

Notation: $exp(x) = e^x$.

Remark: Since ln(1) = 0, then $e^0 = 1$. Since ln(e) = 1, then $e^1 = e$.

$$(e^{ax})' = a e^{ax}, \qquad \int e^{ax} dx = \frac{e^{ax}}{a} + c.$$

y = x

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem

For every a, $b \in \mathbb{R}$, and every rational number, q, hold

(a)
$$e^{a+b} = e^{a}, e^{b};$$

(b) $e^{-a} = \frac{1}{e^{a}};$

(c)
$$e^{a-b} = \frac{e^a}{e^b};$$

(d)
$$(e^{a})^{q} = e^{qa}$$
.

Proof: Only of (a):

$$\ln(e^{a+b}) = a+b = \ln(e^a) + \ln(e^b) = \ln(e^a e^b).$$

We conclude that $e^{a+b} = e^a e^b$.

Algebraic properties

Example

Simplify the expression $\left(\frac{e^{x-\ln(2)}}{e}\right)^3$.

Solution:

$$\left(\frac{e^{x-\ln(2)}}{e}\right)^3 = \frac{(e^{x-\ln(2)})^3}{e^3} = \frac{1}{e^3} e^{3x-3\ln(2)} = e^{-3} \frac{e^{3x}}{e^{3\ln(2)}}$$

$$\left(\frac{e^{x-\ln(2)}}{e}\right)^3 = \frac{e^{-3}e^{3x}}{e^{\ln(2^3)}} = \frac{e^{3x-3}}{e^{\ln(8)}} = \frac{e^{3(x-1)}}{8}.$$

We conclude that $\left(\frac{e^{x-\ln(2)}}{e}\right)^3 = \frac{1}{8}e^{3(x-1)}$.

Computing the number *e*.

Theorem The number e defined as ln(e) = 1 can be obtained as

$$e=\lim_{h\to 0}(1+h)^{1/h}.$$

Proof: On the one hand, $\ln'(x) = \frac{1}{x}$, that implies $\ln'(1) = 1$. On the other hand, $\ln'(1) = \lim_{h \to 0} \frac{1}{h} [\ln(1+h) - \ln(1)]$, that is,

$$\ln'(1) = \lim_{h \to 0} \frac{1}{h} \ln(1+h) = \lim_{h \to 0} \ln\left[(1+h)^{1/h}\right].$$

The ln is continuous, $\lim_{h\to 0} \ln\left[(1+h)^{1/h}\right] = \ln\left[\lim_{h\to 0} (1+h)^{1/h}\right]$. Therefore, $\ln\left[\lim_{h\to 0} (1+h)^{1/h}\right] = 1$. But ln is a one-to-one function, and $\ln(e) = 1$, hence $e = \lim_{h\to 0} (1+h)^{1/h}$.

Computing the number e.

Remark: The convergence in $e = \lim_{h \to 0} (1+h)^{1/h}$ is slow.

- For h = 1, $e_h = 2$.
- For $h = \frac{1}{2}$, $e_h = (1.5)^2 = 2.25$.
- For $h = \frac{1}{10}$, $e_h = (1.1)^{10} = 2.5937....$
- For $h = \frac{1}{100}$, $e_h = (1.01)^{100} = 2.7048....$
- For $h = \frac{1}{1000}$, $e_h = (1.001)^{1000} = 2.7169....$

Remark: *e* = 2.71828182....

The exponential function a^{x}

Remarks:

- ► The exponentiation function can be generalized from base e to base a ∈ (0,∞).
- Recall that $a = e^{\ln(a)}$, for every $a \in (0, \infty)$.

Definition

The exponentiation function on base $a \in (0, \infty)$ is the function $\exp[a] : \mathbb{R} \to (0, \infty)$ given by

$$\exp[a](x) = e^{x \ln(a)}.$$

Remarks:

- For a = e we reobtain $\exp[e](x) = e^x$.
- The exponentiation satisfies $\exp[a](0) = 1$ and $\exp[a](1) = a$.
- Also $\exp[a](m/n) = e^{(m/n)\ln(a)} = e^{\ln(a^{m/n})} = a^{m/n}$.
- Notation: $\exp[a](x) = a^x$, for $x \in \mathbb{R}$.

The exponential function a^{x}

Remark: The algebraic properties of e^x also hold for a^x .

Theorem

For every $a \in (0,\infty)$, $b, c \in \mathbb{R}$, and every rational number, q, hold

(a)
$$a^{b+c} = a^b, a^c;$$

(b) $a^{-b} = \frac{1}{a^b};$
(c) $a^{b-c} = \frac{a^b}{a^c};$
(d) $(a^a)^q = a^{qa}.$
Proof: Only of (a):
 $a^{(b+c)} = e^{(b+c)\ln(a)} = e^{b\ln(a)+c\ln(a)} = e^{b\ln(a)} e^{c\ln(a)}.$
We conclude that $a^{(b+c)} = a^b a^c.$

The exponential function a^{\times} Example Compute $3^{\pi+\sqrt{2}}$. Solution: $3^{\pi+\sqrt{2}} = e^{(\pi+\sqrt{2})\ln(3)} = e^{(3.14...+1.41...)(1.099...)} = 149.167...$ \triangleleft Example Compute $2^{-\pi}$. Solution: $2^{-\pi} = \frac{1}{2^{\pi}} = \frac{1}{e^{\pi \ln(2)}} = \frac{1}{8.825...}$

Derivatives and integrals

Theorem

For every $a \in (0,\infty)$, $c \in \mathbb{R}$, and differentiable function u holds,

 $(a^{x})' = \ln(a) a^{x}, \qquad (a^{u})' = \ln(a) a^{u} u'.$

In addition, if $a \neq 1$, then

$$\int a^x \, dx = \frac{a^x}{\ln(a)} + c.$$

Proof of the first equation:

$$(a^{x})' = (e^{x \ln(a)})' = \ln(a) (e^{x \ln(a)}),$$

that is, $(a^{x})' = \ln(a) a^{x}$.

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x) = 5^x$.

Solution: The derivative is $(5^x)' = \ln(5) 5^x$.

The antiderivatives are
$$\int 5^x dx = \frac{1}{\ln(5)} 5^x + c$$
, for $c \in \mathbb{R}$.

Example

Compute both the derivative and a primitive of $f(x) = 5^{3x}$. Solution: $(5^{3x})' = \ln(5) 5^{3x} (3x)'$, hence $(5^{3x})' = 3 \ln(5) 5^{3x}$, For the antiderivatives use u = 3x, du = 3 dx,

$$I = \int 5^{3x} dx = \int 5^{u} \frac{du}{3} = \frac{1}{3} \frac{5^{u}}{\ln(5)} \quad \Rightarrow \quad I = \frac{5^{3x}}{3\ln(5)} + c.$$

Derivatives and integrals

Example
Compute
$$I = \int \left(\frac{1}{7}\right)^{\sin(x)} \cos(x) dx.$$

Solution: Use the substitution u = sin(x), then du = cos(x) dx.

$$I = \int \left(\frac{1}{7}\right)^{\sin(x)} \cos(x) \, dx = \int \left(\frac{1}{7}\right)^u \, du$$
$$I = \frac{1}{\ln(1/7)} \left(\frac{1}{7}\right)^u + c.$$

Now substitute back,

$$I = -\frac{1}{\ln(7)} \left(\frac{1}{7}\right)^{\sin(x)} + c. \qquad \lhd$$

Logarithms with base $a \in \mathbb{R}$.

Theorem

For every positive a, $a \neq 1$, and differentiable function u holds,

$$\log_a'(x) = \frac{1}{\ln(a)x}, \qquad \left[\log_a(u)\right]' = \frac{u'}{\ln(a)u}.$$

Proof of the first equation: Since $\log_a(x) = \frac{\ln(x)}{\ln(a)}$, then

$$\log_a'(x) = \frac{1}{\ln(a)} \frac{1}{x}$$

Example

Compute the derivative of $f(x) = \log_2(3x^3 + 2)$.

Solution:
$$f'(x) = \frac{1}{\ln(2)} \ln'(3x^2 + 2) = \frac{1}{\ln(2)} \frac{1}{(3x^2 + 2)} 6x.$$

We conclude: $f'(x) = \frac{6x}{\ln(2)(3x^2 + 2)}.$