

Solution:

To graph the function

$$x = an(\pi y/8), \ y \in [0,2]$$

one can graph

$$y = (8/\pi) \arctan(x).$$

Notice that

$$y \in [0,2] \Rightarrow x \in [0,1].$$

Therefore,
$$V = \pi \int_0^2 [x(y)]^2 dy = \pi \int_0^2 \left[\tan\left(\frac{\pi y}{8}\right) \right]^2 dy$$
.

Volumes using cross-sections (6.1) Example Find the volume of the region obtained by rotation the curve $x(y) = \tan(\pi y/8)$ for $y \in [0, 2]$ about the y-axis. Solution: Recall: $V = \pi \int_0^2 \tan^2\left(\frac{\pi y}{8}\right) dy$. Introduce the substitution $u = \pi y/8$, so $du = (\pi/8) dy$, $V = \pi \frac{8}{\pi} \int_0^{\pi/4} \tan^2(u) du = 8 \int_0^{\pi/4} \frac{[1 - \cos^2(u)]}{\cos^2(u)} du$ $V = 8 \int_0^{\pi/4} [\frac{1}{2} - 1] du = 8 \int_0^{\pi/4} [\tan'(u) - 1] du$.

$$V = 8 \int_0^{\pi/4} \left[\frac{1}{\cos^2(u)} - 1 \right] du = 8 \int_0^{\pi/4} \left[\tan'(u) - 1 \right] du.$$
$$V = 8 \left[\tan(u) - u \right] \Big|_0^{\pi/4} \implies V = 8 \left(1 - \frac{\pi}{4} \right).$$

 \triangleleft

Volumes integrating cross-sections: General case.

Example

Find the volume of a pyramid with square base side a and height h.

Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function $y = \frac{x^3}{3} + \frac{1}{4x}$, for $x \in [1,3]$.

Solution: Recall:
$$L = \int_{x_0}^{x_1} \sqrt{1 + [y'(x)]^2} \, dx$$
. Find y',
 $y'(x) = x^2 - \frac{1}{4x^2} \Rightarrow 1 + [y'(x)]^2 = 1 + x^4 + \frac{1}{16x^4} - \frac{1}{16x^4}$

$$Y'(x) = x^2 - \frac{1}{4x^2} \Rightarrow 1 + [y'(x)] = 1 + x^2 + \frac{1}{16x^4} - \frac{1}{2}$$

$$1 + \left[y'(x)\right]^2 = x^4 + \frac{1}{16x^4} + \frac{1}{2} = \left(x^2 + \frac{1}{4x^2}\right)^2.$$

$$L = \int_{1}^{3} \left(x^{2} + \frac{1}{4x^{2}} \right) dx = \left(\frac{x^{3}}{3} - \frac{1}{4x} \right) \Big|_{1}^{3} = 9 - \frac{1}{12} - \frac{1}{3} + \frac{1}{4}.$$

We conclude that L = 9 - 1/6.

1

The main length formula

Example

Find the arc-length of the curve $y = x^{3/2}$, for $x \in [0, 4]$.

Solution: Recall: $L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} \, dx$. We start with $f(x) = x^{3/2} \Rightarrow f'(x) = \frac{3}{2}x^{1/2} \Rightarrow [f'(x)]^{2} = \frac{9}{4}x$. $L = \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} \, dx, \quad u = 1 + \frac{9}{4}x, \quad du = \frac{9}{4} \, dx$. $L = \int_{1}^{10} \frac{4}{9}\sqrt{u} \, du = \frac{4}{9}\frac{2}{3}\left(u^{3/2}\Big|_{1}^{10}\right)$. We conclude that $L = \frac{8}{27}(10^{3/2} - 1)$.

Review for Midterm Exam 1.

- ▶ 5 or 6 problems.
- No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
 - ▶ Volumes using cross-sections (6.1).
 - Arc-length of curves on the plane (6.3).
 - ▶ Work and fluid forces (6.5).
 - The inverse function (7.1).
 - ► The natural logarithm (7.2).
 - The exponential function (7.3).

Work and fluid forces: Pumping liquids

Proof: (a) Show:
$$W = \int_0^{h_1} g \,\delta A(z) \, z \, dz$$

The amount of liquid that can be placed at cross-section S(z) is

 $M = \delta A(z) \, dz.$

The force that must be done to lift that amount of liquid is

$$F = g \left[\delta A(z) \, dz \right].$$

The work done to lift that liquid to height z from z = 0 is

 $W(z) = z g [\delta A(z) dz].$

The work to fill in the container up to h_1 is $W = \int_0^{h_1} g \,\delta A(z) \, z \, dz$.

Work and fluid forces: Pumping liquids Proof: (b) Show: $W = \int_{0}^{h_{1}} g \,\delta A(z) (h-z) \,dz$. The force that must be done to lift the liquid in S(z) is $F = g [\delta A(z) \,dz]$. The work done to lift that liquid from a height z to h is $W(z) = (h-z) g [\delta A(z) \,dz]$.

The work to empty the container initially filled up to h_1 is

$$W = \int_0^{h_1} g \,\delta \,A(z) \,(h-z) \,dz$$

Work and fluid forces: Pumping liquids

Example

A rectangular container with sides *a*, *b*, and height *h*, is filled with water. Find the work needed to empty the container if the water is pumped from the top of the tank. Recall the water density is $\delta = 1000 \ \text{Kg}/\text{m}^3$, and the gravity acceleration is $g = 10 \ \text{m/s}^2$.

Solution:

The force is the water weight:

$$F = g \left[\delta A(z) \, dz \right] = g \delta(ab) \, dz$$

The work done to lift that liquid from a height z to h is

$$W(z) = g\delta(ab)(h-z) dz.$$

To empty the container: $W = g\delta(ab) \int_0^h (h-z) dz = g\delta(ab) \frac{h^2}{2}$.

Work and fluid forces: Springs

Remark: The force of a spring, F(x) = kx is called *Hooke's Law*.

Example

Find the minimum work needed to compress a spring with constant k = 3 N/m a distance of d m from the spring rest position.

Solution: The spring force is F(x) = kx, then

$$W = \int_0^d kx \, dx = k \frac{x^2}{2} \Big|_0^d \quad \Rightarrow \quad W = \frac{kd^2}{2}. \qquad \triangleleft$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that 60 N = k (3) m, that is, k = 20 N/m. The previous problem implies $W = kd^2/2$, that is,

$$W=20 \ rac{N}{m} \ rac{4^2}{2} \ m^2 \quad \Rightarrow \quad W=160 \ J.$$

Solution: We call y = f(x), and we find x(y).

$$y = 8(x-2)^2 + 3 \Rightarrow (x-2)^2 = \frac{1}{8}(y-3)$$

 $x-2 = \sqrt{\frac{1}{8}(y-3)} \Rightarrow x = 2 + \sqrt{\frac{1}{8}(y-3)}.$

Example

Given $f(x) = 2x^3 + 3x^2 + 3$ for $x \ge 0$, find $\frac{df^{-1}}{dx}$ at x = 8 = f(1). Solution: Recall: $(f^{-1})'(8) = \frac{1}{f'(f^{-1}(8))}$. Since $f^{-1}(8) = 1$, we need f'(1). Since $f'(x) = 6x^2 + 6x$, we get f'(1) = 12. We obtain $(f^{-1})'(8) = \frac{1}{12}$.

The natural logarithm (7.2)

Example

Simplify $f(x) = \ln\left(\frac{\sin^5(2t)}{7}\right)$, and find the derivatives of $g(x) = 3\ln(6\ln(x))$, and $h(x) = \ln(\sqrt{25\sin(x)\cos(x)})$. Solution: First: $f(x) = \ln(\sin^5(2t)) - \ln(7)$, so we conclude that $f(x) = 5\ln(\sin(2t)) - \ln(7)$. Second, $g'(x) = 3\frac{1}{6\ln(x)}(6\ln(x))'$, that is, $g'(x) = 3\frac{1}{\ln(x)}\frac{1}{x}$. Sometimes it is better simplify first and derivate later, $h(x) = \frac{1}{2}[\ln(25) + \ln(\sin(x)) + \ln(\cos(x)]],$ $h'(x) = \frac{1}{2}[\frac{\cos(x)}{\sin(x)} - \frac{\sin(x)}{\cos(x)}].$

The natural logarithm (7.2)
Example
Find $I = \int \frac{\sec(x)}{\sqrt{\ln(\sec(x) + \tan(x))}} dx.$
Solution: We try the substitution $u = \ln(\sec(x) + \tan(x))$. Recall
$\sec(x) + \tan(x) = \frac{1}{\cos(x)} + \frac{\sin(x)}{\cos(x)} = \frac{1 + \sin(x)}{\cos(x)},$
$du = \frac{\cos(x)}{1+\sin(x)} \left[\frac{\cos(x)\cos(x) - (1+\sin(x))(-\sin(x))}{\cos^2(x)}\right] dx$
$du = \frac{\cos(x)}{[1 + \sin(x)]} \frac{[1 + \sin(x)]}{\cos^2(x)} dx = \frac{1}{\cos(x)} dx = \sec(x) dx.$
$I = \int \frac{du}{u^{1/2}} = 2 u^{1/2} \Rightarrow I = 2\sqrt{\ln(\sec(x) + \tan(x))}. \lhd$

Review for Midterm Exam 1.

- ▶ 5 or 6 problems.
- ► No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to webwork.
- Midterm Exam 1 covers:
 - ► Volumes using cross-sections (6.1).
 - Arc-length of curves on the plane (6.3).
 - Work and fluid forces (6.5).
 - The inverse function (7.1).
 - ► The natural logarithm (7.2).
 - The exponential function (7.3).

The exponential function (7.3) Example Solve for y in terms of x the equation $\ln(3y-5) + \ln(2) = 4x + \ln(2x).$ Solution: $\ln\left(\frac{3y-5}{2}\right) = \ln(e^{4x}) + \ln(2x) = \ln(2x e^{4x}).$ $\frac{3y-5}{2} = 2x e^{4x} \Rightarrow 3y = 4x e^{4x} + 5$ $y = \frac{1}{3}(4x e^{4x} + 5).$

The exponential function (7.3)

Example

Solve the initial value problem

$$y'(x) = 5 e^{5x} \sin(e^{5x} - 2), \qquad y\left(\frac{\ln(2)}{5}\right) = 0.$$

Solution: We need to compute the integral

$$y(x) = \int 5 e^{5x} \sin(e^{5x} - 2) dx + c$$

Substitute $u = e^{5x} - 2$, then $du = 5 e^{5x} dx$, so

$$y(x) = \int \sin(u) \, du + c = -\cos(u) + c$$

So $y(x) = -\cos(e^{5x} - 2) + c$. The initial condition implies

$$0 = y\left(\frac{\ln(2)}{5}\right) = -\cos(e^{\ln(2)} - 2) + c = -\cos(2 - 2) + c = -1 + c$$

We conclude that c = 1, so $y(x) = -\cos(e^{5x} - 2) + 1$.

 \triangleleft

 \triangleleft