Infinite sequences (Sect. 10.1)

Today's Lecture:

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.

Next Lecture:

- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.

Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.
- In this section we introduce the idea of an infinite sequence of numbers. We will use sequences to define series.
- Later on, the idea of infinite sums will be generalized from numbers to functions.
- We will express differentiable functions as infinite sums of polynomials (Taylor series expansions).
- Then we will be able to compute integrals like $\int_{a}^{b} e^{-x^{2}} d x$.

Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.

Definition and geometrical representations

Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} . \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_{n}=(-1)^{n} \sqrt{n}, \quad\{-\sqrt{3}, \sqrt{4},-\sqrt{5}, \cdots\} . \\
& \{\cos (n \pi / 6)\}_{n=0}^{\infty}, \quad a_{n}=\cos (n \pi / 6), \quad\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \cdots\right\} .
\end{aligned}
$$

Definition and geometrical representations

Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
\begin{align*}
& \quad a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625} . \\
& a_{1}=\frac{(1+2)}{5}, \quad a_{2}=-\frac{(2+2)}{5^{2}}, \quad a_{3}=\frac{(3+2)}{5^{3}}, \quad a_{4}=-\frac{(4+2)}{5^{4}} . \\
& \text { We conclude that } a_{n}=(-1)^{(n-1)} \frac{(n+2)}{5^{n}} .
\end{align*}
$$

Definition and geometrical representations

Remark:

Infinite sequences can be represented on a line or on a plane.

Example

Graph the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ on a line and on a plane.
Solution:

Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.

The limit of a sequence, convergence, divergence
Remark:

- As it happened in the example above, the numbers a_{n} in a sequence may approach a single value as n increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0 .
$$

- This is not the case for every sequence. The sequence elements may grow unbounded:

$$
\left\{n^{2}\right\}_{n=1}^{\infty}=\{1,4,9,16, \cdots\}
$$

The sequence numbers may oscillate:

$$
\left\{(-1)^{n}\right\}_{n=0}^{\infty}=\{1,-1,1,-1,1, \cdots\}
$$

The limit of a sequence, convergence, divergence
Definition
An infinite sequence $\left\{a_{n}\right\}$ has limit L iff for every number $\epsilon>0$ there exists a positive integer N such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

Remark: We use the notation $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$.

Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $\frac{1}{n^{2}} \rightarrow 0$, we will prove that $L=1$.

The limit of a sequence, convergence, divergence

Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate N. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.
We then conclude that for all $n>N$ holds,

$$
\sqrt{\frac{3}{\epsilon}}<n \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad\left|a_{n}-1\right|<\epsilon
$$

Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.

Properties of sequence limits

Remark: The limits of simple sequences can be used to compute limits of more complicated sequences.

Theorem (Limit properties)
If the sequence $\left\{a_{n}\right\} \rightarrow A$ and $\left\{b_{n}\right\} \rightarrow B$, then holds,
(a) $\lim _{n \rightarrow \infty}\left\{a_{n}+b_{n}\right\}=A+B$;
(b) $\lim _{n \rightarrow \infty}\left\{a_{n}-b_{n}\right\}=A-B$;
(c) $\lim _{n \rightarrow \infty}\left\{k a_{n}\right\}=k A$;
(d) $\lim _{n \rightarrow \infty}\left\{a_{n} b_{n}\right\}=A B$;
(e) If $B \neq 0$, then $\lim _{n \rightarrow \infty}\left\{\frac{a_{n}}{b_{n}}\right\}=\frac{A}{B}$.

Properties of sequence limits

Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n}-2 \rightarrow-2, \quad \frac{2}{n} \rightarrow 0, \quad \frac{2}{n}+3 \rightarrow 3
$$

Hence, the quotient property implies $a_{n} \rightarrow-\frac{2}{3}$.

Properties of sequence limits

Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n^{2}}=\left(\frac{1}{n}\right)^{2} \rightarrow 0, \quad \frac{2}{n} \rightarrow 0, \quad 2+\frac{4}{n^{2}} \rightarrow 2
$$

Hence, the quotient property implies $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{2}$.
We conclude that a_{n} diverges.

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.

The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L .
$$

Example

Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right| \leqslant\left|\frac{1}{n^{2}}\right|=\frac{1}{n^{2}} \quad \Rightarrow \quad-\frac{1}{n^{2}} \leqslant a_{n} \leqslant \frac{1}{n^{2}} .
$$

Since $\pm \frac{1}{n^{2}} \rightarrow 0$, we conclude that $a_{n} \rightarrow 0$.

