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Recall:
The point x0 ∈ R is a singular point of the equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

iff holds that P(x0) = 0.
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Equations with regular-singular points.

Definition
A singular point x0 ∈ R of the equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

is called a regular-singular point iff the following limits are finite,

lim
x→x0

(x − x0) Q(x)

P(x)
, lim

x→x0

(x − x0)
2 R(x)

P(x)
,

and both functions

(x − x0) Q(x)

P(x)
,

(x − x0)
2 R(x)

P(x)
,

admit convergent Taylor series expansions around x0.



Equations with regular-singular points.

Remark:

I If x0 is a regular-singular point of

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

and P(x) ' (x − x0)
n near x0, then near x0 holds

Q(x) ' (x − x0)
n−1, R(x) ' (x − x0)

n−2.

I The main example is an Euler equation, case n = 2,

(x − x0)
2 y ′′ + p0(x − x0) y ′ + q0 y = 0.
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Equations with regular-singular points.

Example

Show that the singular point of every Euler equation is a
regular-singular point.

Solution: Consider the general Euler equation

(x − x0)
2 y ′′ + p0(x − x0) y ′ + q0 y = 0,

where p0, q0, x0, are real constants. This is an equation
Py ′′ + Qy ′ + Ry = 0 with

P(x) = (x − x0)
2, Q(x) = p0(x − x0), R(x) = q0.

Therefore, we obtain,

lim
x→x0

(x − x0) Q(x)

P(x)
= p0, lim

x→x0

(x − x0)
2 R(x)

P(x)
= q0.

We conclude that x0 is a regular-singular point. C
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Equations with regular-singular points.

Remark: Every equation Py ′′ + Qy ′ + Ry = 0 with a
regular-singular point at x0 is close to an Euler equation.

Proof:
For x 6= x0 divide the equation by P(x),

y ′′ +
Q(x)

P(x)
y ′ +

R(x)

P(x)
y = 0,

and multiply it by (x − x0)
2,

(x − x0)
2 y ′′ + (x − x0)

[(x − x0)Q(x)

P(x)

]
y ′ +

[(x − x0)
2R(x)

P(x)

]
y = 0.

The factors between [ ] approach constants, say p0, q0, as x → x0,

(x − x0)
2 y ′′ + (x − x0)p0 y ′ + q0 y = 0.
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Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(1− x2) y ′′ − 2x y ′ + α(α + 1) y = 0,

where α is a real constant.

Solution: Find the singular points of this equation,

0 = P(x) = (1− x2) = (1− x)(1 + x) ⇒

{
x0 = 1,

x1 = −1.

Case x0 = 1: We then have

(x − 1) Q(x)

P(x)
=

(x − 1)(−2x)

(1− x)(1 + x)
=

2x

1 + x
,

(x − 1)2 R(x)

P(x)
=

(x − 1)2
[
α(α + 1)

]
(1− x)(1 + x)

=
(x − 1)

[
α(α + 1)

]
1 + x

;

both functions above have Taylor series around x0 = 1.
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Example

Find the regular-singular points of the differential equation

x y ′′ − x ln(|x |) y ′ + 3x y = 0.

Solution: The singular point is x0 = 0. We compute the limit

lim
x→0

xQ(x)

P(x)
= lim

x→0

x
[
−x ln(|x |)

]
x

= lim
x→0

− ln(|x |)
1
x

.

Use L’Hôpital’s rule: lim
x→0

xQ(x)

P(x)
= lim

x→0

− 1
x

− 1
x2

= lim
x→0

x = 0.

The other limit is: lim
x→0

x2R(x)

P(x)
= lim

x→0

x2(3x)

x
= lim

x→0
3x2 = 0.



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

x y ′′ − x ln(|x |) y ′ + 3x y = 0.

Solution: The singular point is x0 = 0.

We compute the limit

lim
x→0

xQ(x)

P(x)
= lim

x→0

x
[
−x ln(|x |)

]
x

= lim
x→0

− ln(|x |)
1
x

.
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Find the regular-singular points of the differential equation
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x→0

xQ(x)
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However, at the point x0 = 0 the function xQ/P does not have a
power series expansion around zero, since

xQ(x)
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= −x ln(|x |),

and the log function does not have a Taylor series at x0 = 0.

We conclude that x0 = 0 is not a regular-singular point. C
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Method to find solutions.

Recall: If x0 is a regular-singular point of

P(x) y ′′ + Q(x) y ′ + R(x) y = 0,

with limits lim
x→x0

(x − x0)Q(x)

P(x)
= p0 and lim

x→x0

(x − x0)
2R(x)

P(x)
= q0,

then the coefficients of the differential equation above near x0 are
close to the coefficients of the Euler equation

(x − x0)
2 y ′′ + p0(x − x0) y ′ + q0 y = 0.

Idea: If the differential equation is close to an Euler equation, then
the solutions of the differential equation might be close to the
solutions of an Euler equation.

Recall: One solution of an Euler equation is y(x) = (x − x0)
r .
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Method to find solutions.

Summary: Solutions for equations with regular-singular points:

(1) Look for a solution y of the form

y(x) =
∞∑

n=0

an (x − x0)
(n+r);

(2) Introduce this power series expansion into the differential
equation and find both a the exponent r and a recurrence
relation for the coefficients an;

(3) First find the solutions for the constant r . Then, introduce this
result for r into the recurrence relation for the coefficients an.
Only then, solve this latter recurrence relation for the
coefficients an.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: We look for a solution y(x) =
∞∑

n=0

an x (n+r).

The first and second derivatives are given by

y ′ =
∞∑

n=0

(n + r)an x (n+r−1), y ′′ =
∞∑

n=0

(n + r)(n + r − 1)an x (n+r−2).

In the case r = 0 we had the relation
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1),

but for r 6= 0 this relation is not true.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: We compute the term x2 y ′′,

x2 y ′′ = x2
∞∑

n=0

(n + r)(n + r − 1)an x (n+r−2)

x2 y ′′ =
∞∑

n=0

(n + r)(n + r − 1)an x (n+r).

The guiding principle to rewrite each term is to have the power
function x (n+r) labeled in the same way on every term.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: The differential equation is given by

∞∑
n=0

(n + r)(n + r − 1)an x (n+r) −
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n=1

(n + r − 1)a(n−1) x (n+r)

−
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n=0

3(n + r)an x (n+r) +
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n=1

a(n−1) x (n+r) +
∞∑

n=0

3an x (n+r) = 0.

We split the sums into the term n = 0 and a sum containing the
terms with n > 1, that is,

0 =
[
r(r − 1)− 3r + 3

]
a0x

r+
∞∑

n=1

[
(n+r)(n+r−1)an−(n+r−1)a(n−1)−3(n+r)an+a(n−1)+3an

]
x (n+r)
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Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: Hence, the recurrence relation is given by the equations

r(r − 1)− 3r + 3 = 0,

(n + r − 1)(n + r − 3)an − (n + r − 2)a(n−1) = 0.

First: solve the first equation for r±.

Second: Introduce the first solution r+ into the second equation
above and solve for the an; the result is a solution y+ of the
original differential equation;

Third: Introduce the second solution r− into into the second
equation above and solve for the an; the result is a solution y− of
the original differential equation;
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Example: Method to find solutions.
Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: We first solve r(r − 1)− 3r + 3 = 0.

r2 − 4r + 3 = 0 ⇒ r± =
1

2

[
4±

√
16− 12

]
⇒

{
r+ = 3,

r− = 1.

Introduce r+ = 3 into the equation for an:

(n + 2)n an − (n + 1)an−1 = 0.

One can check that the solution y+ is

y+ = a0 x3
[
1 +

2

3
x +

1

4
x2 +

1

15
x3 + · · ·

]
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: The solutions y+ and y− are not linearly independent.

This Example shows that the method does not provide all solutions
of a differential equation near a regular-singular point, it only
provides at least one solution near a regular-singular point.

Remark: It can be shown the following result:
If the roots of the Euler characteristic polynomial r+, r− differ by
an integer, then the second solution y−, the solution corresponding
to the smaller root, is not given by the method above.
This solution involves logarithmic terms.
We do not study this type of solutions in these notes. C
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The definition of the Laplace Transform.

Definition
The function F : DF → R is the Laplace transform of a function
f : [0,∞) → R iff for all s ∈ DF holds,

F (s) =

∫ ∞

0

e−st f (t) dt,

where DF ⊂ R is the set where the integral converges.

Remark: The domain DF of F depends on the function f .

Notation: We often denote: F (s) = L[f (t)].

I This notation L[ ] emphasizes that the Laplace transform
defines a map from a set of functions into a set of functions.

I Functions are denoted as t 7→ f (t).

I The Laplace transform is also a function: f 7→ L[f ].
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Review: Improper integrals.

Recall: Improper integral are defined as a limit.∫ ∞

t0

g(t) dt = lim
N→∞

∫ N

t0

g(t) dt.

I The integral converges in the limit exists.

I The integral diverges in the limit does not exist.

Example

Compute the improper integral

∫ ∞

0
e−at dt, with a > 0.

Solution:

∫ ∞

0

e−at dt = lim
N→∞

∫ N

0

e−at dt = lim
N→∞

−1

a

(
e−aN − 1

)
.

Since lim
N→∞

e−aN = 0 for a > 0, we conclude

∫ ∞

0

e−at dt =
1

a
. C
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Examples of Laplace Transforms.

Example

Compute L[1].

Solution: We have to find the Laplace Transform of f (t) = 1.
Following the definition we obtain,

L[1] =

∫ ∞

0

e−st 1 dt =

∫ ∞

0

e−st dt

But

∫ ∞

0

e−at dt =
1

a
for a > 0, and diverges for a 6 0.

Therefore L[1] =
1

s
, for s > 0, and L[1] does not exists for s 6 0.

In other words, F (s) = L[1] is the function F : DF → R given by

f (t) = 1, F (s) =
1

s
, DF = (0,∞). C
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Examples of Laplace Transforms.

Example

Compute L[eat ], where a ∈ R.

Solution: Following the definition of Laplace Transform,

L[eat ] =

∫ ∞

0

e−steat dt =

∫ ∞

0

e−(s−a)t dt.

We have seen that the improper integral is given by∫ ∞

0
e−(s−a) dt =

1

(s − a)
for (s − a) > 0.

We conclude that L[eat ] =
1

s − a
for s > a. In other words,

f (t) = eat , F (s) =
1

(s − a)
, s > a. C
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Examples of Laplace Transforms.
Example

Compute L[sin(at)], where a ∈ R.

Solution: In this case we need to compute

L[sin(at)] = lim
N→∞

∫ N

0

e−st sin(at) dt.

Integrating by parts twice it is not difficult to obtain:∫ N

0

e−st sin(at) dt =

−1

s

[
e−st sin(at)

]∣∣∣N
0

− a

s2

[
e−st cos(at)

]∣∣∣N
0

− a2

s2

∫ N

0

e−st sin(at) dt.

This identity implies(
1 +

a2

s2

) ∫ N

0

e−st sin(at) dt = −1

s

[
e−st sin(at)

]∣∣∣N
0
− a

s2

[
e−st cos(at)

]∣∣∣N
0
.
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A table of Laplace Transforms.

f (t) = 1 F (s) =
1

s
s > 0,

f (t) = eat F (s) =
1

s − a
s > max{a, 0},

f (t) = tn F (s) =
n!

s(n+1)
s > 0,

f (t) = sin(at) F (s) =
a

s2 + a2
s > 0,

f (t) = cos(at) F (s) =
s

s2 + a2
s > 0,

f (t) = sinh(at) F (s) =
a

s2 − a2
s > 0,

f (t) = cosh(at) F (s) =
s

s2 − a2
s > 0,

f (t) = tneat F (s) =
n!

(s − a)(n+1)
s > max{a, 0},

f (t) = eat sin(bt) F (s) =
b

(s − a)2 + b2
s > max{a, 0}.
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Properties of the Laplace Transform.

Theorem (Sufficient conditions)

If the function f : [0,∞) → R is piecewise continuous and there
exist positive constants k and a such that

|f (t)| 6 k eat ,

then the Laplace Transform of f exists for all s > a.

Theorem (Linear combination)

If the L[f ] and L[g ] are well-defined and a, b are constants, then

L[af + bg ] = aL[f ] + bL[g ].

Proof: Integration is a linear operation:∫
[a f (t) + b g(t)] dt = a

∫
f (t) dt + b

∫
g(t) dt.
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Properties of the Laplace Transform.

Theorem (Derivatives)

If the L[f ] and L[f ′] are well-defined, then holds,

L[f ′] = s L[f ] + f (0). (1)

Furthermore, if L[f ′′] is well-defined, then it also holds

L[f ′′] = s2 L[f ]− s f (0)− f ′(0). (2)

Proof of Eq (2): Use Eq. (1) twice:

L[f ′′] = L[(f ′)′] = sL[(f ′)]− f ′(0) = s
(
sL[f ]− f (0)

)
− f ′(0),

that is,
L[f ′′] = s2 L[f ]− s f (0)− f ′(0).
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The Laplace Transform (Sect. 6.1).

I The definition of the Laplace Transform.

I Review: Improper integrals.

I Examples of Laplace Transforms.

I A table of Laplace Transforms.

I Properties of the Laplace Transform.

I Laplace Transform and differential equations.



Laplace Transform and differential equations.

Remark: Laplace Transforms can be used to find solutions to
differential equations with constant coefficients.

Idea of the method:

L

[
differential eq.

for y(t).

]
(1)−→

Algebraic eq.

for L[y(t)].

(2)−→

(2)−→
Solve the

algebraic eq.

for L[y(t)].

(3)−→
Transform back

to obtain y(t).

(Using the table.)
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Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution y(t) to the IVP

y ′ + 2y = 0, y(0) = 3.

Solution: We know the solution: y(t) = 3e−2t .

(1): Compute the Laplace transform of the differential equation,

L[y ′ + 2y ] = L[0] ⇒ L[y ′ + 2y ] = 0.

Find an algebraic equation for L[y ]. Recall linearity:

L[y ′] + 2L[y ] = 0.

Also recall the property: L[y ′] = s L[y ]− y(0), that is,[
s L[y ]− y(0)

]
+ 2L[y ] = 0 ⇒ (s + 2)L[y ] = y(0).
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The Laplace Transform and the IVP (Sect. 6.2).

I Solving differential equations using L[ ].
I Homogeneous IVP.
I First, second, higher order equations.
I Non-homogeneous IVP.
I Recall: Partial fraction decompositions.



Solving differential equations using L[ ].

Remark: The method works with:

I Constant coefficient equations.

I Homogeneous and non-homogeneous equations.

I First, second, higher order equations.

Idea of the method:
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The Laplace Transform and the IVP (Sect. 6.2).

I Solving differential equations using L[ ].
I Homogeneous IVP.
I First, second, higher order equations.
I Non-homogeneous IVP.
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]
−
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− 2L[y ] = 0,

We the obtain (s2 − s − 2)L[y ] = (s − 1) y(0) + y ′(0).
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Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

y ′′ − 4y ′ + 4y = 0, y(0) = 1, y ′(0) = 1.

Solution: Compute the L[ ] of the differential equation,

L[y ′′ − 4y ′ + 4y ] = L[0] = 0.

The L[ ] is a linear function,

L[y ′′]− 4L[y ′] + 4L[y ] = 0.

Derivatives are transformed into power functions,[
s2 L[y ]− s y(0)− y ′(0)

]
− 4

[
s L[y ]− y(0)

]
+ 4L[y ] = 0,

Therefore, (s2 − 4s + 4)L[y ] = (s − 4) y(0) + y ′(0).
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Solution: Recall: (s2 − 4s + 4)L[y ] = (s − 4) y(0) + y ′(0).

Introduce the initial conditions, (s2 − 4s + 4)L[y ] = s − 3.

Solve for L[y ] as follows: L[y ] =
(s − 3)

(s2 − 4s + 4)
.

The partial fraction method: Find the roots of the denominator,

s2−4s+4 = 0 ⇒ s± =
1

2

[
4±

√
16− 16

]
⇒ s+ = s− = 2.

We obtain: L[y ] =
(s − 3)

(s − 2)2
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(s − 2)2
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The Laplace Transform and the IVP (Sect. 6.2).

I Solving differential equations using L[ ].
I Homogeneous IVP.
I First, second, higher order equations.
I Non-homogeneous IVP.
I Recall: Partial fraction decompositions.



First, second, higher order equations.

Example

Use the Laplace Transform to find the solution of y (4) − 4y = 0,

y(0) = 1, y ′(0) = 1, y ′′(0) = −2, y ′′′(0) = 0.

Solution: Compute the L[ ] of the equation,

L
[
y (4)

]
− 4L[y ] = 0.

[
s4 L[y ]− s3 y(0)− s2 y ′(0)− s y ′′(0)− y ′′′(0)

]
− 4L[y ] = 0.

[
s4 L[y ]− s3 + 2s

]
− 4L[y ] = 0 ⇒ (s4 − 4)L[y ] = s3 − 2s,

We obtain, L[y ] =
s3 − 2s

(s4 − 4)
.
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2
]2) = L
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cos(

√
2 t)
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.

We conclude that y(t) = cos(
√

2 t). C
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The Laplace Transform and the IVP (Sect. 6.2).

I Solving differential equations using L[ ].
I Homogeneous IVP.
I First, second, higher order equations.
I Non-homogeneous IVP.
I Recall: Partial fraction decompositions.



Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

y ′′ − 4y ′ + 4y = 3 sin(2t), y(0) = 1, y ′(0) = 1.

Solution: Compute the Laplace transform of the equation,

L[y ′′ − 4y ′ + 4y ] = L[3 sin(2t)].

The right-hand side above can be expressed as follows,

L[3 sin(2t)] = 3L[sin(2t)] = 3
2

s2 + 22
=

6

s2 + 4
.

Introduce this source term in the differential equation,

L[y ′′]− 4L[y ′] + 4L[y ] =
6

s2 + 4
.
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.
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s2 L[y ]− s y(0)− y ′(0)

]
− 4

[
s L[y ]− y(0)

]
+ 4L[y ] =

6

s2 + 4
.

Rewrite the above equation,

(s2 − 4s + 4)L[y ] = (s − 4) y(0) + y ′(0) +
6

s2 + 4
.
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(s2 − 4s + 4)L[y ] = s − 3 +
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.
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