The integral test (Sect. 10.3)

- Review: Bounded and monotonic sequences.
- Application: The harmonic series.
- Testing with an integral.
- Error estimation in the integral test.

The integral test (Sect. 10.3)

- Review: Bounded and monotonic sequences.
- Application: The harmonic series.
- Testing with an integral.
- Error estimation in the integral test.

Review: Bounded and monotonic sequences

Definition

A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

A sequence is bounded iff it is bounded above and below.

Example

- $a_{n}=\frac{1}{n}$ is bounded, since $0<\frac{1}{n} \leqslant 1$.
- $a_{n}=(-1)^{n}$ is bounded, since $-1 \leqslant(-1)^{n} \leqslant 1$.

Review: Bounded and monotonic sequences

Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is decreasing iff $a_{n}>a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-increasing iff $a_{n} \geqslant a_{n+1}$.
- A sequence is monotonic iff the sequence is both non-increasing and non-decreasing.

Theorem

- A non-decreasing sequence converges iff it is bounded above.
- A non-increasing sequence converges iff it bounded below.

Review: Bounded and monotonic sequences

Example

Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that a_{n} is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \Leftrightarrow \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right) \\
n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n
\end{gathered}
$$

Since $1<\left(n^{2}+n\right)$ is true for $n \geqslant 1$, then $a_{n+1}<a_{n}$; decreasing.
The sequence satisfies that $0<a_{n}$, bounded below.
We conclude that a_{n} converges.

The integral test (Sect. 10.3)

- Review: Bounded and monotonic sequences.
- Application: The harmonic series.
- Testing with an integral.
- Error estimation in the integral test.

Application: The harmonic series

Remarks:

- The partial sums of the harmonic series, $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$, define an increasing sequence: $s_{n+1}>s_{n}$.
- We now show that $\left\{s_{n}\right\}$ is unbounded from above.

Example

Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
Solution: Notice the following inequalities:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\left[\frac{1}{3}+\frac{1}{4}\right]+\left[\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right]+\cdots \\
\sum_{n=1}^{\infty} \frac{1}{n}>1+\frac{1}{2}+\left[\frac{2}{4}\right]+\left[\frac{4}{8}\right]+\cdots \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} \text { diverges. }
\end{gathered}
$$

The integral test (Sect. 10.3)

- Review: Bounded and monotonic sequences.
- Application: The harmonic series.
- Testing with an integral.
- Error estimation in the integral test.

Testing with an integral

Remark:

- The idea used above to show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges cannot be generalized to other series.
- Now we introduce an idea to test the convergence of series. The idea is based on calculus.

Theorem

If $f:[1, \infty) \rightarrow \mathbb{R}$ is a continuous, positive, decreasing function, and $a_{n}=f(n)$, then the following holds:

$$
\sum_{n=1}^{\infty} a_{n} \text { converges } \Leftrightarrow \int_{1}^{\infty} f(x) d x \text { converges. }
$$

Testing with an integral

Proof: Recall: $a_{n}=f(n)$. The proof is based in the pictures:

$$
\begin{align*}
& \underbrace{2}_{1} \\
& \int_{1}^{4} f(x) d x \leqslant a_{1}+a_{2}+a_{3} \Rightarrow \int_{1}^{n+1} f(x) d x \leqslant \sum_{k=1}^{n} a_{k} \\
& a_{2}+a_{3} \leqslant \int_{1}^{3} f(x) d x \Rightarrow \sum_{k=1}^{n} a_{k} \leqslant a_{1}+\int_{1}^{n} f(x) d x . \\
& \int_{1}^{n+1} f(x) d x \leqslant \sum_{k=1}^{n} a_{n} \leqslant a_{1}+\int_{1}^{n} f(x) d x
\end{align*}
$$

Testing with an integral

Example

Use the integral test to show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
Solution: The convergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is related to the convergence of the integral $\int_{1}^{\infty} \frac{d x}{x}$. Since

$$
\ln (n+1)=\int_{1}^{n+1} \frac{d x}{x} \leqslant \sum_{k=1}^{n} a_{n} \quad \text { and } \quad \ln (n+1) \rightarrow \infty
$$

then the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Testing with an integral

Example

Show whether the series $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$ converges or not.
Solution: The convergence of the series $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$ is related to the convergence of the integral $\int_{1}^{\infty} \frac{d x}{1+x^{2}}$. Since

$$
\int_{1}^{n} \frac{d x}{1+x^{2}}=\left.\arctan (x)\right|_{1} ^{n}=\left(\arctan (n)-\frac{\pi}{4}\right) \rightarrow\left(\frac{\pi}{2}-\frac{\pi}{4}\right)
$$

The inequality $\sum_{k=1}^{\infty} a_{k} \leqslant a_{1}+\int_{1}^{\infty} f(x) d x$ implies

$$
\sum_{n=1}^{\infty} \frac{1}{1+n^{2}} \leqslant \frac{1}{2}+\frac{\pi}{4} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{1+n^{2}} \text { converges. }
$$

Testing with an integral

Example

Show whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \sqrt{n+1}}$ converges or not.
Solution: The convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \sqrt{n+1}}$ is related to the convergence of the integral $\int_{1}^{\infty} \frac{d x}{\sqrt{x} \sqrt{x+1}}$.
Limit test for improper integrals: $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x} \sqrt{x+1}}=\lim _{x \rightarrow \infty} \frac{1}{x}$.
Since $\int_{1}^{\infty} \frac{d x}{x}$ diverges, then $\int_{1}^{\infty} \frac{d x}{\sqrt{x} \sqrt{x+1}}$ diverges.
Integral test for series implies: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \sqrt{n+1}}$ diverges.

The integral test (Sect. 10.3)

- Review: Bounded and monotonic sequences.
- Application: The harmonic series.
- Testing with an integral.
- Error estimation in the integral test.

Error estimation in the integral test.

Theorem
If $f:[1, \infty) \rightarrow \mathbb{R}$ is a continuous, positive, decreasing function, and the series $\sum_{k=1}^{n} a_{k}=s_{n} \rightarrow S$, where $a_{n}=f(n)$, then the remainder $R_{n}=S-s_{n}$ satisfies

$$
\int_{n+1}^{\infty} f(x) d x \leqslant R_{n} \leqslant \int_{n}^{\infty} f(x) d x
$$

Proof: Again, the proof is based in the pictures:

$$
\begin{aligned}
& \int_{3}^{\infty} f(x) d x \leqslant R_{2}=a_{3}+a_{4}+\cdots \leqslant \int_{2}^{\infty} f(x) d x
\end{aligned}
$$

