
Infinite sequences (Sect. 10.1)

Today’s Lecture:

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.

Next Lecture:

I The Continuous Function Theorem for sequences.

I Using L’Hôpital’s rule on sequences.

I Table of useful limits.

I Bounded and monotonic sequences.

Overview: Sequences, series, and calculus

Remarks:

I We have defined the

∫ b

a
f (x) dx as a limit of partial sums.

That is, as an infinite sum of numbers (areas of rectangles).

I In the next section we define, precisely, what is an infinite
sum. Infinite sums are called series.

I In this section we introduce the idea of an infinite sequence of
numbers. We will use sequences to define series.

I Later on, the idea of infinite sums will be generalized from
numbers to functions.

I We will express differentiable functions as infinite sums of
polynomials (Taylor series expansions).

I Then we will be able to compute integrals like

∫ b

a
e−x2

dx .



Infinite sequences (Sect. 10.1)
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Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

{a1, a2, a3, · · · , an, · · · }, or {an}∞n=1, or {an}.

Example{ n

n + 1

}∞
n=1

, an =
n

n + 1
,

{1

2
,

2

3
,

3

4
, · · · ,

n

n + 1
, · · ·

}
.

{
(−1)n

√
n
}∞

n=3
, an = (−1)n

√
n,

{
−
√

3,
√

4,−
√

5, · · ·
}
.

{
cos(nπ/6)

}∞
n=0

, an = cos(nπ/6),
{

1,

√
3

2
,
1

2
, 0, · · ·

}
.



Definition and geometrical representations

Example

Find a formula for the general term of the sequence{3

5
, − 4

25
,

5

125
, − 6

625
, · · ·

}
.

Solution: We know that:

a1 =
3

5
, a2 = − 4

25
, a3 =

5

125
, a4 = − 6

625
.

a1 =
(1 + 2)

5
, a2 = −(2 + 2)

52
, a3 =

(3 + 2)

53
, a4 = −(4 + 2)

54
.

We conclude that an = (−1)(n−1) (n + 2)

5n
. C

Definition and geometrical representations

Remark:
Infinite sequences can be represented on a line or on a plane.

Example

Graph the sequence
{1

n

}∞
n=1

on a line and on a plane.

Solution:

11/31/41/8 a n0 1/2
n0

1/2

1

a n

1/4

1/8

1/3

1 2 3 4

C
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The limit of a sequence, convergence, divergence

Remark:

I As it happened in the example above, the numbers an in a
sequence may approach a single value as n increases.{

an =
1

n

}∞
n=1

=
{

1,
1

2
,

1

3
,

1

4
, · · ·

}
→ 0.

I This is not the case for every sequence. The sequence
elements may grow unbounded:{

n2
}∞

n=1
=

{
1, 4, 9, 16, · · ·

}
.

The sequence numbers may oscillate:{
(−1)n

}∞
n=0

=
{
1, −1, 1, −1, 1, · · ·

}
.



The limit of a sequence, convergence, divergence

Definition
An infinite sequence {an} has limit L iff for every number ε > 0
there exists a positive integer N such that

N < n ⇒ |an − L| < ε.

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: We use the notation limn→∞ an = L or an → L.

Example

Find the limit of the sequence
{

an = 1 +
3

n2

}∞
n=1

.

Solution: Since
1

n2
→ 0, we will prove that L = 1.

The limit of a sequence, convergence, divergence

Example

Find the limit of the sequence
{

an = 1 +
3

n2

}∞
n=1

.

Solution: Recall: The candidate for limit is L = 1.

Given any ε > 0, we need to find the appropriate N. Since

|an − 1| < ε ⇔
∣∣∣ 3

n2

∣∣∣ < ε ⇔ 3

ε
< n2 ⇔

√
3

ε
< n.

Therefore, given ε > 0, choose N =

√
3

ε
.

We then conclude that for all n > N holds,√
3

ε
< n ⇔ 3

ε
< n2 ⇔

∣∣∣ 3

n2

∣∣∣ < ε ⇔ |an − 1| < ε.
C
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Properties of sequence limits

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.

Theorem (Limit properties)

If the sequence {an} → A and {bn} → B, then holds,

(a) lim
n→∞

{an + bn} = A + B;

(b) lim
n→∞

{an − bn} = A− B;

(c) lim
n→∞

{kan} = kA;

(d) lim
n→∞

{anbn} = AB;

(e) If B 6= 0, then lim
n→∞

{an

bn

}
=

A

B
.



Properties of sequence limits

Example

Find the limit of the sequence
{

an =
1− 2n

2 + 3n

}∞
n=1

.

Solution: We use the properties above to find the limit.

Rewrite the sequence as follows,

an =
(1− 2n)

(2 + 3n)

(
1
n

)(
1
n

) =
1
n − 2
2
n + 3

.

Since
1

n
→ 0 as n →∞, then

1

n
− 2 → −2,

2

n
→ 0,

2

n
+ 3 → 3.

Hence, the quotient property implies an → −2

3
. C

Properties of sequence limits

Example

Find the limit of the sequence
{

an =
3n3 − 2n + 1

2n2 + 4

}∞
n=1

.

Solution: Rewrite the sequence as follows,

an =
(3n3 − 2n + 1)

(2n2 + 4)

(
1
n2

)(
1
n2

) =
3n − 2

n + 1
n2

2 + 4
n2

Since
1

n
→ 0 as n →∞, then

1

n2
=

(1

n

)2
→ 0,

2

n
→ 0, 2 +

4

n2
→ 2.

Hence, the quotient property implies lim
n→∞

an = lim
n→∞

3n

2
.

We conclude that an diverges. C
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The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)

If the sequences {an}, {bn}, and {cn} satisfy

an 6 bn 6 cn, for n > N,

and if both an → L and cn → L, then holds

bn → L.

Example

Find the limit of the sequence
{

an =
sin(3n)

n2

}∞
n=1

.

Solution: Since | sin(3n)| 6 1, then

|an| =
∣∣∣sin(3n)

n2

∣∣∣ 6
∣∣∣ 1

n2

∣∣∣ =
1

n2
⇒ − 1

n2
6 an 6

1

n2
.

Since ± 1

n2
→ 0, we conclude that an → 0. C


