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Review: The exponential function ex

Definition
The exponential function,
exp : R→ (0,∞), is the
inverse of the natural
logarithm, that is,

exp(x) = y ⇔ x = ln(y).

Notation: exp(x) = ex .

e

y

y = x

y = ln (x)

y = exp (x)

x1 e

1

Remark: Since ln(1) = 0, then e0 = 1.
Since ln(e) = 1, then e1 = e.

(
eax

)′
= a eax ,

∫
eax dx =

eax

a
+ c .



Algebraic properties

Remark: The algebraic properties on natural logarithms translate
into algebraic properties of the exponential function.

Theorem
For every a, b ∈ R, and every rational number, q, hold

(a) ea+b = ea, eb;

(b) e−a =
1

ea
;

(c) ea−b =
ea

eb
;

(d)
(
ea

)q
= eqa.

Proof: Only of (a):

ln
(
ea+b

)
= a + b = ln

(
ea

)
+ ln

(
eb

)
= ln

(
ea eb

)
.

We conclude that ea+b = ea eb.

Algebraic properties

Example

Simplify the expression
(ex−ln(2)

e

)3
.

Solution:(ex−ln(2)

e

)3
=

(ex−ln(2))3

e3
=

1

e3
e3x−3 ln(2) = e−3 e3x

e3 ln(2)

(ex−ln(2)

e

)3
=

e−3 e3x

e ln(23)
=

e3x−3

e ln(8)
=

e3(x−1)

8
.

We conclude that
(ex−ln(2)

e

)3
=

1

8
e3(x−1). C
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Computing the number e.

Theorem
The number e defined as ln(e) = 1 can be obtained as

e = lim
h→0

(1 + h)1/h.

Proof: On the one hand, ln′(x) =
1

x
, that implies ln′(1) = 1.

On the other hand, ln′(1) = limh→0
1
h

[
ln(1 + h)− ln(1)

]
, that is,

ln′(1) = lim
h→0

1

h
ln(1 + h) = lim

h→0
ln

[
(1 + h)1/h

]
.

The ln is continuous, lim
h→0

ln
[
(1 + h)1/h

]
= ln

[
lim
h→0

(1 + h)1/h
]
.

Therefore, ln
[
lim
h→0

(1 + h)1/h
]

= 1. But ln is a one-to-one function,

and ln(e) = 1, hence e = lim
h→0

(1 + h)1/h.



Computing the number e.

Remark: The convergence in e = lim
h→0

(1 + h)1/h is slow.

I For h = 1, eh = 2.

I For h = 1
2 , eh =

(
1.5

)2
= 2.25.

I For h = 1
10 , eh =

(
1.1

)10
= 2.5937....

I For h = 1
100 , eh =

(
1.01

)100
= 2.7048....

I For h = 1
1000 , eh =

(
1.001

)1000
= 2.7169....

Remark: e = 2.71828182....

The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



The exponential function ax

Remarks:

I The exponentiation function can be generalized from base e
to base a ∈ (0,∞).

I Recall that a = e ln(a), for every a ∈ (0,∞).

Definition
The exponentiation function on base a ∈ (0,∞) is the function
exp[a] : R→ (0,∞) given by

exp[a](x) = ex ln(a).

Remarks:

I For a = e we reobtain exp[e](x) = ex .

I The exponentiation satisfies exp[a](0) = 1 and exp[a](1) = a.

I Also exp[a](m/n) = e(m/n) ln(a) = e ln(am/n) = am/n.

I Notation: exp[a](x) = ax , for x ∈ R.

The exponential function ax

Remark: The algebraic properties of ex also hold for ax .

Theorem
For every a ∈ (0,∞), b, c ∈ R, and every rational number, q, hold

(a) ab+c = ab, ac ;

(b) a−b =
1

ab
;

(c) ab−c =
ab

ac
;

(d)
(
aa

)q
= aqa.

Proof: Only of (a):

a(b+c) = e(b+c) ln(a) = eb ln(a)+c ln(a) = eb ln(a) ec ln(a).

We conclude that a(b+c) = ab ac .



The exponential function ax

Example

Compute 3π+
√

2.

Solution:

3π+
√

2 = e(π+
√

2) ln(3) = e(3.14...+1.41...)(1.099...) = 149.167...
C

Example

Compute 2−π.

Solution:

2−π =
1

2π
=

1

eπ ln(2)
=

1

8.825... C
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Derivatives and integrals

Theorem
For every a ∈ (0,∞), c ∈ R, and differentiable function u holds,

(ax)′ = ln(a) ax , (au)′ = ln(a) au u′.

In addition, if a 6= 1, then∫
ax dx =

ax

ln(a)
+ c .

Proof of the first equation:

(ax)′ =
(
ex ln(a)

)′
= ln(a)

(
ex ln(a)

)
,

that is, (ax)′ = ln(a) ax .

Derivatives and integrals

Example

Compute both the derivative and a primitive of f (x) = 5x .

Solution: The derivative is (5x
)′

= ln(5) 5x .

The antiderivatives are

∫
5x dx =

1

ln(5)
5x + c , for c ∈ R. C

Example

Compute both the derivative and a primitive of f (x) = 53x .

Solution: (53x
)′

= ln(5) 53x(3x)′, hence (53x
)′

= 3 ln(5) 53x ,

For the antiderivatives use u = 3x , du = 3 dx ,

I =

∫
53x dx =

∫
5u du

3
=

1

3

5u

ln(5)
⇒ I =

53x

3 ln(5)
+ c .

C



Derivatives and integrals

Example

Compute I =

∫ (1

7

)sin(x)
cos(x) dx .

Solution: Use the substitution u = sin(x), then du = cos(x) dx .

I =

∫ (1

7

)sin(x)
cos(x) dx =

∫ (1

7

)u
du

I =
1

ln(1/7)

(1

7

)u
+ c .

Now substitute back,

I = − 1

ln(7)

(1

7

)sin(x)
+ c . C

The exponential function (Sect. 7.3)

I Review: The exponential function ex .

I Computing the number e.

I The exponential function ax .

I Derivatives and integrals.

I Logarithms with base a ∈ R.



Logarithms with base a ∈ R.

Remarks:

I The function ax = ex ln(a) is one-to-one, so invertible.

I loga(x), a logarithm with base a, is the inverse of ax .

I The function loga is proportional to ln.

Definition
For every positive a with a 6= 1 the function loga : (0,∞)→ R is
given by

loga(x) = y ⇔ x = ay .

Theorem

For positive a with a 6= 1 holds loga(x) =
ln(x)

ln(a)
.

Proof: loga(x) = y ⇔ x = ay = ey ln(a) ⇔ ln(x) = y ln(a).

Therefore, ln(x) = loga(x) ln(a) ⇒ loga(x) =
ln(x)

ln(a)
.

Logarithms with base a ∈ R.

Theorem
For every positive a, a 6= 1, and differentiable function u holds,

log′a(x) =
1

ln(a) x
,

[
loga(u)

]′
=

u′

ln(a) u
.

Proof of the first equation: Since loga(x) =
ln(x)

ln(a)
, then

log′a(x) =
1

ln(a)

1

x
Example

Compute the derivative of f (x) = log2(3x3 + 2).

Solution: f ′(x) =
1

ln(2)
ln′(3x2 + 2) =

1

ln(2)

1

(3x2 + 2)
6x .

We conclude: f ′(x) =
6x

ln(2) (3x2 + 2)
. C


