Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Using Integration tables

Remark: Sometimes to use integration tables one needs to rewrite the integral in the form that appears in the table.

Example

Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: We start rewriting our integral as

$$
I=\int \frac{d x}{\sqrt{x^{2}(2 x+3)}}=\int \frac{d x}{|x| \sqrt{2 x+3}}=\int \frac{d x}{x \sqrt{2 x+3}}
$$

where we used that $x>0$. Notice that the denominator does not vanishes for $x>0$. After looking for a while in the integration tables at the end of the textbook, we find the entry (13b):

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c
$$

Using Integration tables

Example

Evaluate $I=\int \frac{d x}{\sqrt{2 x^{3}+3 x^{2}}}$, for $x>0$.
Solution: Recall: $I=\int \frac{d x}{x \sqrt{2 x+3}}$ and from the table,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c
$$

We can use this formula for $a=2$ and $b=3$. We conclude that

$$
\int \frac{d x}{x \sqrt{2 x+3}}=\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{2 x+3}-\sqrt{3}}{\sqrt{2 x+3}+\sqrt{3}}\right|+c
$$

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Reduction formulas

Remark: Sometimes integration tables only relates two integrals.

Example

Evaluate $I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution: We can rewrite the integral as

$$
I=\int \frac{d x}{\sqrt{x^{4}(4 x+9)}}=\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}
$$

Entry (15) in the integration tables at the end of the textbook is

$$
\int \frac{d x}{x^{2} \sqrt{a x+b}}=-\frac{\sqrt{a x+b}}{b x}-\frac{a}{2 b} \int \frac{d x}{x \sqrt{a x+b}}
$$

This formula relates a complicated integral to a simpler integral.

$$
\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9} \int \frac{d x}{x \sqrt{4 x+9}}
$$

Reduction formulas

Example

Evaluate $\quad I=\int \frac{d x}{\sqrt{4 x^{5}+9 x^{4}}}$, for $x>0$.
Solution:
Recall: $\int \frac{d x}{x^{2} \sqrt{(4 x+9)}}=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9} \int \frac{d x}{x \sqrt{4 x+9}}$.
We now use the entry (13b) again,

$$
\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \ln \left|\frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}\right|+c
$$

and we get

$$
I=-\frac{\sqrt{4 x+9}}{9 x}-\frac{2}{9}\left[\frac{1}{3} \ln \left|\frac{\sqrt{4 x+9}-3}{\sqrt{4 x+9}+3}\right|\right]+c .
$$

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Computer Algebra Systems

Remarks:

- Programs like Mathematica and Maple can be used to compute analytic expression for integrals.
- Different programs can provide equivalent, but not identical, expressions for the same integral.

Example

Use Maple and Mathematica to evaluate $I=\int x^{2} \sqrt{a^{2}+x^{2}} d x$.
Solution: Maple gives:

$$
I=\frac{x}{4}\left(a^{2}+x^{2}\right)^{3 / 2}-\frac{a^{2} x}{8} \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right) .
$$

Mathematica gives

$$
\left(\frac{a^{2} x}{8}+\frac{x^{3}}{4}\right) \sqrt{a^{2}+x^{2}}-\frac{a^{2}}{8} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)
$$

Both expressions define the same function.

Integrating using tables (Sect. 8.5)

- Remarks on:

- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Non-elementary integrals

Remarks:

- Integration is more difficult that derivation.
- The derivative of an elementary function is again an elementary function.
- Elementary functions: polynomials, rational powers of quotient of polynomials, trigonometric functions.
- A similar statement is not true for integration.
- Example: $f(x)=\int \frac{d x}{x}$ is a new function. It is called $\ln (x)$.
- In a similar way, the following integrals define new functions:

$$
\begin{aligned}
\operatorname{erf} & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t, \quad I_{1} & =\int \sin \left(x^{2}\right) d x, & I_{2}
\end{aligned}=\int \frac{\sin (x)}{x} d x .
$$

Integrating using tables (Sect. 8.5)

- Remarks on:
- Using Integration tables.
- Reduction formulas.
- Computer Algebra Systems.
- Non-elementary integrals.
- Limits using L'Hôpital's Rule (Sect. 7.5).

Limits using L'Hôpital's Rule (Sect. 7.5)

Remarks:

- L'Hôpital's rule applies on limits of the form $L=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ in the case that $f(a)=0$ and $g(a)=0$.
- These limits are called indeterminate and denoted as $\frac{0}{0}$.

Theorem

If functions $f, g: I \rightarrow \mathbb{R}$ are differentiable in an open interval containing $x=a$, with $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ for $x \in I-\{a\}$, then holds

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

assuming the limit on the right-hand side exists.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example

Evaluate $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.

Solution: This limit can be easily computed using L'Hôpital's rule.
The limit is indeterminate, $\frac{0}{0}$. But,

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=1
$$

We conclude $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example

Evaluate $L=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-x / 2}{x^{2}}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(1 / 2)(1+x)^{-1 / 2}-(1 / 2)}{2 x}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{(-1 / 4)(1+x)^{-3 / 2}}{2}=\frac{(-1 / 4)}{2}
$$

We conclude that $L=-\frac{1}{8}$.

Limits using L'Hôpital's Rule (Sect. 7.5)

Example

Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.
Solution: The limit is indeterminate, $\frac{0}{0}$. But,

$$
L=\lim _{x \rightarrow 0} \frac{(x-x \cos (6 x))}{(7 x-\sin (7 x))}=\lim _{x \rightarrow 0} \frac{1-\cos (6 x)+6 x \sin (6 x)}{(7-7 \cos (7 x))}
$$

The limit on the right-hand side is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a second time,

$$
L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}
$$

Limits using L'Hôpital's Rule (Sect. 7.5)
Example
Evaluate $L=\lim _{x \rightarrow 0} \frac{x(1-\cos (6 x))}{(7 x-\sin (7 x))}$.

Solution: Recall: $L=\lim _{x \rightarrow 0} \frac{2(6) \sin (6 x)+6^{2} x \cos (6 x)}{7^{2} \sin (7 x)}$.
This limit is still indeterminate, $\frac{0}{0}$.
We use L'Hôpital's rule for a third time,

$$
L=\lim _{x \rightarrow 0} \frac{2\left(6^{2}\right) \cos (6 x)+6^{2} \cos (6 x)+6^{3} x \sin (6 x)}{7^{3} \cos (7 x)}=\frac{3\left(6^{2}\right)}{7^{3}}
$$

We conclude that $L=\frac{3\left(6^{2}\right)}{7^{3}}$.
\square

