- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Review: The exponential function e^{x}

Definition

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the inverse of the natural logarithm, that is,

$$
\exp (x)=y \Leftrightarrow x=\ln (y)
$$

Notation: $\exp (x)=e^{x}$.

Remark: Since $\ln (1)=0$, then $e^{0}=1$.
Since $\ln (e)=1$, then $e^{1}=e$.

$$
\left(e^{a x}\right)^{\prime}=a e^{a x}, \quad \int e^{a x} d x=\frac{e^{a x}}{a}+c .
$$

Algebraic properties

Remark: The algebraic properties on natural logarithms translate into algebraic properties of the exponential function.

Theorem

For every $a, b \in \mathbb{R}$, and every rational number, q, hold
(a) $e^{a+b}=e^{a}, e^{b}$;
(b) $e^{-a}=\frac{1}{e^{a}}$;
(c) $e^{a-b}=\frac{e^{a}}{e^{b}}$;
(d) $\left(e^{a}\right)^{q}=e^{q a}$.

Proof: Only of (a):

$$
\ln \left(e^{a+b}\right)=a+b=\ln \left(e^{a}\right)+\ln \left(e^{b}\right)=\ln \left(e^{a} e^{b}\right)
$$

We conclude that $e^{a+b}=e^{a} e^{b}$.

Algebraic properties

Example

Simplify the expression $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}$.
Solution:

$$
\begin{gathered}
\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{\left(e^{x-\ln (2)}\right)^{3}}{e^{3}}=\frac{1}{e^{3}} e^{3 x-3 \ln (2)}=e^{-3} \frac{e^{3 x}}{e^{3 \ln (2)}} \\
\quad\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{e^{-3} e^{3 x}}{e^{\ln \left(2^{3}\right)}}=\frac{e^{3 x-3}}{e^{\ln (8)}}=\frac{e^{3(x-1)}}{8}
\end{gathered}
$$

We conclude that $\left(\frac{e^{x-\ln (2)}}{e}\right)^{3}=\frac{1}{8} e^{3(x-1)}$.

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Computing the number e.
Theorem
The number e defined as $\ln (e)=1$ can be obtained as

$$
e=\lim _{h \rightarrow 0}(1+h)^{1 / h}
$$

Proof: On the one hand, $\ln ^{\prime}(x)=\frac{1}{x}$, that implies $\ln ^{\prime}(1)=1$.
On the other hand, $\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}[\ln (1+h)-\ln (1)]$, that is,

$$
\ln ^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right] .
$$

The \ln is continuous, $\lim _{h \rightarrow 0} \ln \left[(1+h)^{1 / h}\right]=\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]$.
Therefore, $\ln \left[\lim _{h \rightarrow 0}(1+h)^{1 / h}\right]=1$. But In is a one-to-one function, and $\ln (e)=1$, hence $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$.

Remark: The convergence in $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$ is slow.

- For $h=1, e_{h}=2$.
- For $h=\frac{1}{2}, e_{h}=(1.5)^{2}=2.25$.
- For $h=\frac{1}{10}, e_{h}=(1.1)^{10}=2.5937 \ldots$.
- For $h=\frac{1}{100}, e_{h}=(1.01)^{100}=2.7048 \ldots$.
- For $h=\frac{1}{1000}, e_{h}=(1.001)^{1000}=2.7169 \ldots$.

Remark: $e=2.71828182 \ldots$

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

The exponential function a^{x}
Remarks:

- The exponentiation function can be generalized from base e to base $a \in(0, \infty)$.
- Recall that $a=e^{\ln (a)}$, for every $a \in(0, \infty)$.

Definition

The exponentiation function on base $a \in(0, \infty)$ is the function $\exp [a]: \mathbb{R} \rightarrow(0, \infty)$ given by

$$
\exp [a](x)=e^{x \ln (a)}
$$

Remarks:

- For $a=e$ we reobtain $\exp [e](x)=e^{x}$.
- The exponentiation satisfies $\exp [a](0)=1$ and $\exp [a](1)=a$.
- Also $\exp [a](m / n)=e^{(m / n) \ln (a)}=e^{\ln \left(a^{m / n}\right)}=a^{m / n}$.
- Notation: $\exp [a](x)=a^{x}$, for $x \in \mathbb{R}$.

The exponential function a^{x}

Remark: The algebraic properties of e^{x} also hold for a^{x}.
Theorem
For every $a \in(0, \infty), b, c \in \mathbb{R}$, and every rational number, q, hold
(a) $a^{b+c}=a^{b}, a^{c}$;
(b) $a^{-b}=\frac{1}{a^{b}}$;
(c) $a^{b-c}=\frac{a^{b}}{a^{c}}$;
(d) $\left(a^{a}\right)^{q}=a^{q a}$.

Proof: Only of (a):

$$
a^{(b+c)}=e^{(b+c) \ln (a)}=e^{b \ln (a)+c \ln (a)}=e^{b \ln (a)} e^{c \ln (a)} .
$$

We conclude that $a^{(b+c)}=a^{b} a^{c}$.

The exponential function a^{x}

Example

Compute $3^{\pi+\sqrt{2}}$.
Solution:

$$
3^{\pi+\sqrt{2}}=e^{(\pi+\sqrt{2}) \ln (3)}=e^{(3.14 \ldots+1.41 \ldots)(1.099 \ldots)}=149.167 \ldots
$$

Example
Compute $2^{-\pi}$.
Solution:

$$
2^{-\pi}=\frac{1}{2^{\pi}}=\frac{1}{e^{\pi \ln (2)}}=\frac{1}{8.825 \ldots}
$$

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Derivatives and integrals

Theorem
For every $a \in(0, \infty), c \in \mathbb{R}$, and differentiable function u holds,

$$
\left(a^{x}\right)^{\prime}=\ln (a) a^{x}, \quad\left(a^{u}\right)^{\prime}=\ln (a) a^{u} u^{\prime} .
$$

In addition, if $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+c
$$

Proof of the first equation:

$$
\left(a^{x}\right)^{\prime}=\left(e^{x \ln (a)}\right)^{\prime}=\ln (a)\left(e^{x \ln (a)}\right)
$$

that is, $\left(a^{x}\right)^{\prime}=\ln (a) a^{x}$.

Derivatives and integrals

Example

Compute both the derivative and a primitive of $f(x)=5^{x}$.
Solution: The derivative is $\left(5^{x}\right)^{\prime}=\ln (5) 5^{x}$.
The antiderivatives are $\int 5^{x} d x=\frac{1}{\ln (5)} 5^{x}+c$, for $c \in \mathbb{R}$.

Example

Compute both the derivative and a primitive of $f(x)=5^{3 x}$.
Solution: $\left(5^{3 x}\right)^{\prime}=\ln (5) 5^{3 x}(3 x)^{\prime}$, hence $\left(5^{3 x}\right)^{\prime}=3 \ln (5) 5^{3 x}$,
For the antiderivatives use $u=3 x, d u=3 d x$,

$$
I=\int 5^{3 x} d x=\int 5^{u} \frac{d u}{3}=\frac{1}{3} \frac{5^{u}}{\ln (5)} \quad \Rightarrow \quad I=\frac{5^{3 x}}{3 \ln (5)}+c
$$

Derivatives and integrals

Example

Compute $I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x$.
Solution: Use the substitution $u=\sin (x)$, then $d u=\cos (x) d x$.

$$
\begin{gathered}
I=\int\left(\frac{1}{7}\right)^{\sin (x)} \cos (x) d x=\int\left(\frac{1}{7}\right)^{u} d u \\
I=\frac{1}{\ln (1 / 7)}\left(\frac{1}{7}\right)^{u}+c .
\end{gathered}
$$

Now substitute back,

$$
I=-\frac{1}{\ln (7)}\left(\frac{1}{7}\right)^{\sin (x)}+c .
$$

The exponential function (Sect. 7.3)

- Review: The exponential function e^{x}.
- Computing the number e.
- The exponential function a^{x}.
- Derivatives and integrals.
- Logarithms with base $a \in \mathbb{R}$.

Logarithms with base $a \in \mathbb{R}$.
Remarks:

- The function $a^{x}=e^{x \ln (a)}$ is one-to-one, so invertible.
- $\log _{a}(x)$, a logarithm with base a, is the inverse of a^{x}.
- The function $\log _{a}$ is proportional to \ln.

Definition

For every positive a with $a \neq 1$ the function $\log _{a}:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
\log _{a}(x)=y \quad \Leftrightarrow \quad x=a^{y}
$$

Theorem
For positive a with $a \neq 1$ holds $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.
Proof: $\log _{a}(x)=y \Leftrightarrow x=a^{y}=e^{y \ln (a)} \Leftrightarrow \ln (x)=y \ln (a)$.
Therefore, $\ln (x)=\log _{a}(x) \ln (a) \quad \Rightarrow \quad \log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.

Logarithms with base $a \in \mathbb{R}$.

Theorem
For every positive $a, a \neq 1$, and differentiable function u holds,

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a) x}, \quad\left[\log _{a}(u)\right]^{\prime}=\frac{u^{\prime}}{\ln (a) u}
$$

Proof of the first equation: Since $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$, then

$$
\log _{a}^{\prime}(x)=\frac{1}{\ln (a)} \frac{1}{x}
$$

Example

Compute the derivative of $f(x)=\log _{2}\left(3 x^{3}+2\right)$.
Solution: $f^{\prime}(x)=\frac{1}{\ln (2)} \ln ^{\prime}\left(3 x^{2}+2\right)=\frac{1}{\ln (2)} \frac{1}{\left(3 x^{2}+2\right)} 6 x$.
We conclude: $f^{\prime}(x)=\frac{6 x}{\ln (2)\left(3 x^{2}+2\right)}$.

