Infinite sequences (Sect. 10.1)

Today's Lecture:

- ► Review: Infinite sequences.
- ► The Continuous Function Theorem for sequences.
- ► Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.

Previous Lecture:

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- ► The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- ► The Sandwich Theorem for sequences.

Review: Infinite sequences

Definition

An infinite sequence of numbers is an ordered set of real numbers.

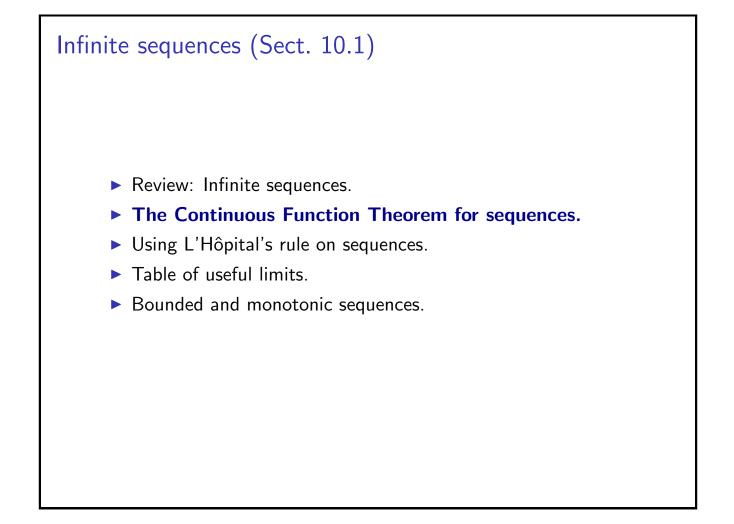
Definition

An infinite sequence $\{a_n\}$ has limit *L* iff for every number $\epsilon > 0$ there exists a positive integer *N* such that

 $N < n \quad \Rightarrow \quad |a_n - L| < \epsilon.$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

Remark: The limits of simple sequences can be used to compute limits of more complicated sequences.



The Continuous Function Theorem for sequences

Theorem

If a sequence $\{a_n\} \to L$ and a continuous function f is defined both at L and every a_n , then the sequence $\{f(a_n)\} \to f(L)$.

Example

Find the limit of $\left\{ \ln\left(\frac{(2+n+3n^2)}{(2n^2+3)}\right) \right\}$ as $n \to \infty$.

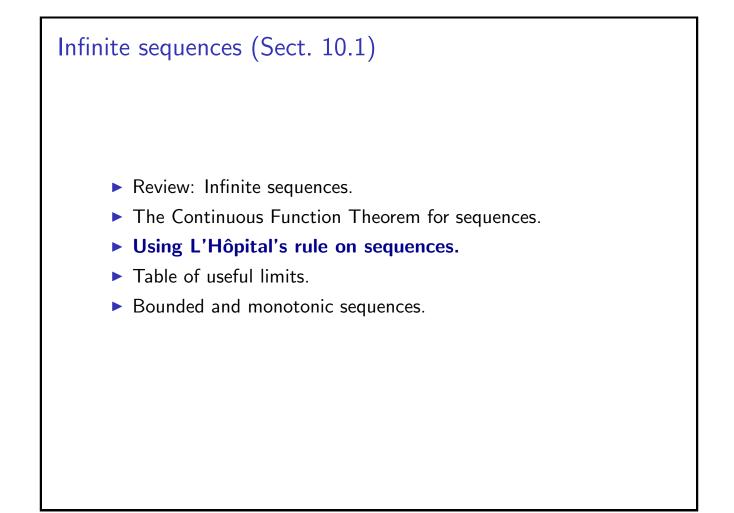
Solution: The sequence $b_n = \ln\left(\frac{(2+n+3n^2)}{(2n^2+3)}\right)$ can be written as

$$b_n = f(a_n), \quad f(x) = \ln(x), \quad a_n = \frac{(2+n+3n^2)}{(2n^2+3)},$$

$$a_n = \frac{(2+n+3n^2)}{(2n^2+3)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{2}{n^2}+\frac{1}{n}+3\right)}{\left(2+\frac{3}{n^2}\right)} \to \frac{3}{2}.$$

We conclude that $b_n \to \ln\left(\frac{3}{2}\right)$.

 \triangleleft



Using L'Hôpital's rule on sequences

Theorem (L'Hôpital's rule for sequences)

If the sequence $\{a_n\}$ satisfies that:

- There exist a function f such that for n > N the sequence elements a_n can be written as a_n = f(n);
- And $\lim_{x\to\infty} f(x) = L;$

then holds that $\lim_{n\to\infty} a_n = L$.

Remark: The $\lim_{x\to\infty} f(x)$ may indeterminate, and L'Hôpital's rule might be used to compute that limit.

Example Find the limit $a_n = \sqrt[8n]{5n}$ as $n \to \infty$.

Solution: Notice that $a_n = f(n)$ for $f(x) = \sqrt[8x]{5x}$.

Using L'Hôpital's rule on sequences Example Find the limit $a_n = \sqrt[8n]{5n}$ as $n \to \infty$. Solution: Recall: $a_n = f(n)$ for $f(x) = \sqrt[8x]{5x}$. $\sqrt[8n]{5x} = e^{\ln(\sqrt[8n]{5x})} = e^{\left(\frac{\ln(5x)}{8x}\right)}$ But $\lim_{x\to\infty} \frac{\ln(5x)}{8x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule, $\lim_{x\to\infty} \frac{\ln(5x)}{8x} = \lim_{x\to\infty} \frac{\left(\frac{1}{x}\right)}{8} = \lim_{x\to\infty} \frac{1}{8x} = 0.$ $\lim_{x\to\infty} \sqrt[8n]{5x} = \lim_{x\to\infty} e^{\left(\frac{\ln(5x)}{8x}\right)} = e^0 \Rightarrow \lim_{x\to\infty} \sqrt[8n]{5x} = 1.$ We conclude that $\sqrt[8n]{5n} \to 1$ as $n \to \infty$.

Using L'Hôpital's rule on sequences

Example

Given positive numbers *a*, *b*, find the $\lim_{n\to\infty} \left(1-\frac{b}{n}\right)^{an}$.

Solution: We rewrite the sequence as follows,

$$\left(1-rac{b}{n}
ight)^{an}=e^{\left[an\ln\left(1-rac{b}{n}
ight)
ight]}=e^{\left[rac{a\ln\left(1-rac{b}{n}
ight)}{rac{1}{n}}
ight]}$$

The exponent has an indeterminate limit, $\frac{a \ln(1 - \frac{b}{n})}{\frac{1}{n}} \rightarrow \frac{0}{0}$. Recall the argument with the L'Hôpital's rule on functions,

$$\lim_{x \to \infty} \frac{a \ln(1 - \frac{b}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{a}{(1 - \frac{b}{x})} \frac{b}{x^2}}{-\frac{1}{x^2}} = \lim_{x \to \infty} \frac{ab}{(1 - \frac{b}{x})} = ab$$

We conclude that $\lim_{n\to\infty} \left(1-\frac{b}{n}\right)^{an} = e^{ab}$.

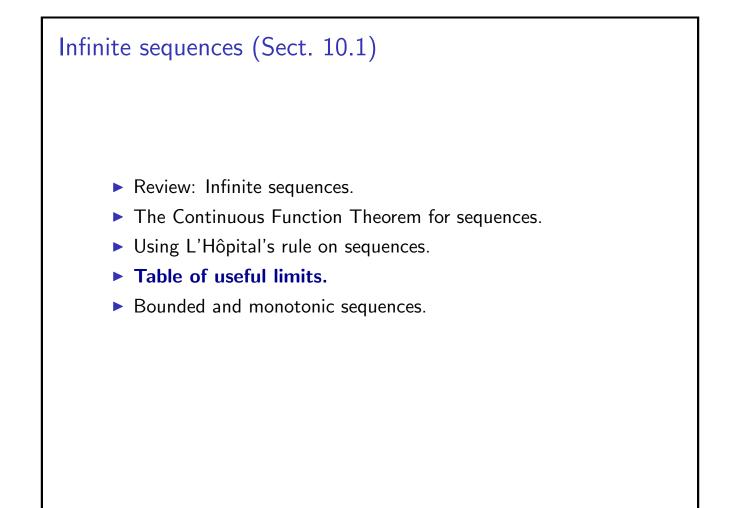


Table of useful limits

Remark: The following limits appear often in applications:

$$\lim_{n\to\infty}\frac{\ln(n)}{n}=0;$$

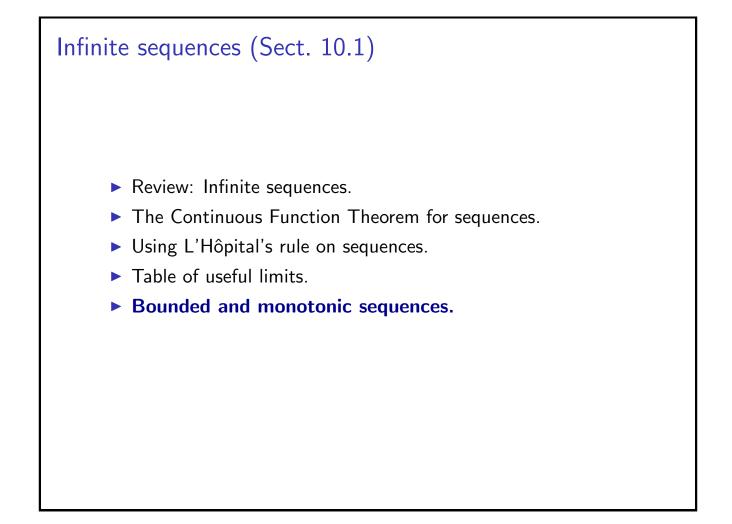
$$\lim_{n\to\infty} \sqrt[n]{n} = 1;$$

$$\lim_{n \to \infty} x^{\left(\frac{1}{n}\right)} = 1, \text{ for } x > 0;$$

•
$$\lim_{n \to \infty} x^n = 0$$
, for $|x| < 1$;

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x, \text{ for } x \in \mathbb{R};$$

$$\lim_{n\to\infty}\frac{x^n}{n!}=0.$$



Bounded and monotonic sequences

Definition

A sequence $\{a_n\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$a_n \leqslant M$$
 for all $n \ge 1$.

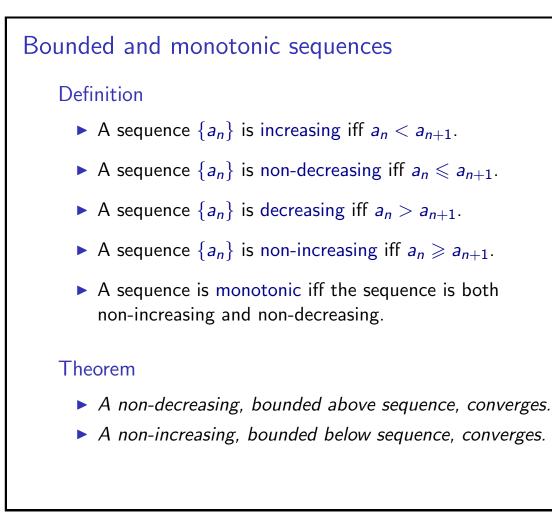
The sequence $\{a_n\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$m \leqslant a_n$$
 for all $n \geqslant 1$.

A sequence is bounded iff it is bounded above and below.

Example

• $a_n = \frac{1}{n}$ is bounded, since $0 < \frac{1}{n} \le 1$. • $a_n = (-1)^n$ is bounded, since $-1 \le (-1)^n \le 1$.



Bounded and monotonic sequences

Example

Determine whether the sequence $a_n = \frac{n}{n^2 + 1}$ converges or not.

Solution: We show that a_n is decreasing. Indeed, the condition

$$egin{aligned} a_{n+1} < a_n & \Leftrightarrow & rac{n+1}{(n+1)^2+1} < rac{n}{n^2+1} \ & (n+1)(n^2+1) < n(n^2+2n+2) \ & n^3+n^2+n+1 < n^3+2n^2+2n \end{aligned}$$

Since $1 < (n^2 + n)$ is true for $n \ge 1$, then $a_{n+1} < a_n$; decreasing. The sequence satisfies that $0 < a_n$, bounded below.

We conclude that a_n converges.

 \triangleleft