The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

One-to-one functions

Remark:

- Not every function is invertible.
- Only one-to-one functions are invertible.

Definition

A function $f: D \rightarrow \mathbb{R}$ is called one-to-one (injective) iff for every $x_{1}, x_{2} \in D$ holds

$$
x_{1} \neq x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right) .
$$

Example

Invertible:

1. $y=x^{3}$, for $x \in \mathbb{R}$.
2. $y=x^{2}$, for $x \in[0, b]$.
3. $y=\sqrt{x}$, for $x \in[0, \infty)$.
4. $y=\sin (x), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Not Invertible:

1. $y=x^{2}$, for $x \in[-a, a]$.
2. $y=|x|$, for $x \in[-a, a]$.
3. $y=\cos (x), x \in[-a, a]$.
4. $y=\sin (x)$, for $x \in[0, \pi]$.

One-to-one functions

Example

Verify that the functions below are not one-to-one:
(a) $y=x^{2}$, for $x \in[-a, a]$.
(b) $y=\cos (x), x \in[-a, a]$.
(c) $y=\sin (x)$, for $x \in[0, \pi]$.

Solution:

(a) For $x_{1}=-1, x_{2}=1$ we have that $x_{1} \neq x_{2}$ and

$$
f\left(x_{1}\right)=(-1)^{2}=1=1^{2}=f\left(x_{2}\right)
$$

(b) Recalling that $\cos (\theta)=\cos (-\theta)$, and taking $x_{1}=-\theta, x_{2}=\theta$,

$$
f(-\theta)=\cos (-\theta)=\cos (\theta)=f(\theta)
$$

(c) Since $\sin (\theta)=\sin (\pi-\theta)$, and taking $x_{1}=\pi / 4, x_{2}=3 \pi / 4$,

$$
f(\pi / 4)=\sin (\pi / 4)=\sin (\pi-\pi / 4)=\sin (3 \pi / 4)=f(3 \pi / 4) .
$$

One-to-one functions

Remark: By looking at the graph of the function one can determine whether the function is one-to-one or not.

Theorem (Horizontal line test)
A function $f: D \rightarrow R$ is one-to-one iff the function graph intersects every horizontal line at most once.

Proof: If a function f intersects the horizontal line $y=y_{0}$ at $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$, with $x_{1} \neq x_{2}$, that means $y_{0}=f\left(x_{1}\right)=f\left(x_{2}\right)$. Hence f is not one-to-one.

Example

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

The inverse function

Remark: Only one-to-one functions are invertible.

Definition

The inverse of a one-to-one function $f: D \rightarrow R$ is the function $f^{-1}: R \rightarrow D$ defined for all $x \in D$ and all $y \in R$ as follows

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x)
$$

Example

Find the inverse of $f(x)=2 x-3$.
Solution: Denote $y=f(x)$, that is, $y=2 x-3$. Find x in the expression above,

$$
2 x=y+3 \quad \Rightarrow \quad x=\frac{1}{2} y+\frac{3}{2}
$$

Then, the inverse function is $f^{-1}(y)=\frac{1}{2} y+\frac{3}{2}$.

The inverse function

Remark:

- If f^{-1} is the inverse of f, then holds

$$
\left(f^{-1} \circ f\right)(x)=x, \quad\left(f \circ f^{-1}\right)(y)=y
$$

- Equivalently,

$$
f^{-1}(f(x))=x, \quad f\left(f^{-1}(y)\right)=y
$$

Example

Verify the relations above for $f(x)=2 x-3$.
Solution: Recall: $f^{-1}(y)=(y+3) / 2$. Hence

$$
\begin{align*}
& f^{-1}(f(x))=f^{-1}(2 x-3)=\frac{1}{2}[(2 x-3)+3]=x \\
& f\left(f^{-1}(y)\right)=f\left(\frac{1}{2}(y+3)\right)=2\left[\frac{1}{2}(y+3)\right]-3=y
\end{align*}
$$

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

The graph of the inverse function
Remark: The graph of the function f^{-1} is obtained reflecting the graph of f along the line $y=x$.

Example

The inverse function (Sect. 7.1)

- One-to-one functions.
- The inverse function
- The graph of the inverse function.
- Derivatives of the inverse function.

Derivatives of the inverse function.

Remark: The derivative values of a function and its inverse are deeply related.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Derivatives of the inverse function.

Theorem (Derivative for inverse functions)
If the invertible function $f: D \rightarrow R$ is differentiable and $f^{\prime}(x) \neq 0$ for every $x \in D$, then the function $f^{-1}: R \rightarrow D$ is differentiable. Furthermore, for every $y \in R$ holds

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Example

Verify the Theorem above for $f(x)=2 x-3$.
Solution: This case is simple because $f^{\prime}(x)=2$, constant.
Since $f^{-1}(y)=\frac{1}{2}(y+3)$, then $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{2}$, constant.
Therefore, $\left(f^{-1}\right)^{\prime}=\frac{1}{f^{\prime}}$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}$.

Solution:

We first compute the inverse function. Denote $y=f(x)$, then

$$
y=x^{3} \Rightarrow x=y^{1 / 3} \Rightarrow f^{-1}(y)=y^{1 / 3}
$$

Compute now the derivative of the inverse function,

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{3} y^{-2 / 3}=\frac{1}{3} \frac{1}{y^{2 / 3}} .
$$

Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2} \quad \Rightarrow \quad f^{\prime}\left(f^{-1}(y)\right)=3\left(f^{-1}(y)\right)^{2}=3\left(y^{1 / 3}\right)^{2} .
$$

We conclude that $\frac{1}{3 y^{2 / 3}}=\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$.

Derivatives of the inverse function.

Example

Verify the Theorem above for $f(x)=x^{3}+x-1$ at $x=2$.
Solution: In this case is difficult to find $f^{-1}(y)$ for $y \in \mathbb{R}$.
But at $x=2$ we have $f(2)=2^{3}+2-1$, that is, $f(2)=9$.
Therefore $f^{-1}(9)=2$.
Compute now the derivative of the original function,

$$
f^{\prime}(x)=3 x^{2}+1
$$

Then the formula in the Theorem, $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}$, for $y=9$ implies

$$
\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}\left(f^{-1}(9)\right)}=\frac{1}{f^{\prime}(2)}=\frac{1}{3(4)+1}
$$

We conclude that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{13}$.

