

Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) dx$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called *series*.
- In this section we introduce the idea of an *infinite sequence* of numbers. We will use sequences to define series.
- Later on, the idea of infinite sums will be generalized from numbers to functions.
- We will express differentiable functions as infinite sums of polynomials (Taylor series expansions).

• Then we will be able to compute integrals like $\int_{-\infty}^{\infty} e^{-x^2} dx$.

Definition and geometrical representations

Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$\{a_1, a_2, a_3, \cdots, a_n, \cdots\}, \text{ or } \{a_n\}_{n=1}^{\infty}, \text{ or } \{a_n\}.$$

Example

$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_n = \frac{n}{n+1}, \quad \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\}.$$
$$\left\{(-1)^n \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_n = (-1)^n \sqrt{n}, \quad \left\{-\sqrt{3}, \sqrt{4}, -\sqrt{5}, \cdots\right\}.$$
$$\left\{\cos(n\pi/6)\right\}_{n=0}^{\infty}, \quad a_n = \cos(n\pi/6), \quad \left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \cdots\right\}.$$

Definition and geometrical representations

Remark:

Infinite sequences can be represented on a line or on a plane.

Example

Graph the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ on a line and on a plane. Solution: $a_n + b_{n=1}^{n} +$

 \triangleleft

The limit of a sequence, convergence, divergence

Remark:

As it happened in the example above, the numbers a_n in a sequence may approach a single value as n increases.

$$\left\{a_n=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1,\,\frac{1}{2},\,\frac{1}{3},\,\frac{1}{4},\,\cdots\right\}\to 0.$$

This is not the case for every sequence. The sequence elements may grow unbounded:

$${n^2}_{n=1}^{\infty} = {1, 4, 9, 16, \cdots}$$

The sequence numbers may oscillate:

$$\{(-1)^n\}_{n=0}^{\infty} = \{1, -1, 1, -1, 1, \cdots\}.$$

The limit of a sequence, convergence, divergence
Definition
An infinite sequence
$$\{a_n\}$$
 has limit L iff for every number $\epsilon > 0$
there exists a positive integer N such that
 $N < n \Rightarrow |a_n - L| < \epsilon$.
A sequence is called convergent iff it has a limit, otherwise it is
called divergent.
Remark: We use the notation $\lim_{n\to\infty} a_n = L$ or $a_n \to L$.
Example
Find the limit of the sequence $\{a_n = 1 + \frac{3}{n^2}\}_{n=1}^{\infty}$.
Solution: Since $\frac{1}{n^2} \to 0$, we will prove that $L = 1$.
The limit of a sequence, convergence, divergence

Example

Find the limit of the sequence $\left\{a_n = 1 + \frac{3}{n^2}\right\}_{n=1}^{\infty}$.

Solution: Recall: The candidate for limit is L = 1. Given any $\epsilon > 0$, we need to find the appropriate N. Since

$$|a_n - 1| < \epsilon \quad \Leftrightarrow \quad \left|\frac{3}{n^2}\right| < \epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon} < n^2 \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}} < n.$$

Therefore, given $\epsilon > 0$, choose $N = \sqrt{\frac{3}{\epsilon}}$.

We then conclude that for all n > N holds,

$$\sqrt{\frac{3}{\epsilon}} < n \quad \Leftrightarrow \quad \frac{3}{\epsilon} < n^2 \quad \Leftrightarrow \quad \left|\frac{3}{n^2}\right| < \epsilon \quad \Leftrightarrow \quad |a_n - 1| < \epsilon.$$

Properties of sequence limits

Remark: The limits of simple sequences can be used to compute limits of more complicated sequences.

Theorem (Limit properties) If the sequence $\{a_n\} \to A$ and $\{b_n\} \to B$, then holds, (a) $\lim_{n \to \infty} \{a_n + b_n\} = A + B;$ (b) $\lim_{n \to \infty} \{a_n - b_n\} = A - B;$ (c) $\lim_{n \to \infty} \{ka_n\} = kA;$ (d) $\lim_{n \to \infty} \{a_n b_n\} = AB;$ (e) If $B \neq 0$, then $\lim_{n \to \infty} \{\frac{a_n}{b_n}\} = \frac{A}{B}.$

Properties of sequence limits

Example

Find the limit of the sequence $\left\{a_n = \frac{1-2n}{2+3n}\right\}_{n=1}^{\infty}$.

Solution: We use the properties above to find the limit. Rewrite the sequence as follows,

$$a_n = rac{(1-2n)}{(2+3n)} \, rac{\left(rac{1}{n}
ight)}{\left(rac{1}{n}
ight)} = rac{rac{1}{n}-2}{rac{2}{n}+3}$$

Since $\frac{1}{n} \to 0$ as $n \to \infty$, then

$$\frac{1}{n}-2 \rightarrow -2, \qquad \frac{2}{n} \rightarrow 0, \qquad \frac{2}{n}+3 \rightarrow 3.$$

Hence, the quotient property implies $a_n \rightarrow -\frac{2}{3}$.

Properties of sequence limits

Example

Find the limit of the sequence $\left\{a_n = \frac{3n^3 - 2n + 1}{2n^2 + 4}\right\}_{n=1}^{\infty}$.

Solution: Rewrite the sequence as follows,

$$a_n = \frac{(3n^3 - 2n + 1)}{(2n^2 + 4)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{3n - \frac{2}{n} + \frac{1}{n^2}}{2 + \frac{4}{n^2}}$$

Since $\frac{1}{n} \to 0$ as $n \to \infty$, then

$$\frac{1}{n^2} = \left(\frac{1}{n}\right)^2 \to 0, \qquad \frac{2}{n} \to 0, \qquad 2 + \frac{4}{n^2} \to 2.$$

Hence, the quotient property implies $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{3n}{2}$.

We conclude that a_n diverges.

 \triangleleft

 \triangleleft

The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze) If the sequences $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ satisfy

$$a_n \leqslant b_n \leqslant c_n$$
, for $n > N$,

and if both $a_n \rightarrow L$ and $c_n \rightarrow L$, then holds

 $b_n \rightarrow L$.

Example

Find the limit of the sequence $\left\{a_n = \frac{\sin(3n)}{n^2}\right\}_{n=1}^{\infty}$.

Solution: Since $|\sin(3n)| \leq 1$, then

$$|a_n| = \left|\frac{\sin(3n)}{n^2}\right| \leqslant \left|\frac{1}{n^2}\right| = \frac{1}{n^2} \quad \Rightarrow \quad -\frac{1}{n^2} \leqslant a_n \leqslant \frac{1}{n^2}.$$

Since $\pm \frac{1}{n^2} \to 0$, we conclude that $a_n \to 0$.