Infinite series (Sect. 10.2)

- Series and partial sums.
- Geometric series.
- The n-term test for a divergent series.
- Operations with series.
- Adding-deleting terms and re-indexing.

Infinite series (Sect. 10.2)

- Series and partial sums.
- Geometric series.
- The n-term test for a divergent series.
- Operations with series.
- Adding-deleting terms and re-indexing.

Series and partial sums

Definition

An infinite series is a sum of infinite terms,

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n}
$$

Remark: Any sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defines the series $\sum_{n=1}^{\infty} a_{n}$.

Example

The sequence $\left\{a_{n}=\frac{1}{2^{n}}\right\}_{n=1}^{\infty}$ defines the series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots
$$

$1 / 2$	$1 / 8$	

This infinite sum makes sense, since

Series and partial sums

Definition

Given an infinite series $\sum_{n=1}^{\infty} a_{n}$, the sequence of partial sums of the series is the sequence $\left\{s_{n}\right\}$ given by $s_{n}=\sum_{k=1}^{n} a_{k}$, that is,

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3}
\end{aligned}
$$

The series converges to L iff the sequence of partial sums $\left\{s_{n}\right\}$ converges to L, and in this case we write $\sum_{n=1}^{\infty} a_{n}=L$. The series diverges iff the sequence of partial sums $\left\{s_{n}\right\}$ diverges.

Series and partial sums

Remark: The series $a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots$ can be denoted as

$$
\sum_{n=1}^{\infty} a_{n}, \quad \sum_{k=1}^{\infty} a_{k}, \quad \sum a_{n}
$$

Example

The series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges to 1 ,

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots=1
$$

Since $\left\{s_{n}\right\} \rightarrow 1$, as can be seen in the
 picture.

Series and partial sums

Example

- The series $\sum_{n=1}^{\infty} n=1+2+3+\cdots+n+\cdots$ diverges.

Indeed, the sequence of partial sums diverges,

$$
s_{1}=1, \quad s_{2}=3, \quad s_{3}=6, \quad s_{n}=\sum_{k=1}^{n} k .
$$

- The series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots \quad$ is called the harmonic series. We will see that the harmonic series diverges.

While the series $\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
converges. converges.

Series and partial sums

Example

Evaluate the infinite series $\frac{1}{2}+\frac{1}{(2)(3)}+\frac{1}{(3)(4)}+\frac{1}{(4)(5)}+\cdots$.
Solution: We first find the general term a_{n}, that is,

$$
\begin{aligned}
a_{n} & =\frac{1}{n(n+1)}, \quad n=1, \cdots \infty \\
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} & =\frac{1}{2}+\frac{1}{(2)(3)}+\frac{1}{(3)(4)}+\frac{1}{(4)(5)}+\cdots
\end{aligned}
$$

Partial fractions implies $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{(n+1)}\right)$. So,

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1+\frac{1}{2}+\frac{1}{3}+\cdots-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\cdots=1
$$

We conclude: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.

Infinite series (Sect. 10.2)

- Series and partial sums.
- Geometric series.
- The n-term test for a divergent series.
- Operations with series.
- Adding-deleting terms and re-indexing.

Geometric series

Definition

A geometric series is a series of the form

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\cdots .
$$

where a and r are real numbers.

Example

The case $a=1$, and ratio $r=\frac{1}{2}$ is the geometric series

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

We have seen $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=1$, so $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=2$

Geometric series

Theorem
If the geometric series $\sum_{n=0}^{\infty} a r^{n}$ has ratio $|r|<1$, then converges,

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

Proof: Multiply any partial sum s_{n} by $(1-r)$, that is,

$$
\begin{gathered}
(1-r) s_{n}=a(1-r)\left(1+r+r^{2}+\cdots+r^{n}\right) \\
(1-r) s_{n}=a\left(1+r+r^{2}+\cdots+r^{n}\right)-a\left(r+r^{2}+r^{3}+\cdots+r^{n+1}\right) \\
(1-r) s_{n}=a\left(1-r^{n+1}\right) \Rightarrow s_{n}=\frac{a\left(1-r^{n+1}\right)}{(1-r)} .
\end{gathered}
$$

Since $|r|<1$, then $r^{n+1} \rightarrow 0$.

Geometric series

Example

Evaluate the infinite series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$.
Solution: Recall the picture says $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=2$.
We now use the Theorem above, $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$,
for $a=1$ and $r=\frac{1}{2}$.

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{1-\frac{1}{2}}=\frac{1}{\left(\frac{2-1}{2}\right)} \Rightarrow \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=2
$$

Geometric series

Example

Evaluate the infinite sum $\sum_{n=1}^{\infty}(-1)^{(n+1)} \frac{3}{4^{n}}$.
Solution: This is a geometric series, since

$$
\sum_{n=1}^{\infty}(-1)^{(n+1)} \frac{3}{4^{n}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{(-3)}{4^{n}}=\sum_{n=1}^{\infty}(-3)\left(-\frac{1}{4}\right)^{n}
$$

Hence $a=-3$ and $r=-\frac{1}{4}$. The Theorem above implies,

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{(n+1)} \frac{3}{4^{n}}=\sum_{n=0}^{\infty}(-1)^{(n+1)} \frac{3}{4^{n}}-(-3)=\frac{(-3)}{\left(1+\frac{1}{4}\right)}+3 \\
\sum_{n=1}^{\infty}(-1)^{(n+1)} \frac{3}{4^{n}}=-\frac{3}{\left(\frac{4+1}{4}\right)}+3, \text { then } \sum_{n=1}^{\infty}(-1)^{(n+1)} \frac{3}{4^{n}}=-\frac{12}{5}+3 .
\end{gathered}
$$

Infinite series (Sect. 10.2)

- Series and partial sums.
- Geometric series.
- The n-term test for a divergent series.
- Operations with series.
- Adding-deleting terms and re-indexing.

The n-term test for a divergent series
Theorem
If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$.
Remark: This result is useful to find divergent series.
Remark: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
Example

- $\sum_{n=1}^{\infty} n$ diverges, since $n \rightarrow \infty$.
- $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges, since $\frac{n}{n+1} \rightarrow 1 \neq 0$.
- $\sum_{n=1}^{\infty}(-1)^{n}$ diverges, since $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.

Infinite series (Sect. 10.2)

- Series and partial sums.
- Geometric series.
- The n-term test for a divergent series.
- Operations with series.
- Adding-deleting terms and re-indexing.

Operations with series

Remark: Additions of convergent series define convergent series.
Theorem
If the series $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$, then

- $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B$;
- $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=A-B$;
- $\sum_{n=1}^{\infty} k a_{n}=k A$.

Infinite series (Sect. 10.2)

- Series and partial sums.
- Geometric series.
- The n-term test for a divergent series.
- Operations with series.
- Adding-deleting terms and re-indexing.

Adding-deleting terms and re-indexing

Remarks:

- Adding or deleting a finite number of terms to series does not change the series convergence or divergence.

Example: $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\sum_{n=4}^{\infty} \frac{1}{2^{n}}$.

- The same series can be written using different indexes.

Example: $\sum_{n=1}^{\infty} a_{n}=\sum_{\ell=1}^{\infty} a_{\ell}=\sum_{k=7}^{\infty} a_{k-6}$.
Example: $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=\sum_{k=8}^{\infty} \frac{1}{2^{(k-7)}}=\sum_{k=8}^{\infty} \frac{2^{7}}{2^{k}}$.

