Solving differential equations (Sect. 7.4)

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Next class: Applications.

- Population growth
- Radioactive decay.
- Heat transfer.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: May be the most famous differential equation is Newton's second law of motion: ma $=f$.

Example

Newton's second law of motion in one space dimension is a differential equation: The unknown is $x(t)$, the particle position as function of time t, and the equation is

$$
\frac{d^{2} x}{d t^{2}}(t)=\frac{1}{m} f(t, x(t))
$$

with m the particle mass and f the force acting on the particle.

Overview of differential equations.

Example

The following are examples of differential equations:

- Given a constant k find every function y solution of

$$
\frac{d y}{d x}(x)=k y(x)
$$

- Find the function y solution of

$$
\frac{d y}{d x}(x)=(1+y(x)) x^{2}, \quad y(0)=2 .
$$

- Find every function y solution of

$$
\frac{d y}{d x}(x)=\frac{e^{2 x-y(x)}}{e^{x+y(x)}}
$$

Overview of differential equations.

Example

Verify that the functions $y(x)=c e^{-2 x}-\frac{3}{2}$, for every $c \in \mathbb{R}$, are solutions to the differential equation $y^{\prime}=2 y+3$.

Solution: We first compute the left-hand side of the equation. We then compute the right-hand side of the equation.
We verify that we obtain the same expression.
The left hand side is y^{\prime},

$$
y^{\prime}(x)=-2 c e^{-2 x}
$$

The right hand side is $2 y+3$,

$$
2 y+3=2\left(c e^{-2 x}-\frac{3}{2}\right)+3=\left(2 c e^{-2 x}-3\right)+3=2 c e^{-2 x} .
$$

Therefore, $y^{\prime}=2 y+3$ for all $c \in \mathbb{R}$.

Overview of differential equations.

Remark: Differential equations have infinity many solutions.

Example

For every $c \in \mathbb{R}$, the functions $y(x)=c e^{-2 x}-\frac{3}{2}$ are solutions to the differential equation $y^{\prime}=2 y+3$.

The differential equation has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

- To solve a first order differential equation means to do one integration.
- So, it is reasonable that the solution contains a constant of integration, $c \in \mathbb{R}$.

Solving differential equations (Sect. 7.4)

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Exponential growth

Remark: The two main examples are:
(a) Population growth with unlimited food supply and no predators;
(b) Chain reactions in nuclear explosions.

- For these processes, the rate of change of a quantity y is proportional to the actual amount of that quantity.

$$
\frac{d y}{d x}(x)=k y(x)
$$

- The solution of the differential equation above is

$$
y(x)=y_{0} e^{k x}, \quad y(0)=y_{0} .
$$

Exponential growth

Example

Given a constant k, find every function y solution of the differential equation

$$
\frac{d y}{d x}(x)=k y(x)
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=k \quad \Rightarrow \quad \int \frac{y^{\prime}(x)}{y(x)} d x=\int k d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=k \int d x \Rightarrow \ln (|u|)=k x+c .
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{k x+c}=e^{k x} e^{c} \Rightarrow y(x)= \pm e^{c} e^{k x} .
$$

Denoting $y_{0}= \pm e^{c}$, we obtain $y(x)=y_{0} e^{k x}$.

Exponential growth

Example

Find every positive function y solution of the differential equation

$$
\frac{d y}{d x}(x)=-3 y(x) .
$$

Solution: This differential equation is particularly simple to solve.

$$
\frac{y^{\prime}(x)}{y(x)}=-3 \Rightarrow \int \frac{y^{\prime}(x)}{y(x)} d x=\int-3 d x
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$.

$$
\int \frac{d u}{u}=-3 \int d x \Rightarrow \ln (|u|)=-3 x+c
$$

Substitute back $y(x)=u$, and exponentiate both sides,

$$
|y(x)|=e^{-3 x+c}=e^{-3 x} e^{c} \Rightarrow y(x)=+e^{c} e^{-3 x} .
$$

Denoting $y_{0}=e^{c}$, we obtain $y(x)=y_{0} e^{-3 x}$.

Solving differential equations (Sect. 7.4)

- Overview of differential equations.
- Exponential growth.
- Separable differential equations.

Separable differential equations

Definition

Given functions $h, g: \mathbb{R} \rightarrow \mathbb{R}$, a differential equation on the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is called separable iff the equation has the form

$$
h(y) y^{\prime}(x)=g(x)
$$

Remark:
A differential equation $y^{\prime}(t)=f(t, y(t))$ is separable iff

$$
y^{\prime}=\frac{g(x)}{h(y)} \quad \Leftrightarrow \quad f(t, y)=\frac{g(x)}{h(y)}
$$

Example

The three equations below are separable:

$$
\frac{d y}{d x}=\frac{\cos (x)}{y^{2}}, \quad \frac{d y}{d x}=\frac{e^{x}}{(1+y)}, \quad 3(x+1) y \frac{d y}{d x}=2\left(1+y^{2}\right)
$$

Separable differential equations

Example

Determine whether the differential equation below is separable,

$$
y^{\prime}(x)=\frac{x^{2}}{1-y^{2}(x)}
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\left(1-y^{2}\right) y^{\prime}(x)=x^{2} \Rightarrow\left\{\begin{array}{l}
g(x)=x^{2} \\
h(y)=1-y^{2}
\end{array}\right.
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(x)=c x^{2}, \quad h(y)=c\left(1-y^{2}\right), \quad c \in \mathbb{R}
$$

Separable differential equations

Example

Find every solution of the separable equation $h(y) y^{\prime}(x)=g(x)$.
Solution: We integrate on both sides of the equation,

$$
\int h(y) y^{\prime}(x) d x=\int g(x) d x+c
$$

Introduce the substitution $u=y(x)$, then $d u=y^{\prime}(x) d x$,

$$
\int h(u) d u=\int g(x) d x+c
$$

Denote by H a primitive of h, that is, $H^{\prime}=h$.
Denote by G a primitive of g, that is, $G^{\prime}=g$.

$$
H(u)=G(x)+c .
$$

Substitute back $y(x)=u$,

$$
H(y(x))=G(x)+c .
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: The equation is $\frac{y^{\prime}}{y^{2}}=-\cos (2 x)$, separable,

$$
g(x)=-\cos (2 x), \quad h(y)=\frac{1}{y^{2}}
$$

Integrate on both sides of the equation,

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=-\cos (2 x) \quad \Leftrightarrow \quad \int \frac{y^{\prime}(x)}{y^{2}(x)} d x=-\int \cos (2 x) d x+c
$$

The substitution $u=y(x), d u=y^{\prime}(x) d x$, implies that

$$
\int \frac{d u}{u^{2}}=-\int \cos (2 x) d x+c \quad \Leftrightarrow \quad-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c
$$

Separable differential equations

Example

Find every solutions of the equation $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$.
Solution: Recall: $-\frac{1}{u}=-\frac{1}{2} \sin (2 x)+c$.
Substitute the function $y(x)=u$ back in the equation above,

$$
-\frac{1}{y(x)}=-\frac{1}{2} \sin (2 x)+c . \quad \text { (Implicit form.) }
$$

Or multiply by (-1),

$$
\begin{aligned}
& \frac{1}{y(x)}=\frac{1}{2} \sin (2 x)-c=\frac{\sin (2 x)-2 c}{2} \\
& y(x)=\frac{2}{\sin (2 x)-2 c} . \quad \text { (Explicit form.) }
\end{aligned}
$$

Separable differential equations

Example

From all solutions to $y^{\prime}(x)+y^{2}(x) \cos (2 x)=0$. find the one satisfying $y(0)=1$.

Solution: Recall: $y(x)=\frac{2}{\sin (2 x)-2 c}$.
The extra condition is called the initial condition.
The initial condition fixes the value of the constant c.
Indeed, $1=y(0)=\frac{2}{0-2 c}$, so $1=-\frac{1}{c}$, hence $c=-1$.
We conclude that $y(t)=\frac{2}{\sin (2 t)+2}$.

