

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f : D \to \mathbb{R}$ is called *one-to-one* (injective) iff for every $x_1, x_2 \in D$ holds

 $x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2).$

Example

Invertible:

1. $y = x^3$, for $x \in \mathbb{R}$. 2. $y = x^2$, for $x \in [0, b]$. 3. $y = \sqrt{x}$, for $x \in [0, \infty)$. 3. $y = \cos(x)$, $x \in [-a, a]$. 4. $y = \sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}].$

Not Invertible:

- 1. $y = x^2$, for $x \in [-a, a]$.
- 2. y = |x|, for $x \in [-a, a]$.
- 4. y = sin(x), for $x \in [0, \pi]$.

One-to-one functions

Example

Verify that the functions below are not one-to-one:

(a) y = x², for x ∈ [-a, a].
(b) y = cos(x), x ∈ [-a, a].
(c) y = sin(x), for x ∈ [0, π].
Solution:
(a) For x₁ = -1, x₂ = 1 we have that x₁ ≠ x₂ and f(x₁) = (-1)² = 1 = 1² = f(x₂).
(b) Recalling that cos(θ) = cos(-θ), and taking x₁ = -θ, x₂ = θ, f(-θ) = cos(-θ) = cos(θ) = f(θ).
(c) Since sin(θ) = sin(π - θ), and taking x₁ = π/4, x₂ = 3π/4, f(π/4) = sin(π/4) = sin(π - π/4) = sin(3π/4) = f(3π/4).

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)

A function $f : D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y = y_0$ at $(x_1, f(x_1))$ and $(x_2, f(x_2))$, with $x_1 \neq x_2$, that means $y_0 = f(x_1) = f(x_2)$. Hence f is not one-to-one.

Example

The inverse function

Remark: Only one-to-one functions are invertible.

Definition

The *inverse* of a one-to-one function $f : D \to R$ is the function $f^{-1} : R \to D$ defined for all $x \in D$ and all $y \in R$ as follows

 $f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$

Example

Find the inverse of f(x) = 2x - 3.

Solution: Denote y = f(x), that is, y = 2x - 3. Find x in the expression above,

$$2x = y + 3 \quad \Rightarrow \quad x = \frac{1}{2}y + \frac{3}{2}$$

Then, the inverse function is $f^{-1}(y) = \frac{1}{2}y + \frac{3}{2}$.

 \triangleleft

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)

If the invertible function $f : D \to R$ is differentiable and $f'(x) \neq 0$ for every $x \in D$, then the function $f^{-1} : R \to D$ is differentiable. Furthermore, for every $y \in R$ holds

$$(f^{-1})'(y) = rac{1}{f'(f^{-1}(y))}.$$

Example

Verify the Theorem above for f(x) = 2x - 3.

Solution: This case is simple because f'(x) = 2, constant.

Since
$$f^{-1}(y) = \frac{1}{2}(y+3)$$
, then $(f^{-1})'(y) = \frac{1}{2}$, constant.
Therefore, $(f^{-1})' = \frac{1}{f'}$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x) = x^3$.

Solution:

We first compute the inverse function. Denote y = f(x), then

$$y = x^3 \quad \Rightarrow \quad x = y^{1/3} \quad \Rightarrow \quad f^{-1}(y) = y^{1/3}.$$

Compute now the derivative of the inverse function,

$$(f^{-1})'(y) = \frac{1}{3}y^{-2/3} = \frac{1}{3}\frac{1}{y^{2/3}}.$$

Compute now the derivative of the original function,

$$f'(x) = 3x^2 \quad \Rightarrow \quad f'(f^{-1}(y)) = 3(f^{-1}(y))^2 = 3(y^{1/3})^2.$$

We conclude that $\frac{1}{3y^{2/3}} = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x) = x^3 + x - 1$ at x = 2.

Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.

But at x = 2 we have $f(2) = 2^3 + 2 - 1$, that is, f(2) = 9. Therefore $f^{-1}(9) = 2$.

Compute now the derivative of the original function,

$$f'(x) = 3x^2 + 1$$

Then the formula in the Theorem, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$, for y = 9 implies

$$(f^{-1})'(9) = \frac{1}{f'(f^{-1}(9))} = \frac{1}{f'(2)} = \frac{1}{3(4)+1}$$

We conclude that $(f^{-1})'(y) = \frac{1}{13}$.

 \triangleleft

 \triangleleft