Work on solids and fluids (Sect. 6.5)

- Moving things around.
- Forces made by springs.
- Pumping liquids.

Moving Things around: Constant forces

Remarks:

- Moving things around requires some work.
- Work is an amount of energy needed to move an object.

Remark: If an object is moved a distance d along a straight line by a constant force F in the direction of motion, then the work done on the particle is

$$
W=F d
$$

Example

Find the work done to lift an object with mass of $m=20 \mathrm{Kgr}$ from the ground to a height of $d=1 \mathrm{ft}$.

Solution: The force to lift the object is $F=m g$, with $g \simeq 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
Then, $F=(20) K g r(10) \frac{m}{s^{2}}=200 N$, so

$$
W=F d=200 N \frac{3}{10} m \Rightarrow W=60 \mathrm{~J}
$$

Moving Things around: Variable forces

Definition

The work done on a particle moving on the x-axis by a non-constant force F along the x-axis for $x \in[a, b]$ is

Remarks:

$$
W=\int_{a}^{b} F(x) d x
$$

- The formula above is obtained in the standard way: Introduce a partition in $[a, b]$ and compute the limit of partial sums

$$
W_{N}=\sum_{k=0}^{N-1} F\left(x_{k}\right) \Delta x_{k} .
$$

- The simplest variable force is the one produced by a spring. In 1660 Robert Hooke discovered that $F(x)=k x$, where k is called the spring constant, and x is the displacement from the spring rest position.

Work on solids and fluids (Sect. 6.5)

- Moving things around.
- Forces made by springs.
- Pumping liquids.

Forces made by springs

Remark: The force of a spring, $F(x)=k x$ is called Hooke's Law.

Example

Find the minimum work needed to compress a spring with constant $k=3 \mathrm{~N} / \mathrm{m}$ a distance of $d \mathrm{~m}$ from the spring rest position.

Solution: The spring force is $F(x)=k x$, then

$$
W=\int_{0}^{d} k x d x=\left.k \frac{x^{2}}{2}\right|_{0} ^{d} \Rightarrow W=\frac{k d^{2}}{2}
$$

Example

If a force of 60 N stretches a spring 3 m from its rest position, how much work does it take to stretch it 4 m from its rest position?

Solution: From Hooke's Law we know that $60 N=k$ (3) m, that is, $k=20 \mathrm{~N} / \mathrm{m}$. The previous problem implies $W=k d^{2} / 2$, that is,

$$
W=20 \frac{N}{m} \frac{4^{2}}{2} m^{2} \Rightarrow W=160 J
$$

Work on solids and fluids (Sect. 6.5)

- Moving things around.
- Forces made by springs.
- Pumping liquids.

Pumping liquids

Remark: Pumping liquids in or out an arbitrary shaped container is a typical problem with variable forces.

Theorem

Consider an arbitrary shaped container with horizontal cross section area $A(z)$, for $z \in[0, h]$, and let $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
(a) If a liquid of density $\delta \mathrm{Kgr} / \mathrm{m}^{3}$ is resting at the bottom of the container, then the work done to pump the liquid in the container, initially empty, up to a height $h_{1} \leqslant h$ is

$$
W=\int_{0}^{h_{1}} \delta g A(z) z d z
$$

(b) The work done to pump the liquid out from the top of a container, initially filled with liquid up to a height $h_{1} \leqslant h$ is

$$
W=\int_{0}^{h_{1}} \delta g A(z)(h-z) d z
$$

Pumping liquids

Proof: (a) Show: $W=\int_{0}^{h_{1}} \delta g A(z) z d z$.

The amount of liquid that can be placed at cross-section $S(z)$ is

$$
L=\delta A(z) d z
$$

The force that must be done to lift that amount of liquid is

$$
F=\delta g A(z) d z
$$

The work done to lift that liquid to height z from $z=0$ is

$$
W(z)=\delta g A(z) z d z
$$

The work to fill in the container up to h_{1} is $W=\int_{0}^{h_{1}} \delta g A(z) z d z$.

Pumping liquids

Proof: (b) Show: $W=\int_{0}^{h_{1}} \delta g A(z)(h-z) d z$.

The force that must be done to lift the liquid in $S(z)$ is

$$
F=\delta g A(z) d z
$$

The work done to lift that liquid from a height z to h is

$$
W(z)=\delta g A(z)(h-z) d z
$$

The work to empty the container initially filled up to h_{1} is

$$
W=\int_{0}^{h_{1}} \delta g A(z)(h-z) d z
$$

Pumping liquids

Example

A tank has the shape of an inverted circular cone with height $h=10 \mathrm{~m}$ and base radius $R=4 \mathrm{~m}$. It is filled with water to a height $h_{1}=8 \mathrm{~m}$. Recalling that the water density is $1 \mathrm{gr} / \mathrm{cm}^{3}=1000 \mathrm{Kgr} / \mathrm{m}^{3}$, find the work required to empty the tank pumping the water from the top.

Solution:

$$
\text { Recall: } W=\int_{0}^{h_{1}} \delta g A(z)(h-z) d z
$$

Here $A(z)=\pi[R(z)]^{2}=\pi[y(z)]^{2}$.

$$
\begin{aligned}
& z(y)=\frac{10}{4} y, \text { so } y=\frac{2}{5} z . \text { Hence } \\
& W=\delta g \pi \frac{4}{25} \int_{0}^{8} z^{2}(10-z) d z
\end{aligned}
$$

Pumping liquids

Example

A tank has the shape of an inverted circular cone with height $h=10 \mathrm{~m}$ and base radius $R=4 \mathrm{~m}$. It is filled with water to a height $h_{1}=8 \mathrm{~m}$. Recalling that the water density is $1 \mathrm{gr} / \mathrm{cm}^{3}=1000 \mathrm{Kgr} / \mathrm{m}^{3}$, find the work required to empty the tank pumping the water from the top.

Solution: Recall: $W=\delta g \pi \frac{4}{25} \int_{0}^{8} z^{2}(10-z) d z$.

$$
\begin{gathered}
W=\delta g \pi \frac{4}{25}\left[\left.10 \frac{z^{3}}{3}\right|_{0} ^{8}-\left.\frac{z^{4}}{4}\right|_{0} ^{8}\right]=\delta g \pi \frac{4}{25} 8^{3}\left[\frac{10}{3}-\frac{8}{4}\right] \\
W=\delta g \pi \frac{4}{25} 8^{3} \frac{4}{3} \Rightarrow W=\delta g \pi \frac{16}{25} 8^{3} .
\end{gathered}
$$

That is, $W=3.4 \times 10^{6} \mathrm{~J}$.

