
Infinite sequences (Sect. 10.1)

Today’s Lecture:

I Review: Infinite sequences.

I The Continuous Function Theorem for sequences.

I Using L’Hôpital’s rule on sequences.

I Table of useful limits.

I Bounded and monotonic sequences.

Previous Lecture:

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.

Review: Infinite sequences

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Definition
An infinite sequence {an} has limit L iff for every number ε > 0
there exists a positive integer N such that

N < n ⇒ |an − L| < ε.

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.
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The Continuous Function Theorem for sequences

Theorem
If a sequence {an} → L and a continuous function f is defined
both at L and every an, then the sequence {f (an)} → f (L).

Example

Find the limit of
{

ln
((2 + n + 3n2)

(2n2 + 3)

)}
as n →∞.

Solution: The sequence bn = ln
((2 + n + 3n2)

(2n2 + 3)

)
can be written as

bn = f (an), f (x) = ln(x), an =
(2 + n + 3n2)

(2n2 + 3)
.

an =
(2 + n + 3n2)

(2n2 + 3)

(
1
n2

)(
1
n2

) =

(
2
n2 + 1

n + 3
)(

2 + 3
n2

) → 3

2
.

We conclude that bn → ln
(3

2

)
. C
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Using L’Hôpital’s rule on sequences

Theorem (L’Hôpital’s rule for sequences)

If the sequence {an} satisfies that:

I There exist a function f such that for n > N the sequence
elements an can be written as an = f (n);

I And lim
x→∞

f (x) = L;

then holds that lim
n→∞

an = L.

Remark: The lim
x→∞

f (x) may indeterminate, and L’Hôpital’s rule

might be used to compute that limit.

Example

Find the limit an = 8n
√

5n as n →∞.

Solution: Notice that an = f (n) for f (x) = 8x
√

5x .
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Example

Find the limit an = 8n
√

5n as n →∞.

Solution: Recall: an = f (n) for f (x) = 8x
√

5x .

8x
√

5x = e ln( 8x√5x) = e

(
ln(5x)

8x

)
But lim

x→∞

ln(5x)

8x
is indeterminate

∞
∞

. L’Hôpital’s rule,

lim
x→∞

ln(5x)

8x
= lim

x→∞

(
1
x

)
8

= lim
x→∞

1

8x
= 0.

lim
x→∞

8x
√

5x = lim
x→∞

e

(
ln(5x)

8x

)
= e0 ⇒ lim

x→∞
8x
√

5x = 1.

We conclude that
8n
√

5n → 1 as n →∞. C

Using L’Hôpital’s rule on sequences

Example

Given positive numbers a, b, find the lim
n→∞

(
1− b

n

)an
.

Solution: We rewrite the sequence as follows,

(
1− b

n

)an
= e

[
an ln(1− b

n
)
]

= e

[
a ln(1− b

n )

1
n

]

The exponent has an indeterminate limit,
a ln(1− b

n )
1
n

→ 0

0
.

Recall the argument with the L’Hôpital’s rule on functions,

lim
x→∞

a ln(1− b
x )

1
x

= lim
x→∞

a
(1− b

x
)

b
x2

− 1
x2

= lim
x→∞

ab

(1− b
x )

= ab.

We conclude that lim
n→∞

(
1− b

n

)an
= eab. C
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Table of useful limits

Remark: The following limits appear often in applications:

I lim
n→∞

ln(n)

n
= 0;

I lim
n→∞

n
√

n = 1;

I lim
n→∞

x

(
1
n

)
= 1, for x > 0;

I lim
n→∞

xn = 0, for |x | < 1;

I lim
n→∞

(
1 +

x

n

)n
= ex , for x ∈ R;

I lim
n→∞

xn

n!
= 0.
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Bounded and monotonic sequences

Definition
A sequence {an} is bounded above iff there is M ∈ R such that

an 6 M for all n > 1.

The sequence {an} is bounded below iff there is m ∈ R such that

m 6 an for all n > 1.

A sequence is bounded iff it is bounded above and below.

Example

I an =
1

n
is bounded, since 0 <

1

n
6 1.

I an = (−1)n is bounded, since −1 6 (−1)n 6 1.



Bounded and monotonic sequences

Definition

I A sequence {an} is increasing iff an < an+1.

I A sequence {an} is non-decreasing iff an 6 an+1.

I A sequence {an} is decreasing iff an > an+1.

I A sequence {an} is non-increasing iff an > an+1.

I A sequence is monotonic iff the sequence is both
non-increasing and non-decreasing.

Theorem

I A non-decreasing, bounded above sequence, converges.

I A non-increasing, bounded below sequence, converges.

Bounded and monotonic sequences

Example

Determine whether the sequence an =
n

n2 + 1
converges or not.

Solution: We show that an is decreasing. Indeed, the condition

an+1 < an ⇔ n + 1

(n + 1)2 + 1
<

n

n2 + 1

(n + 1)(n2 + 1) < n(n2 + 2n + 2)

n3 + n2 + n + 1 < n3 + 2n2 + 2n

Since 1 < (n2 + n) is true for n > 1, then an+1 < an; decreasing.

The sequence satisfies that 0 < an, bounded below.

We conclude that an converges. C


