

Alternating series

Definition

An infinite series $\sum a_n$ is an *alternating series* iff holds either

$$a_n = (-1)^n |a_n|$$
 or $a_n = (-1)^{n+1} |a_n|$.

Example

► The alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

▶ The following series is an alternating series,

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)n^2}{(n+1)!} = \sum_{n=1}^{\infty} (-1)^n \frac{n^2}{(n+1)!} = -\frac{1}{2} + \frac{4}{6} - \frac{9}{24} + \cdots$$

Alternating series

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows $s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$ $= (a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$ $= a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}.$ The second expression implies $s_{2n} \leq s_{2(n+1)}$. The third expression says that s_{2n} is bounded above.

Therefore converges, $s_{2n} \rightarrow L$.

Since $s_{2n+1} = s_{2n} + a_{2n+1}$, and $a_n \rightarrow 0$, then $s_{2n+1} \rightarrow L + 0 = L$.

We conclude that $\sum (-1)^{n+1} a_n$ converges.

Alternating series

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Solution: Introduce the sequence $a_n = \frac{(-1)^{n+1}}{n}$.

The sequence $\{a_n\}$ satisfies the hypothesis in the Leibniz test:

- ► $|a_n| > 0;$
- ► $|a_{n+1}| < |a_n|;$
- ► $|a_n| \rightarrow 0.$

We then conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.

 \triangleleft

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- ► Given an arbitrary series ∑ a_n, the series ∑ |a_n| has non-negative terms.

Definition

- A series ∑ a_n is absolutely convergent iff the series ∑ |a_n| converges.
- A series *converges conditionally* iff it converges but does not converges absolutely.

Absolute convergence test

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

 $\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$ Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$

Since $\sum |a_n|$ converges so does $\sum 2|a_n|$.

Direct comparison test implies $\sum (a_n + |a_n|)$ converges.

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|,$$

and both series on the right-hand side converge. Hence $\sum a_n$ converges.

Alternating series and absolute convergence (Sect. 10.6)
Alternating series.

- Absolute and conditional convergence.
- Absolute convergence test.
- ► Few examples.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6 + 5}$ converges absolutely, conditionally, or does not converge at all. Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$. $\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6 + 5]} \frac{[4n^6 + 5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6 + 5}{4(n+1)^6 + 5} \right] \rightarrow 1.$ Ratio test inconclusive. Direct comparison test: $4n^6 < 4n^6 + 5 \Rightarrow \frac{1}{4n^6 + 5} < \frac{1}{4n^6} \Rightarrow \frac{4n}{4n^6 + 5} < \frac{1}{n^5}.$ $\sum_{n=1}^{\infty} \frac{1}{n^5}$ converges, (IT), so the series converges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$|a_n| = \left|\frac{(-1)^{n+1}}{\ln(n)}\right| = \frac{1}{\ln(n)},$$

and $\ln(n) < n$ implies $\frac{1}{n} < \frac{1}{\ln(n)}$. Since the harmonic series diverges, then $\sum_{n=1}^{\infty} \frac{1}{\ln(n)}$ diverges; therefore, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$ diverges absolutely. Few examplesExampleDetermine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$ converges absolutely,
conditionally, or does not converge at all.Solution: Recall: The series diverges absolutely.We now try the Leibniz test (the alternating series test) $|a_n| = \frac{1}{\ln(n)} > 0$, $|a_n| = \frac{1}{\ln(n)} \rightarrow 0$.Furthermore, the inequality $\ln(n) < \ln(n+1)$ implies $|a_{n+1}| = \frac{1}{\ln(n+1)} < \frac{1}{\ln(n)} = |a_n|$.Hence, the Leibniz test implies that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$ converges.Hence, the series converges conditionally.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \frac{100(100^n)}{(n+1)n!} \frac{n!}{100^n} = \frac{100}{(n+1)} \to 0.$$

The ratio test implies $\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$ coverges absolutely.

Therefore, the series converges.

 \triangleleft