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Review: Bounded and monotonic sequences

Definition
A sequence {an} is bounded above iff there is M ∈ R such that

an 6 M for all n > 1.

The sequence {an} is bounded below iff there is m ∈ R such that

m 6 an for all n > 1.

A sequence is bounded iff it is bounded above and below.

Example

I an =
1

n
is bounded, since 0 <

1

n
6 1.

I an = (−1)n is bounded, since −1 6 (−1)n 6 1.

Review: Bounded and monotonic sequences

Definition

I A sequence {an} is increasing iff an < an+1.

I A sequence {an} is non-decreasing iff an 6 an+1.

I A sequence {an} is decreasing iff an > an+1.

I A sequence {an} is non-increasing iff an > an+1.

I A sequence is monotonic iff the sequence is both
non-increasing and non-decreasing.

Theorem

I A non-decreasing sequence converges iff it is bounded above.

I A non-increasing sequence converges iff it bounded below.



Review: Bounded and monotonic sequences

Example

Determine whether the sequence an =
n

n2 + 1
converges or not.

Solution: We show that an is decreasing. Indeed, the condition

an+1 < an ⇔ n + 1

(n + 1)2 + 1
<

n

n2 + 1

(n + 1)(n2 + 1) < n(n2 + 2n + 2)

n3 + n2 + n + 1 < n3 + 2n2 + 2n

Since 1 < (n2 + n) is true for n > 1, then an+1 < an; decreasing.

The sequence satisfies that 0 < an, bounded below.

We conclude that an converges. C
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Application: The harmonic series

Remarks:

I The partial sums of the harmonic series, sn =
n∑

k=1

1

k
,

define an increasing sequence: sn+1 > sn.

I We now show that {sn} is unbounded from above.

Example

Show that the harmonic series
∞∑

n=1

1

n
diverges.

Solution: Notice the following inequalities:
∞∑

n=1

1

n
= 1 +

1

2
+

[1

3
+

1

4

]
+

[1

5
+

1

6
+

1

7
+

1

8

]
+ · · ·

∞∑
n=1

1

n
> 1 +

1

2
+

[2

4

]
+

[4

8

]
+ · · · ⇒

∞∑
n=1

1

n
diverges. C
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Testing with an integral

Remark:

I The idea used above to show that
∞∑

n=1

1

n
diverges cannot be

generalized to other series.

I Now we introduce an idea to test the convergence of series.
The idea is based on calculus.

Theorem
If f : [1,∞) → R is a continuous, positive, decreasing function,
and an = f (n), then the following holds:

∞∑
n=1

an converges ⇔
∫ ∞

1
f (x) dx converges.

Testing with an integral

Proof: Recall: an = f (n). The proof is based in the pictures:

a

4

a

2 3

f(x)

1

1

y

x
2a1 2

1 4

a

2 3

f(x)1

y

x

a1 a

∫ 4

1
f (x) dx 6 a1 + a2 + a3 ⇒

∫ n+1

1
f (x) dx 6

n∑
k=1

ak .

a2 + a3 6
∫ 3

1
f (x) dx ⇒

n∑
k=1

ak 6 a1 +

∫ n

1
f (x) dx .

∫ n+1

1
f (x) dx 6

n∑
k=1

an 6 a1 +

∫ n

1
f (x) dx .



Testing with an integral

Example

Use the integral test to show that
∞∑

n=1

1

n
diverges.

Solution: The convergence of the harmonic series
∞∑

n=1

1

n
is related

to the convergence of the integral

∫ ∞
1

dx

x
. Since

ln(n + 1) =

∫ n+1

1

dx

x
6

n∑
k=1

an and ln(n + 1) →∞

then the harmonic series
∞∑

n=1

1

n
diverges. C

Testing with an integral

Example

Show whether the series
∞∑

n=1

1

1 + n2
converges or not.

Solution: The convergence of the series
∞∑

n=1

1

1 + n2
is related to

the convergence of the integral

∫ ∞
1

dx

1 + x2
. Since∫ n

1

dx

1 + x2
= arctan(x)

∣∣n
1

=
(
arctan(n)− π

4

)
→

(π

2
− π

4

)
.

The inequality
∞∑

k=1

ak 6 a1 +

∫ ∞
1

f (x) dx implies

∞∑
n=1

1

1 + n2
6

1

2
+

π

4
⇒

∞∑
n=1

1

1 + n2
converges. C



Testing with an integral

Example

Show whether the series
∞∑

n=1

1
√

n
√

n + 1
converges or not.

Solution: The convergence of the series
∞∑

n=1

1
√

n
√

n + 1
is related

to the convergence of the integral

∫ ∞
1

dx
√

x
√

x + 1
.

Limit test for improper integrals: lim
x→∞

1
√

x
√

x + 1
= lim

x→∞

1

x
.

Since

∫ ∞
1

dx

x
diverges, then

∫ ∞
1

dx
√

x
√

x + 1
diverges.

Integral test for series implies:
∞∑

n=1

1
√

n
√

n + 1
diverges. C
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Error estimation in the integral test.

Theorem
If f : [1,∞) → R is a continuous, positive, decreasing function,

and the series
n∑

k=1

ak = sn → S, where an = f (n), then the

remainder Rn = S − sn satisfies∫ ∞
n+1

f (x) dx 6 Rn 6
∫ ∞

n
f (x) dx .

Proof: Again, the proof is based in the pictures:

a

4

a

2 3

f(x)

1

1

y

x
2a1 2

1 4

a

2 3

f(x)1

y

x

a1 a

∫ ∞
3

f (x) dx 6 R2 = a3 + a4 + · · · 6
∫ ∞

2
f (x) dx


