Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.

Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.

Review: Improper integrals type I

Definition (Type I)

Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function f on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function f on $(-\infty, b]$,

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function f on $(-\infty, \infty)$,

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

Review: Improper integrals type II

Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:

If f is continuous on $(a, b]$ and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

If f is continuous on $[a, b)$ and discontinuous at b, then

$$
\int_{a}^{b^{b}} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

If f is continuous on $[a, c) \cup(c, b]$ and discontinuous at c, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

In the case $p \neq 1$ we have:

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}=\frac{1}{1-p} & p<1 \\
\text { diverges } & p>1\end{cases} \\
& \int_{1}^{\infty} \frac{d x}{x^{p}}= \begin{cases}\text { diverges } & p<1 \\
=\frac{1}{p-1} & p>1\end{cases}
\end{aligned}
$$

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.

Convergence test: Direct comparison test

Remark: Convergence tests determine whether an improper integral converges or diverges.

Theorem (Direct comparison test)

If functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and $0 \leqslant f(x) \leqslant g(x)$ for every $x \in[a, \infty)$, then holds

$$
0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x
$$

The inequalities above imply the following statements:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges.

Convergence test: Direct comparison test

Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x}
$$

The last inequality follows because exp is an increasing function.

$$
0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \int_{1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{1} ^{\infty}=\frac{1}{e}
$$

Since $0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \frac{1}{e}$, the integral converges.

Convergence test: Direct comparison test

Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \Rightarrow x^{3}<\sqrt{x^{6}+1} \quad \Rightarrow \quad \frac{1}{\sqrt{x^{6}+1}}<\frac{1}{x^{3}}$.
Therefore, $\quad 0<\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}<\int_{1}^{\infty} \frac{d x}{x^{3}}=-\left.\frac{x^{-2}}{2}\right|_{1} ^{\infty}=\frac{1}{2}$.
Since $0 \leqslant \int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}} \leqslant \frac{1}{2}$, the integral converges.

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.

Convergence test: Limit comparison test

Remark: Convergence tests determine whether an improper integral converges or diverges.

Theorem (Limit comparison test)

If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty
$$

then the integrals

$$
\int_{a}^{\infty} f(x) d x, \quad \int_{a}^{\infty} g(x) d x
$$

both converge or both diverge.
Remark: Although both integrals above may converge, their values need not be the same.

Convergence test: Limit comparison test

Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$; since

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x^{6}+1}}{1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{x^{6}+1}}=1
$$

Since $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges, then $\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges too

Convergence test: Limit comparison test

Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1
$$

The limit comparison test says: The integral / converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if J converges.
We now use the direct comparison test: for $x>0$ holds

$$
\ln (x)<x \Rightarrow \frac{1}{x}<\frac{1}{\ln (x)} \Rightarrow \int_{3}^{\infty} \frac{d x}{x}<\int_{3}^{\infty} \frac{d x}{\ln (x)}
$$

Since $\int_{3}^{\infty} \frac{d x}{x}$ diverges, then both J and I diverge.

Convergence test: Limit comparison test

Example

Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}}
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=1 .
$$

Since $\int_{3}^{\infty} x^{-3 / 2} d x=-\left.2 x^{-1 / 2}\right|_{3} ^{\infty}=-2\left(0-\frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}$,
we conclude that I converges.

