

Review: Bounded and monotonic sequences Definition A sequence $\{a_n\}$ is bounded above iff there is $M \in \mathbb{R}$ such that $a_n \leq M$ for all $n \geq 1$. The sequence $\{a_n\}$ is bounded below iff there is $m \in \mathbb{R}$ such that $m \leq a_n$ for all $n \geq 1$. A sequence is bounded iff it is bounded above and below. Example $\blacktriangleright a_n = \frac{1}{n}$ is bounded, since $0 < \frac{1}{n} \leq 1$.

• $a_n = (-1)^n$ is bounded, since $-1 \leq (-1)^n \leq 1$.

Review: Bounded and monotonic sequences

Definition

- A sequence $\{a_n\}$ is increasing iff $a_n < a_{n+1}$.
- A sequence $\{a_n\}$ is non-decreasing iff $a_n \leq a_{n+1}$.
- A sequence $\{a_n\}$ is decreasing iff $a_n > a_{n+1}$.
- A sequence $\{a_n\}$ is non-increasing iff $a_n \ge a_{n+1}$.
- A sequence is monotonic iff the sequence is both non-increasing and non-decreasing.

Theorem

- ► A non-decreasing sequence converges iff it is bounded above.
- A non-increasing sequence converges iff it bounded below.

Review: Bounded and monotonic sequences

Example

Determine whether the sequence $a_n = \frac{n}{n^2 + 1}$ converges or not.

Solution: We show that a_n is decreasing. Indeed, the condition

$$a_{n+1} < a_n \quad \Leftrightarrow \quad \frac{n+1}{(n+1)^2 + 1} < \frac{n}{n^2 + 1}$$
 $(n+1)(n^2 + 1) < n(n^2 + 2n + 2)$
 $n^3 + n^2 + n + 1 < n^3 + 2n^2 + 2n$

Since $1 < (n^2 + n)$ is true for $n \ge 1$, then $a_{n+1} < a_n$; decreasing.

The sequence satisfies that $0 < a_n$, bounded below.

We conclude that a_n converges.

 \triangleleft

The integral test (Sect. 10.3) Review: Bounded and monotonic sequences. Application: The harmonic series. Testing with an integral. Error estimation in the integral test.

Testing with an integral Proof: Recall: $a_n = f(n)$. The proof is based in the pictures: $y = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4}$

Testing with an integral

Example

Show whether the series $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ converges or not.

Solution: The convergence of the series $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ is related to the convergence of the integral $\int_{1}^{\infty} \frac{dx}{1+x^2}$. Since

$$\int_1^n \frac{dx}{1+x^2} = \arctan(x)\big|_1^n = \left(\arctan(n) - \frac{\pi}{4}\right) \to \left(\frac{\pi}{2} - \frac{\pi}{4}\right).$$

The inequality $\sum_{k=1}^{\infty} a_k \leq a_1 + \int_1^{\infty} f(x) \, dx$ implies

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2} \leqslant \frac{1}{2} + \frac{\pi}{4} \quad \Rightarrow \quad \sum_{n=1}^{\infty} \frac{1}{1+n^2} \text{ converges.} \qquad \vartriangleleft$$

