Infinite sequences (Sect. 10.1)

Today's Lecture:

» Overview: Sequences, series, and calculus.

» Definition and geometrical representations.

» The limit of a sequence, convergence, divergence.

» Properties of sequence limits.

» The Sandwich Theorem for sequences.

Next Lecture:

» The Continuous Function Theorem for sequences.

» Using L'Hopital’s rule on sequences.

» Table of useful limits.

» Bounded and monotonic sequences.

Overview: Sequences, series, and calculus

Remarks:

>

>

b
We have defined the / f(x) dx as a limit of partial sums.
a

That is, as an infinite sum of numbers (areas of rectangles).

In the next section we define, precisely, what is an infinite
sum. Infinite sums are called series.

In this section we introduce the idea of an infinite sequence of
numbers. We will use sequences to define series.

Later on, the idea of infinite sums will be generalized from
numbers to functions.

We will express differentiable functions as infinite sums of
polynomials (Taylor series expansions).

b
. : . 52
Then we will be able to compute integrals like / e ™ dx.
a
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Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as
{317327337"' 7an7"'}7 or {an}zozb or {a”}‘
Example
{ n }OO n {1 2 3 n }
a, — — e e o .
n+1Jn=t" 7" np+17 127374 "n+1

(COVAES, an= (1A {~V3.VE 5]

50 V3 1
{cos(nm/6)} _,, an= cos(nm/6), {1,7,5,0,---}.




Definition and geometrical representations

Example

Find a formula for the general term of the sequence

{§ 45 6 !
5 25 125° 625" J

Solution: We know that:

P T s Uyt T s
142 242 342 442
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2
We conclude that a, = (—1)(”_1)(,75%). <

Definition and geometrical representations

Remark:
Infinite sequences can be represented on a line or on a plane.

Example
1yoo :
Graph the sequence {—} on a line and on a plane.
nJn=1
Solution:
an
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The limit of a sequence, convergence, divergence

Remark:

» As it happened in the example above, the numbers a, in a
sequence may approach a single value as n increases.

1yoo 1 11
== — 1,_,_,_,...} _

» This is not the case for every sequence. The sequence
elements may grow unbounded:

{”2}211 ={1,4,9,16, - }.

The sequence numbers may oscillate:

()= {1 1L 11,




The limit of a sequence, convergence, divergence

Definition
An infinite sequence {a,} has limit L iff for every number ¢ > 0
there exists a positive integer N such that

N<n = J|a,—L|<e

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: We use the notation lim,_~ a, = L or a, — L.

Example
. - 3\
Find the limit of the sequence {an =1+ —2}
n n=1
1
Solution: Since Pl 0, we will prove that L = 1.

The limit of a sequence, convergence, divergence

Example
3
Find the limit of the sequence {an =1+ —2}
n

n=1
Solution: Recall: The candidate for limitis L = 1.

Given any € > 0, we need to find the appropriate N. Since

3 3
lan — 1] <€ ‘ ‘<e < e \/j<n.
€ €

3
Therefore, given € > 0, choose N = {/ —.
€

We then conclude that for all n > N holds,

3 3
- <n & - ’ ‘<6 lap — 1] < e.
€ €
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Properties of sequence limits

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.

Theorem (Limit properties)
If the sequence {a,} — A and {b,} — B, then holds,

(a) lim{a,+ b} =A+B;

n—oo

(b) lim{a,— by} =A—-B;

(c) lim {kap} = KkA;
(d) lim {a,b,} = AB;

(e) IfB#0, then lim {a} _

n—oo bn

| >




Properties of sequence limits

Example

1 —2nyo©
Find the limit of the sequence {a,, = n} .
2+ 3n)n=1

Solution: We use the properties above to find the limit.

Rewrite the sequence as follows,

1 1
%:(L—%)%):g—2.
(2 4+ 3n) (5) 243
1
Since — — 0 as n — oo, then
n
1 2 2
- —2— =2, - — 0, - +3—3.
n n n
: L 2
Hence, the quotient property implies a, — —3

Properties of sequence limits

Example

3n3—2n+1}0O

Find the limit of th { -
ind the limit of the sequence < a, > 14

n=1.

Solution: Rewrite the sequence as follows,

. (3n® —2n+1) (%) B 3n—%+%
! (2n2+4) (&) 2+ %
1
Since — — 0 as n — oo, then
n
1 1\2 2 4
—=(—-) —0, - — 0, 24+ — — 2.
n? n n n?
: .. : . 3n
Hence, the quotient property implies lim a, = |lim —.
n— 00 n—oo 2

We conclude that a, diverges.
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The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences {a,}, {bn}, and {c,} satisfy

apn < b,<c,, for n>N,

and if both a,, — L and ¢, — L, then holds

b, — L
Example
: . sin(3n) y >
Find the limit of the sequence {a,, = 5 } :
n n=1
Solution: Since |sin(3n)| < 1, then
__|sin(3n) 1] 1 1
‘an’_‘ n2 ‘glp—ﬁ = —ﬁéan

Since +— — 0, we conclude that a, — 0.
n




