Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Alternating series

Definition

An infinite series $\sum a_{n}$ is an alternating series iff holds either

$$
a_{n}=(-1)^{n}\left|a_{n}\right| \quad \text { or } \quad a_{n}=(-1)^{n+1}\left|a_{n}\right| .
$$

Example

- The alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

- The following series is an alternating series,

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi) n^{2}}{(n+1)!}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{(n+1)!}=-\frac{1}{2}+\frac{4}{6}-\frac{9}{24}+\cdots
$$

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n} .
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.
Therefore converges, $s_{2 n} \rightarrow L$.
Since $s_{2 n+1}=s_{2 n}+a_{2 n+1}$, and $a_{n} \rightarrow 0$, then $s_{2 n+1} \rightarrow L+0=L$. We conclude that $\sum(-1)^{n+1} a_{n}$ converges.

Alternating series

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
The sequence $\left\{a_{n}\right\}$ satisfies the hypothesis in the Leibniz test:

- $\left|a_{n}\right|>0 ;$
$-\left|a_{n+1}\right|<\left|a_{n}\right| ;$
$-\left|a_{n}\right| \rightarrow 0$.
We then conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- Given an arbitrary series $\sum a_{n}$, the series $\sum\left|a_{n}\right|$ has non-negative terms.

Definition

- A series $\sum a_{n}$ is absolutely convergent iff the series $\sum\left|a_{n}\right|$ converges.
- A series converges conditionally iff it converges but does not converges absolutely.

Absolute and conditional convergence

Example

- The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.
Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the alternating harmonic series converges.
- The geometric series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n}}$ converges absolutely.

Because the geometric series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \quad \Rightarrow \quad 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ converges so does $\sum 2\left|a_{n}\right|$.
Direct comparison test implies $\sum\left(a_{n}+\left|a_{n}\right|\right)$ converges.

$$
\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|,
$$

and both series on the right-hand side converge.
Hence $\sum a_{n}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5 \Rightarrow \frac{1}{4 n^{6}+5}<\frac{1}{4 n^{6}} \Rightarrow \frac{4 n}{4 n^{6}+5}<\frac{1}{n^{5}}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges, (IT), so the series converges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)}
$$

and $\ln (n)<n$ implies $\frac{1}{n}<\frac{1}{\ln (n)}$.
Since the harmonic series diverges, then $\sum_{n=1}^{\infty} \frac{1}{\ln (n)}$ diverges; therefore, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ diverges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$ implies

$$
\left|a_{n+1}\right|=\frac{1}{\ln (n+1)}<\frac{1}{\ln (n)}=\left|a_{n}\right| .
$$

Hence, the Leibniz test implies that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges.
Hence, the series converges conditionally.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\frac{100\left(100^{n}\right)}{(n+1) n!} \frac{n!}{100^{n}}=\frac{100}{(n+1)} \rightarrow 0 .
$$

The ratio test implies $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ coverges absolutely.
Therefore, the series converges.

