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Series and partial sums

Definition
An infinite series is a sum of infinite terms,

a1 + a2 + a3 + · · ·+ an + · · · =
∞∑

n=1

an.

Remark: Any sequence {an}∞n=1 defines the series
∞∑

n=1

an.

Example

The sequence
{

an =
1

2n

}∞
n=1

defines

the series

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · ·

This infinite sum makes sense, since
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Series and partial sums

Definition

Given an infinite series
∞∑

n=1

an, the sequence of partial sums of the

series is the sequence {sn} given by sn =
n∑

k=1

ak , that is,

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

The series converges to L iff the sequence of partial sums {sn}

converges to L, and in this case we write
∞∑

n=1

an = L. The series

diverges iff the sequence of partial sums {sn} diverges.



Series and partial sums

Remark: The series a1 + a2 + a3 + · · ·+ an + · · · can be denoted as

∞∑
n=1

an,

∞∑
k=1

ak ,
∑

an

Example

The series
∞∑

n=1

1

2n
converges to 1,

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · · = 1

Since {sn} → 1, as can be seen in the
picture.
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Series and partial sums

Example

I The series
∞∑

n=1

n = 1 + 2 + 3 + · · ·+ n + · · · diverges.

Indeed, the sequence of partial sums diverges,

s1 = 1, s2 = 3, s3 = 6, sn =
n∑

k=1

k.

I The series
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
+ · · · is called the

harmonic series. We will see that the harmonic series diverges.

I While the series
∞∑

n=1

(−1)(n+1)

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges.



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=
∞∑

n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C
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Geometric series

Definition
A geometric series is a series of the form

∞∑
n=0

a rn = a + a r + a r2 + a r3 + · · · .

where a and r are real numbers.

Example

The case a = 1, and ratio r =
1

2
is the geometric series

∞∑
n=0

(1

2

)n
= 1 +

1

2
+

1

4
+

1

8
+ · · · .

We have seen
1

2
+

1

4
+

1

8
+ · · · = 1, so

∞∑
n=0

(1

2

)n
= 2

Geometric series

Theorem

If the geometric series
∞∑

n=0

a rn has ratio |r | < 1, then converges,

∞∑
n=0

a rn =
a

1− r
.

Proof: Multiply any partial sum sn by (1− r), that is,

(1− r)sn = a(1− r)(1 + r + r2 + · · ·+ rn)

(1− r)sn = a(1 + r + r2 + · · ·+ rn)− a(r + r2 + r3 + · · ·+ rn+1)

(1− r)sn = a(1− rn+1) ⇒ sn =
a(1− rn+1)

(1− r)
.

Since |r | < 1, then rn+1 → 0.



Geometric series

Example

Evaluate the infinite series
∞∑

n=0

1

2n
.

Solution: Recall the picture says
∞∑

n=0

1

2n
= 2.

We now use the Theorem above,
∞∑

n=0

a rn =
a

1− r
,

for a = 1 and r =
1

2
.

∞∑
n=0

(1

2

)n
=

1

1− 1
2

=
1(

2−1
2

) ⇒
∞∑

n=0

(1

2

)n
= 2. C

Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=
∞∑

n=1

(−1)n
(−3)

4n
=
∞∑

n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=
∞∑

n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.
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The n-term test for a divergent series

Theorem

If the series
∞∑

n=1

an converges, then an → 0.

Remark: This result is useful to find divergent series.

Remark: If lim
n→∞

an 6= 0, then
∞∑

n=1

an diverges.

Example

I

∞∑
n=1

n diverges, since n →∞.

I

∞∑
n=1

n

n + 1
diverges, since

n

n + 1
→ 1 6= 0.

I

∞∑
n=1

(−1)n diverges, since lim
n→∞

(−1)n does not exist.
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Operations with series

Remark: Additions of convergent series define convergent series.

Theorem

If the series
∞∑

n=1

an = A and
∞∑

n=1

bn = B, then

I

∞∑
n=1

(an + bn) = A + B;

I

∞∑
n=1

(an − bn) = A− B;

I

∞∑
n=1

kan = kA.
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Adding-deleting terms and re-indexing

Remarks:

I Adding or deleting a finite number of terms to series does not
change the series convergence or divergence.

Example:
∞∑

n=1

1

2n
=

1

2
+

1

4
+

1

8
+
∞∑

n=4

1

2n
.

I The same series can be written using different indexes.

Example:
∞∑

n=1

an =
∞∑

`=1

a` =
∞∑

k=7

ak−6.

Example:
∞∑

n=0

1

2n
=
∞∑

k=8

1

2(k−7)
=
∞∑

k=8

27

2k
.


