
Solving differential equations (Sect. 7.4)

Today: Applications.

I Review: Overview of differential equations.

I Population growth.

I Radioactive decay.

I Newton’s Law of Cooling.

Previous class:

I Overview of differential equations.

I Exponential growth.

I Separable differential equations.

Review: Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Recall:

(a) All solutions y to the exponential growth equation
y ′(x) = k y(x), with constant k, are given by the exponentials

y(x) = y0 ekx ,

where y(0) = y0.

(b) All solutions y to the separable equation h(y) y ′(x) = g(x),
with functions h, g , are given in implicit form,

H(y) = G (x) + c ,

where H ′ = h and g ′ = g .



Review: Overview of differential equations.

Example

Find all solutions y to the equation y ′(x) =
e2x−y

ex+y
.

Solution: Rewrite the differential equation,

y ′ =
e2x e−y

ex ey
= e2x e−y 1

ex

1

ey
= e2x e−x e−y e−y .

y ′ = ex e−2y =
ex

e2y
⇒ e2y y ′ = ex .

Hence, the equation is separable. We integrate on both sides,∫
e2y(x) y ′(x) dx =

∫
ex dx .
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Example

Find all solutions y to the equation y ′(x) =
e2x−y

ex+y
.

Solution: Recall:

∫
e2y(x) y ′(x) dx =

∫
ex dx .

The usual substitution u = y(x), and then du = y ′(x) dx ,∫
e2u du =

∫
ex dx ⇒ 1

2
e2u = ex + c .

We now substitute back u = y(x),

e2y(x) = 2 (ex + c) ⇒ 2y(x) = ln
(
2 (ex + c)

)
We conclude that y(x) =

1

2
ln

(
2 (ex + c)

)
. C
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Population growth

Example

Assume the world population growth is described by
y(t) = y0 ek(t−t0), with t measured in years.

(a) If in 1960− 1961 the population increased by 2%, find k.

(b) If the population in t0 = 1960 was 3 billion people, find the
actual population predicted by the law above.

Solution: (a) y(1961) =
(
1 +

2

100

)
y(1960),

y0 ek(1961−t0) =
102

100
y0 ek(1960−t0)

ek1961 e−kt0 = 1.02 ek1960 e−kt0 ⇒ ek(1961−1960) = 1.02.

ek = 1.02 ⇒ k = ln(1.02) ' 0.02. Hence y(t) = y0 e(0.02)(t−t0).



Population growth

Example

Assume the world population growth is described by
y(t) = y0 ek(t−t0), with t measured in years.

(a) If in 1960− 1961 the population increased by 2%, find k.

(b) If the population in t0 = 1960 was 3 billion people, find the
actual population predicted by the law above.

Solution: Recall: y(t) = y0 e(0.02)(t−t0).

(b) If y represents billions of people,

3 = y(t0) = y0 e(0.02)(t0−t0) ⇒ y0 = 3 ⇒ y(t) = 3 e(0.02)(t−1960).

We only need to evaluate y(2012) = 3 e(0.02)52 = 8.5 billions. C

Solving differential equations (Sect. 7.4)

Today: Applications.

I Review: Overview of differential equations.

I Population growth.

I Radioactive decay.

I Newton’s Law of Cooling.



Radioactive decay

Remarks:

I Some atoms can spontaneously break into smaller atoms.

I This process is called radioactive decay.

I It can be seen that the concentration y of a radioactive
substance in time t follows the law,

y ′(t) = −k y(t), k > 0.

I We know the solution is

y(t) = y0 e−kt , y(0) = y0.

I The half-life of the material is the τ such that y(τ) =
y0

2
.

y0

2
= y0 e−kτ ⇒ − kτ = ln

(1

2

)
⇒ τ =

ln(2)

k
.

Radioactive decay

Example

The half-life of a radioactive material is τ = 5730 years. If a
material sample contains 14% of the original amount, find the date
the material sample was created.

Solution: Let us fix the time of the original amount at t = 0, and
denote the present time by t1. Also denote y(t) the material
amount at time t.

y(t) = y0 e−kt ⇒ y0 e−kt1 = y(t1) =
14

100
y(0) =

14

100
y0.

y0 e−kt1 =
14

100
y0 ⇒ − kt1 = ln

( 14

100

)
⇒ t1 =

1

k
ln

(100

14

)
.

Recall τ = ln(2)/k and τ = 5730 years. So 1/k = 5730/ ln(2),

We obtain t1 = [5730/ ln(2)] ln
(100

14

)
, hence t1 = 16, 253 years.C
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Newton’s Law of Cooling.

Remarks:

I The temperature difference ∆T = T − T0 between the
temperature of an object, T , and the constant temperature of
the surrounding medium where it is placed, Ts , evolves in
time t following the equation

(∆T )′ = −k(∆T ), T (0) = T0, k > 0.

I The solution is (∆T )(t) = (∆T )0 e−kt , that is,

(T − Ts)(t) = (T0 − Ts) e−kt

T (t) = (T0 − Ts) e−kt + Ts .

I The constant k depends on the material and the surroundings.



Newton’s Law of Cooling.

Example

A cup with water at 45 C is placed in the cooler held at 5 C. If
after 2 minutes the water temperature is 25 C, when will the water
temperature be 15 C? while

Solution: We know that T (t) = (T0 − Ts) e−kt + Ts , and also

T0 = 45, Ts = 5, T (2) = 25.

Find t1 such that T (t1) = 15. First we find k,

T (t) = (45− 5) e−kt + 5 ⇒ T (t) = 40 e−kt + 5.

20 = T (2) = 40 e−2k ⇒ ln(1/2) = −2k ⇒ k =
1

2
ln(2).

T (t) = 40 e−t ln(
√

2) + 5⇒ 10 = 40 e−t1 ln(
√

2) ⇒ t1 = 4. C


