The arc-length of curves in the plane (Sect. 6.3)

- The main arc-length formula.
- Curves with vertical asymptotes.
- The arc-length function.

The main length formula
Remark: The length of a straight segment can be obtained with Pythagoras Theorem.

$$
L=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
$$



Remark: Calculus is needed to compute, and even define, the length of non-straight curves, called arc-length.

## Definition

The arc-length of a curve in the plane given by a differentiable function $y=f(x)$, for $x \in[a, b]$, is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

The main length formula
Remark: The origin of the square-root in the expression above is Pythagoras Theorem.

Remark: The definition of arc-length is the result of a limit procedure. We mention two of such limits.
(a)


The length of the curve will be approximated by the red lines,

$$
L_{N}=\sum_{k=0}^{N-1} \Delta L_{k}=\sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}
$$

The main length formula

$$
\begin{gathered}
L_{N}=\sum_{k=0}^{N-1} \Delta L_{k}=\sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}} \\
L_{N}=\sum_{k=0}^{N-1} \sqrt{1+\frac{\left(\Delta y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k}=\sum_{k=0}^{N-1} \sqrt{1+\frac{\left(y_{k+1}-y_{k}\right)^{2}}{\left(x_{k+1}-x_{k}\right)^{2}}} \Delta x_{k} \\
L_{N}
\end{gathered}=\sum_{k=0}^{N-1} \sqrt{1+\left[\frac{f\left(x_{k+1}\right)-f\left(x_{k}\right)}{x_{k+1}-x_{k}}\right]^{2}} \Delta x_{k} .
$$

One can show that in the limit $N \rightarrow \infty$ holds $x_{k+1} \rightarrow x_{k}$ and

$$
L_{N} \rightarrow \int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=L
$$

The main length formula
(b)


Recall: $d y_{k}=f^{\prime}\left(x_{k}\right) \Delta x_{k}$. Now the length of the curve will be approximated by the red lines

$$
\tilde{L}_{N}=\sum_{k=0}^{N-1} \widetilde{\Delta L_{k}}=\sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(d y_{k}\right)^{2}} .
$$

The main length formula

$$
\begin{gathered}
\tilde{L}_{N}=\sum_{k=0}^{N-1} \widetilde{\Delta L_{k}}=\sum_{k=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(d y_{k}\right)^{2} .} \\
\tilde{L}_{N}=\sum_{k=0}^{N-1} \sqrt{1+\frac{\left(d y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k}=\sum_{k=0}^{N-1} \sqrt{1+\frac{\left[f^{\prime}\left(x_{k}\right) \Delta x_{k}\right]^{2}}{\left(\Delta x_{k}\right)^{2}}} \Delta x_{k} \\
\tilde{L}_{N}=\sum_{k=0}^{N-1} \sqrt{1+\left[f^{\prime}\left(x_{k}\right)\right]^{2}} \Delta x_{k}
\end{gathered}
$$

One can show that in the limit $N \rightarrow \infty$ holds

$$
\tilde{L}_{N} \rightarrow \int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=L .
$$

The main length formula

## Example

Find the arc-length of the curve $y=x^{3 / 2}$, for $x \in[0,4]$.
Solution: Recall: $L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$. We start with

$$
\begin{gathered}
f(x)=x^{3 / 2} \Rightarrow f^{\prime}(x)=\frac{3}{2} x^{1 / 2} \quad \Rightarrow \quad\left[f^{\prime}(x)\right]^{2}=\frac{9}{4} x . \\
L=\int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x, \quad u=1+\frac{9}{4} x, \quad d u=\frac{9}{4} d x . \\
L=\int_{1}^{10} \frac{4}{9} \sqrt{u} d u=\frac{4}{9} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{10}\right) .
\end{gathered}
$$

We conclude that $L=\frac{8}{27}\left(10^{3 / 2}-1\right)$.

The arc-length of curves in the plane (Sect. 6.3)

- The main arc-length formula.
- Curves with vertical asymptotes.
- The arc-length function.


## Curves with vertical asymptotes

Remark: The arc-length of curves having a vertical asymptote should be computed using the inverse function.

## Example

Find the arc-length of $y(x)=\sqrt{2(x-1)}$, for $x \in[1,3]$.
Solution: Recall: $L=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$.

$$
y^{\prime}(x)=\sqrt{2}(\sqrt{x-1})^{\prime}=\sqrt{2} \frac{1}{2} \frac{1}{\sqrt{x-1}}=\frac{1}{\sqrt{2(x-1)}}
$$

Hence, $y^{\prime}(x) \rightarrow \infty$ as $x \rightarrow 1^{+}$. Therefore, it is not clear how to compute

$$
L=\int_{1}^{3} \sqrt{1+\frac{1}{2(x-1)}} d x
$$

## Curves with vertical asymptotes

Remark: Describe the curve with the inverse function.


We now use $L=\int_{0}^{2} \sqrt{1+\left[x^{\prime}(y)\right]^{2}} d y$. Since $x^{\prime}(y)=y$,

$$
L=\int_{0}^{2} \sqrt{1+y^{2}} d y=\left.\left[\frac{y}{2} \sqrt{1+y^{2}}+\frac{1}{2} \ln \left(y+\sqrt{1+y^{2}}\right)\right]\right|_{0} ^{2}
$$

Curves with vertical asymptotes

## Example

Find the length of $y(x)=\sqrt{2(x-1)}$, for $x \in[1,3]$.
Solution: Recall:



$$
L=\int_{0}^{2} \sqrt{1+y^{2}} d y=\left.\left[\frac{y}{2} \sqrt{1+y^{2}}+\frac{1}{2} \ln \left(y+\sqrt{1+y^{2}}\right)\right]\right|_{0} ^{2}
$$

We conclude that $L=\sqrt{5}+\frac{1}{2} \ln (2+\sqrt{5})$.

The arc-length of curves in the plane (Sect. 6.3)

- The main arc-length formula.
- Curves with vertical asymptotes.
- The arc-length function.

The arc-length function.
Remark: It is useful to introduce a function that measures a curve arc-length from a fix starting point to any other point in the curve.

## Definition

The arc-length function of a differentiable curve $y=f(x)$, for $x \in[a, b]$ is given by

$$
L(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(\hat{x})\right]^{2}} d \hat{x}
$$

Remark: The Fundamental Theorem of Calculus implies that

$$
L^{\prime}(x)=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}
$$

Remark: Using differential notation, $d L=L^{\prime}(x) d x$, we get

$$
d L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

The arc-length function.

## Example

Find the arc-length function of the curve $y=x^{3 / 2}$, for $x \in[0,4]$.
Solution: Recall: $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$, so $\left[f^{\prime}(x)\right]^{2}=\frac{9}{4} x$.

$$
\begin{gathered}
L(x)=\int_{0}^{x} \sqrt{1+\frac{9}{4} \tilde{x}} d \tilde{x}, \quad u=1+\frac{9}{4} \tilde{x}, \quad d u=\frac{9}{4} d \tilde{x} . \\
L(x)=\int_{1}^{1+\frac{9}{4} \times} \frac{4}{9} \sqrt{u} d u=\frac{4}{9} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{1+\frac{9}{4} x}\right) .
\end{gathered}
$$

We conclude that $L(x)=\frac{8}{27}\left[\left(1+\frac{9}{4} x\right)^{3 / 2}-1\right]$.

