges.

Proof: Write down the partial sum s2n as follows

s2n = a1 − a2 + a3 − a4 + a5 − · · ·+ s2n−1 − s2n

= (a1 − a2) + (a3 − a4) + · · ·+ (s2n−1 − s2n)

= a1 − (a2 − a3)− (a4 − a5)− · · · − (s2n−2 − s2n−1)− s2n.

The second expression implies s2n 6 s2(n+1).

The third expression says that s2n is bounded above.

Therefore converges, s2n → L.

Since s2n+1 = s2n + a2n+1, and an → 0, then s2n+1 → L + 0 = L.

We conclude that
∑

(−1)n+1an converges.

Alternating series

Example

Show that the alternating harmonic series
∞∑

n=1

(−1)n+1

n
. converges.

Solution: Introduce the sequence an =
(−1)n+1

n
.

The sequence {an} satisfies the hypothesis in the Leibniz test:

I |an| > 0;

I |an+1| < |an|;

I |an| → 0.

We then conclude that
∞∑

n=1

(−1)n+1

n
converges. C
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Absolute and conditional convergence

Remarks:

I Several convergence tests apply only to positive series.

I Integral test, direct comparison and limit comparison tests,
ratio test, do not apply to alternating series.

I Given an arbitrary series
∑

an, the series
∑
|an| has

non-negative terms.

Definition

I A series
∑

an is absolutely convergent iff the series
∑
|an|

converges.

I A series converges conditionally iff it converges but does not
converges absolutely.



Absolute and conditional convergence

Example

I The alternating harmonic series
∞∑

n=1

(−1)n+1

n
converges

conditionally.

Because the harmonic series
∞∑

n=1

1

n
diverges and the

alternating harmonic series converges.

I The geometric series
∞∑

n=1

(−1)n+1

2n
converges absolutely.

Because the geometric series
∞∑

n=1

1

2n
converges.
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Absolute convergence test

Theorem
If the series

∑
|an| converges, then the series

∑
an converges.

Remark:
The converse is not true. A series can converge conditionally:∑ (−1)n+1

n
converges, but

∑∣∣∣(−1)n+1

n

∣∣∣ does not converge.

Proof: −|an| 6 an 6 |an| ⇒ 0 6 an + |an| 6 2|an|.

Since
∑
|an| converges so does

∑
2|an|.

Direct comparison test implies
∑

(an + |an|) converges.∑
an =

∑
(an + |an|)−

∑
|an|,

and both series on the right-hand side converge.

Hence
∑

an converges.
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Few examples

Example

Determine whether the series
∞∑

n=1

(−1)n+1 4n

4n6 + 5
converges

absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio

test in the sequence an =
∣∣∣(−1)n+1 4n

4n6 + 5

∣∣∣ =
4n

4n6 + 5
.

an+1

an
=

4(n + 1)

[4(n + 1)6 + 5]

[4n6 + 5]

4n
=

(n + 1)

n

[ 4n6 + 5

4(n + 1)6 + 5

]
→ 1.

Ratio test inconclusive. Direct comparison test:

4n6 < 4n6 + 5 ⇒ 1

4n6 + 5
<

1

4n6
⇒ 4n

4n6 + 5
<

1

n5
.

∞∑
n=1

1

n5
converges, (IT), so the series converges absolutely. C

Few examples

Example

Determine whether the series
∞∑

n=1

(−1)n+1

ln(n)
converges absolutely,

conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

|an| =
∣∣∣(−1)n+1

ln(n)

∣∣∣ =
1

ln(n)
,

and ln(n) < n implies
1

n
<

1

ln(n)
.

Since the harmonic series diverges, then
∞∑

n=1

1

ln(n)
diverges;

therefore, the series
∞∑

n=1

(−1)n+1

ln(n)
diverges absolutely.



Few examples

Example

Determine whether the series
∞∑

n=1

(−1)n+1

ln(n)
converges absolutely,

conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

|an| =
1

ln(n)
> 0, |an| =

1

ln(n)
→ 0.

Furthermore, the inequality ln(n) < ln(n + 1) implies

|an+1| =
1

ln(n + 1)
<

1

ln(n)
= |an|.

Hence, the Leibniz test implies that
∞∑

n=1

(−1)n+1

ln(n)
converges.

Hence, the series converges conditionally. C

Few examples

Example

Determine whether the series
∞∑

n=1

(−100)n

n!
converges absolutely,

conditionally, or does not converge at all.

Solution: We test absolute convergence: |an| =
∣∣∣(−100)n

n!

∣∣∣ =
100n

n!
.

Let us check the ratio test:

|an+1|
|an|

=
100n+1

(n + 1)!

n!

100n
=

100(100n)

(n + 1) n!

n!

100n
=

100

(n + 1)
→ 0.

The ratio test implies
∞∑

n=1

(−100)n

n!
coverges absolutely.

Therefore, the series converges. C


