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Example: Method to find solutions.

Recall:
The point x, € R is a singular point of the equation

P(x)y"+ Q(x)y' + R(x)y =0

iff holds that P(x,) = 0.



Equations with regular-singular points.

Definition
A singular point x, € R of the equation

P(x)y"+ Q(x)y' + R(x)y =0
is called a regular-singular point iff the following limits are finite,
- (x—=x)*R(x)

lim w lim =7 \7J
X—X0 P(x) ’ X—X0 P(x) ’

and both functions

(x —x) Q(x) (x = %)? R(x)
P(x) P(x) '

admit convergent Taylor series expansions around x,.



Equations with regular-singular points.

Remark:

» If x, is a regular-singular point of
P(x)y"+ Q(x)y'+ R(x)y =0
and P(x) ~ (x — x,)" near x,, then near x, holds

Q(x) ~ (x — xo)"*l, R(x) ~ (x — XO)"*Q.



Equations with regular-singular points.

Remark:

» If x, is a regular-singular point of
P(x)y"+ Q(x)y'+ R(x)y =0
and P(x) ~ (x — x,)" near x,, then near x, holds

Q(X) =~ (x —x)" 1, R(x) ~(x —x)"2

» The main example is an Euler equation, case n = 2,

(X —Xo)2y” +P0(X —Xo)y/ +Gy=0.
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Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a
regular-singular point.
Solution: Consider the general Euler equation
(x — Xo)2y” + po(x — Xo)y, +qy =0,

where p,, qo, Xo, are real constants.



Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a
regular-singular point.
Solution: Consider the general Euler equation
(x — Xo)2y” + po(x — Xo)y, +qy =0,

where p,, qo, Xo, are real constants. This is an equation
Py" + Qy’ + Ry = 0 with

P(x) = (x = %)%, Q(x) = po(x — x0), R(x) = qo.



Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a
regular-singular point.

Solution: Consider the general Euler equation

(X - Xo)2y” + Po(X - Xo)y, +qy=0,

where p,, qo, Xo, are real constants. This is an equation
Py" + Qy’ + Ry = 0 with

P(x) = (x — xo)z, Q(x) = po(x — x0), R(x) = qo.

Therefore, we obtain,

i (%) Q)
X—X0 P(x)



Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a
regular-singular point.

Solution: Consider the general Euler equation

(X - Xo)2y” + Po(X - Xo)y, +qy=0,

where p,, qo, Xo, are real constants. This is an equation
Py" + Qy’ + Ry = 0 with

P(X) = (X - X0)27 Q(X) = po(X — X0)7 R(X) = qo-
Therefore, we obtain,

(= %) Q)

X—X0 P(X) - pO‘/



Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a
regular-singular point.

Solution: Consider the general Euler equation

(X - Xo)2y” + Po(X - Xo)y, +qy=0,

where p,, qo, Xo, are real constants. This is an equation
Py" + Qy’ + Ry = 0 with

P(X) = (X - X0)27 Q(X) = po(X — Xg)7 R(X) = qo-
Therefore, we obtain,

o RO )RR
X—X0 P(x) 0 X—X0 P(x)



Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a
regular-singular point.

Solution: Consider the general Euler equation

(X - Xo)2y” + Po(X - Xo)y, +qy=0,

where p,, qo, Xo, are real constants. This is an equation
Py" + Qy’ + Ry = 0 with

P(x) = (x — xo)z, Q(x) = po(x — x0), R(x) = qo.

Therefore, we obtain,

im —(X_XO) Q) = m ———
XLXo P(x) Pos XLXo P(x)



Equations with regular-singular points.

Example
Show that the singular point of every Euler equation is a

regular-singular point.
Solution: Consider the general Euler equation
(x — Xo)2y” + po(x — Xo)y, +qy =0,

where p,, qo, Xo, are real constants. This is an equation
Py" + Qy’ + Ry = 0 with

P(x) = (x — xo)z, Q(x) = po(x — x0), R(x) = qo.

Therefore, we obtain,

i (x — x) Q(x) . i (x — %)% R(x)

o P(x) o Pl

We conclude that x; is a regular-singular point.



Equations with regular-singular points.

Remark: Every equation Py” + Qy’ + Ry = 0 with a
regular-singular point at x, is close to an Euler equation.
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Equations with regular-singular points.

Remark: Every equation Py” + Qy’ + Ry = 0 with a
regular-singular point at x, is close to an Euler equation.

Proof:
For x # x, divide the equation by P(x),
Q(x) R(x)
" / .



Equations with regular-singular points.

Remark: Every equation Py” + Qy’ + Ry = 0 with a
regular-singular point at x, is close to an Euler equation.

Proof:
For x # x, divide the equation by P(x),
Q(x) R(x)
" / .

and multiply it by (x — x)?,



Equations with regular-singular points.

Remark: Every equation Py” + Qy’ + Ry = 0 with a
regular-singular point at x, is close to an Euler equation.

Proof:
For x # x, divide the equation by P(x),
Q(x) R(x)
" / .

and multiply it by (x — x)?,

(x—x)Q(x)7 ,, 1(x—x)*R(x)
P(x) }y +[ P(x)

2.1

(x =)y + (x = )| y=o.



Equations with regular-singular points.

Remark: Every equation Py” + Qy’ + Ry = 0 with a
regular-singular point at x, is close to an Euler equation.

Proof:
For x # x, divide the equation by P(x),
Q(x) R(x)
" / .

and multiply it by (x — x)?,

(x — xO)Q(x)} S {(x — x)2R(x)

P(x) P 170

(= x)2y" + (x = )]

The factors between [ | approach constants, say py, go, as x — X,



Equations with regular-singular points.

Remark: Every equation Py” + Qy’ + Ry = 0 with a
regular-singular point at x, is close to an Euler equation.

Proof:
For x # x, divide the equation by P(x),
Q(x) R(x)
" / .

and multiply it by (x — x)?,

X — xO)Q(x)} S {(x — x)2R(x)

(x — x0)2 Y+ (x — %) [( PO P0x) y=0.

The factors between [ | approach constants, say py, go, as x — X,

(x — XO)Z)’” +(x—X)poy + qoy = 0.
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Equations with regular-singular points.
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» Examples: Equations with regular-singular points.
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>

Example: Method to find solutions.
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Example
Find the regular-singular points of the differential equation

(1-x%)y" —2xy +ala+1)y =0,
where « is a real constant.



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" —2xy +ala+1)y =0,

where « is a real constant.

Solution: Find the singular points of this equation,



Examples: Equations with regular-singular points.
Example
Find the regular-singular points of the differential equation

(1-x%)y" —2xy +ala+1)y =0,
where « is a real constant.

Solution: Find the singular points of this equation,

0= P(x)



Examples: Equations with regular-singular points.
Example
Find the regular-singular points of the differential equation

(1-x%)y" —2xy +ala+1)y =0,
where « is a real constant.

Solution: Find the singular points of this equation,

0=P(x) = (1—X2)



Examples: Equations with regular-singular points.
Example
Find the regular-singular points of the differential equation

(1-x%)y" —2xy +ala+1)y =0,
where « is a real constant.

Solution: Find the singular points of this equation,

0=P(x)=(1-x3)=(1-x)(1+x)



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" —2xy +ala+1)y =0,

where « is a real constant.

Solution: Find the singular points of this equation,

X, = 1,

x; = —1.

0:P(X):(1—X2):(1—X)(1—|—X) = {



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" —2xy +ala+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
X =1
0=Px)=(1-x)=1-x)(1+x) = { ’

x; = —1.

Case x, = 1:



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" —2xy +ala+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
2 XD = ]_7
0=Px)=(1-x)=1-x)(14+x) =
x; = —1.
Case x, = 1: We then have
(x—1)Q(x)
P(x)



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
X =1
0=Px)=(1-x)=1-x)(1+x) = { ’

x; = —1.

Case x, = 1: We then have

(x=1)Q() _ (x=1)(=2x)

P(x) (1—x)(1+x)




Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
2 Xg = ]_7
0=Px)=(1-x)=1-x)(14+x) =
x; = —1.
Case x, = 1: We then have
(x-1)Q(x) (x—1)(-2x)  2x
P(x) S (1-x)(1+x) 14X




Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
{Xo =1,
0=Px)=(1-x)=1-x)(1+x) =
x; = —1.
Case x, = 1: We then have

(x—1)Q(x) _ (x — 1)(—2x) _ 2
P(x) (I-x)(1+4+x) 1+x’




Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
{Xo =1,
0=Px)=(1-x)=1-x)(1+x) =
x; = —1.
Case x, = 1: We then have

(x—1)Q(x) _ (x — 1)(—2x) _ 2
P(x) (1-x)(1+x) 1+x’

(2R (x—17[afa + 1)
P(x) (1—-x)(1+x)




Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
{Xo =1,
0=Px)=(1-x)=1-x)(1+x) =
x; = —1.
Case x, = 1: We then have

(x—1)Q(x) _ (x — 1)(—2x) _ 2
P(x) (1-x)(1+x) 1+x’

(x —1)?2 R(x) _ (x —1)?[a(a+1)] _ (x = 1) [+ 1)]
P(x) (1—-x)(1+x) 1+ x




Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.
Solution: Find the singular points of this equation,
{ X =1,
0=Px)=(1-x)=1-x)(1+x) =
x; = —1.
Case x, = 1: We then have

(x—1)Q(x) _ (x — 1)(—2x) _ 2
P(x) (1-x)(1+x) 1+x’

(x —1)?2 R(x) _ (x —1)?[a(a+1)] _ (x = 1) [+ 1)]
P(x) (1—-x)(1+x) 1+ x

both functions above have Taylor series around x, = 1.




Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x*)y" =2xy +a(a+1)y =0,

where « is a real constant.

Solution: Recall:

(x —1) Q(x) 2x (x — 1)’ R(x)  (x=1) [a(a + 1)] '

P(x) T 1+x P(x) N 1+ x



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x*)y" =2xy +a(a+1)y =0,

where « is a real constant.

Solution: Recall:

(x —1) Q(x) 2x (x — 1)’ R(x)  (x=1) [Oz(a + 1)] .

P(x) = l+x P(x) 1+ x

Furthermore, the following limits are finite,

-1k
x—1 P(X)



Examples: Equations with regular-singular points.
Example
Find the regular-singular points of the differential equation
(1-x*)y" =2xy +a(a+1)y =0,

where « is a real constant.

Solution: Recall:

(-1QK) 2% (x—1PR(x) _ (x—Dla(a+1)
P(x) C14x’ P(x) B 1+ x '

Furthermore, the following limits are finite,



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x*)y" =2xy +a(a+1)y =0,

where « is a real constant.

Solution: Recall:

(x —1) Q(x) 2x (x — 1)’ R(x)  (x=1) [Oz(oz + 1)] .

P(x) = l+x P(x) 1+ x

Furthermore, the following limits are finite,

m-——=1 [im M
x—1 P(X) ’ x—1 P(X)



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation
(1-x*)y" =2xy +a(a+1)y =0,

where « is a real constant.

Solution: Recall:

(x —1) Q(x) 2x (x — 1)’ R(x)  (x=1) [Oz(oz + 1)] .

P(x) 14X P(x) B 1+ x
Furthermore, the following limits are finite,

=1, |imwza

<N P(x) 1 P(x)



Examples: Equations with regular-singular points.
Example
Find the regular-singular points of the differential equation
(1-x)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(-1QK) 2 (x—1PR(kx) _ (x—Dla(a+1)
P(x) C14x’ P(x) B 1+ x '

Furthermore, the following limits are finite,

—1, jim X D2 R()

A P(x) Ll T

We conclude that x, = 1 is a regular-singular point.



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:

(x+1) Q)
P(x)



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:

(x+1) QM) _ (x+1)(=2x)

P(x) (1—-x)(1+x)




Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:

(x+1)Q(x)  (x+1)(-2x)  2x

P(x) (1 —x)(1+x) 1—x’




Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:

(x+1)Q(x)  (x+1)(-2x)  2x

P(x) (1 —x)(1+x) 1—x’




Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:

(x+1)Q(x)  (x+1)(-2x)  2x

P(x) (1 —x)(1+x) 1—x’

(x +1)*R(x) _ (x+1)*[a(a +1)]
P(x) (1—-x)(1+x)




Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(1-x%)y" =2xy' +afa+1)y =0,

where « is a real constant.

Solution:
Case x; = —1:

(x+1)Q(x)  (x+1)(-2x)  2x

P(x) (1 —x)(1+x) 1—x’

(x+1)?R(x)  (x+ 1)?[a(a+1)] _(x+1) [a(a + 1)] .

P(x) - +x) 1—x



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x%)y" =2xy' +afa+1)y =0,
where « is a real constant.

Solution:
Case x; = —1:

(x+1)Q(x)  (x+1)(-2x)  2x

P(x) (1 —x)(1+x) 1—x’

(x +1)?2 R(x) _ (x+1)?[a(a+1)] _ (x+ 1)[a(a+ 1)]
P(x) (1 —x)(1+x) 1—x '

Both functions above have Taylor series x, = —1.



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x2)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(x +1) Q(x) 2x (x +1)? R(x) B (x+1) [a(a + 1)] .

P(x) T 1-x P(x) N 1—x



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x2)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(x +1) Q(x) 2x (x+1)2R(x) (x+1)[afx+1)] ‘

P(x) T 1-x P(x) N 1—x

Furthermore, the following limits are finite,

1) QM)
x——1 P(X)



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x2)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(x +1) Q(x) 2x (x+1)2R(x) (x+1)[afx+1)] ‘

P(x) T 1-x P(x) N 1—x
Furthermore, the following limits are finite,

im <+

=1
x——1 P(X) ’



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x2)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(x +1) Q(x) 2x (x+1)2R(x) (x+1)[afx+1)] ‘

P(x) T 1-x P(x) N 1—x

Furthermore, the following limits are finite,

m CEDA0) e IR RE)
x——1 P(X) ’ x——1 P(X)



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x2)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(x +1) Q(x) 2x (x+1)2R(x) (x+1)[afx+1)] ‘

P(x) T 1-x P(x) N 1—x

Furthermore, the following limits are finite,

im X FDQCI im CHLPRO)

x——1 P(X) - x——1 P(X)



Examples: Equations with regular-singular points.

Example
Find the regular-singular points of the differential equation

(1-x2)y" —2xy' +a(a+1)y =0,
where « is a real constant.

Solution: Recall:

(x +1) Q(x) 2x (x+1)2R(x) (x+1)[afx+1)] ‘

P(x) T 1-x P(x) N 1—x

Furthermore, the following limits are finite,

lim M =1 lim ————~
x——1 P(X) ’ x——1 P(X)

Therefore, the point x, = —1 is a regular-singular point. <



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points:



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation
(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
L (x+2)Q(x)
Jm, R



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
(x+2)Q(x) i (x+2)3(x—1)

A TR ™ (22 (x = 1)



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
(x+2)Q(x) i (x+2)3(x—1) 3

N O L e e T o)




Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
(x+2)Q(x) i (x+2)3(x—1) 3

lim = lim = +o0.

AT P(x) el (x+22(x— 1) xita(x+2)




Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
o (x+2)Q(x) . (x+2)3(x—-1) . 3
Jm TR M R 2P (= 1) T M () T

So x, = —2 is not a regular-singular point.



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
xinb (X—Zz(l?(X) - Xinlz m - xinl2 (x —?— 2) = £09
So x, = —2 is not a regular-singular point. Case x;, = 1:
(x-1)Q()

P(x)



Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(x+2)%(x—1)y" +3(x—1)y' +2y =0.

Solution: Find the singular points: x, = —2 and x;, = 1.
Case x, = —2:
|imM:|imw:“m 3 i
x——2 P(X) x——2 (X =+ 2)2(X — 1) x——2 (X + 2)
So x, = —2 is not a regular-singular point. Case x;, = 1:

(x—1) Q) _ (x—1)[3(x —1)]
P(x) (x+2)(x—1)
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Solution: Find the singular points: x, = —2 and x;, = 1.
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Both functions have Taylor series around x; = 1.
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Therefore, the point x; = —1 is a regular-singular point.
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However, at the point x, = 0 the function xQ/P does not have a
power series expansion around zero, since

xQ(x)
P(x)

and the log function does not have a Taylor series at x, = 0.

=0.

— —xIn(|x]).

We conclude that x, = 0 is not a regular-singular point. <
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Method to find solutions.

Recall: If x, is a regular-singular point of
P(x)y" +Q(x)y + R(x)y =0,
2
- — %)?R
with limitslim O(sz‘ﬁ;?(x) = poand lim (X,f&)(x) =,

then the coefficients of the differential equation above near x, are
close to the coefficients of the Euler equation

(X - Xo)zy” + PO(X - Xo)y/ +qy=0.

Idea: If the differential equation is close to an Euler equation, then
the solutions of the differential equation might be close to the
solutions of an Euler equation.

Recall: One solution of an Euler equation is y(x) = (x — xp)".
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Method to find solutions.

Summary: Solutions for equations with regular-singular points:

(1) Look for a solution y of the form
y(x) = Z an (x — x) ("),
n=0

(2) Introduce this power series expansion into the differential
equation and find both a the exponent r and a recurrence
relation for the coefficients aj;

(3) First find the solutions for the constant r. Then, introduce this
result for r into the recurrence relation for the coefficients a,.
Only then, solve this latter recurrence relation for the
coefficients a,.
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Example
Find the solution y near the regular-singular point x, = 0 of

x2y" —x(x+3)y' +(x+3)y =0.
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The first and second derivatives are given by
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n=0 n=0

In the case r = 0 we had the relation

o (o]
E na, x("1 = E na,,x(”_l),
n=0 n=1

but for r # 0 this relation is not true.
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Example
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Xy = x(x+3)y +(x+3)y =0,
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Example: Method to find solutions.
Example
Find the solution y near the regular-singular point x, = 0 of

x*y" —x(x+3)y +(x+3)y =0.

Solution: We compute the term x? y”,

oo
x2y" = x? Z(n +r)(n+r—1)a, x(ntr=2)
n=0

[ee]

X2y = Z(n +r)(n+r—1)a,x"tn,
n=0

The guiding principle to rewrite each term is to have the power
function x("*) labeled in the same way on every term.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x, = 0 of

Xy —x(x+3)y +(x+3)y =0.
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Xy —x(x+3)y +(x+3)y =0.

Solution: The differential equation is given by

Z(n +r)(n+r—1)a,x("n) — Z(n +r—1)ag, 1) x("*")
n=0 n=1

- Z 3(n+ r)a, x"1) 4 Z a(n—1) x(mr) 4 Z 3a, x("1) = 0.
n=0 n=1 n=0

We split the sums into the term n = 0 and a sum containing the
terms with n > 1, that is,
0=[r(r—1)—3r+3Jax"+

Z [(n+r)(n+r— a,—(n+r—1)agn—1)—3(n+r)a,+agm—_1)+3an x(rtr)

n=1
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Example: Method to find solutions.
Example

Find the solution y near the regular-singular point x, = 0 of

X2y —x(x+3)y +(x+3)y =0.

Solution: We first solve r(r —1) —3r +3 =0.

r+:37

N =

rP—4r+3=0 = rn=-[4+V16-12] = {

r—=1.
Introduce ry = 3 into the equation for aj,:
(n+2)na, — (n+1)ap—1 = 0.
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Example
Find the solution y near the regular-singular point x, = 0 of

x?y" —x(x+3)y' +(x+3)y =0.
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Example
Find the solution y near the regular-singular point x, = 0 of

x?y" —x(x+3)y' +(x+3)y =0.

Solution: Introduce r— = 1 into the equation for a,:

n(n—2)a, — (n—1)a,—1 =0.
One can also check that the solution y_ is

2 1 1
Y- =a X x2+§x3+1x4+1—5xs+~- .
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Example
Find the solution y near the regular-singular point x, = 0 of

x?y" —x(x+3)y' +(x+3)y =0.
Solution: Introduce r— = 1 into the equation for a,:

n(n—2)a, — (n—1)a,—1 =0.
One can also check that the solution y_ is

2 1 1
y—:32X|:X2+§X3+ZX4+T5X5+"':|~

Notice:

2 1 1
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Example
Find the solution y near the regular-singular point x, = 0 of

x?y" —x(x+3)y' +(x+3)y =0.
Solution: Introduce r— = 1 into the equation for a,:

n(n—2)a, — (n—1)a,—1 =0.
One can also check that the solution y_ is

2 1 1
y—:32X|:X2+§X3+ZX4+T5X5+"':|~

Notice:

2 1 1 a
— 3 Z =52 34 ... .
Yo =aXx [1+3x—|—4x —|—15x+ } = y_ aly+.
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Example: Method to find solutions.

Example
Find the solution y near the regular-singular point x, = 0 of

x2y" —x(x+3)y' +(x+3)y =0.

Solution: The solutions y; and y_ are not linearly independent.

This Example shows that the method does not provide all solutions
of a differential equation near a regular-singular point, it only
provides at least one solution near a regular-singular point.

Remark: It can be shown the following result:

If the roots of the Euler characteristic polynomial ry, r— differ by
an integer, then the second solution y_, the solution corresponding
to the smaller root, is not given by the method above.

This solution involves logarithmic terms.

We do not study this type of solutions in these notes. <
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The definition of the Laplace Transform.

Definition
The function F : D — R is the Laplace transform of a function
f :]0,00) — R iff for all s € D¢ holds,

oo
F(s) = / St (1) d,
0
where D C R is the set where the integral converges.

Remark: The domain D, of F depends on the function f.

Notation: We often denote: F(s) = L[f(t)].
» This notation L[ | emphasizes that the Laplace transform
defines a map from a set of functions into a set of functions.
» Functions are denoted as t — f(t).

» The Laplace transform is also a function: f — L[f].
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Review: Improper integrals.

Recall: Improper integral are defined as a limit.

/toog(t) dt = lim /tNg(t) dt.

0 N—co 4,

» The integral converges in the limit exists.
» The integral diverges in the limit does not exist.

Example
o0

Compute the improper integral / e 2t dt, with a > 0.
0

Solution: / e % dt = lim / et dt — lim —- (e—aN _ 1)_
0 N—oo 0 N—oo a

o0 1
Since lim e N =0 for a > 0, we conclude / e dt==.
a
0

N—oo
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Examples of Laplace Transforms.

Example
Compute L[1].

Solution: We have to find the Laplace Transform of f(t) = 1.
Following the definition we obtain,

L[1] = / e fldt= / e ' dt
0 0

[ee]
1
But / et dt = = for a > 0, and diverges for a < 0.
o a

1
Therefore L[1] = o for s > 0, and L[1] does not exists for s < 0.

In other words, F(s) = L[1] is the function F : D — R given by

ft)=1, F(s)=-, D= (0,00). §
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Example
Compute L[e?!], where a € R.

Solution: Following the definition of Laplace Transform,
oo [ee]
L[e’"] = / e Ste? dt = / e~ (s=a)t gp.
0 0

We have seen that the improper integral is given by

[ee] 1
—(s—a) - - .
e dt = for (s—a)>0.
/0 (5 - 3) ( )

1
We conclude that £[e"] = for s > a. In other words,
s—a
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Example
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Solution: Recall the identity:
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— 2—2 [e™*" cos(at)]




Examples of Laplace Transforms.
Example
Compute L[sin(at)], where a € R.

Solution: Recall the identity:

2

(1 + z—Q) /ON e *'sin(at) dt = —% [e~"sin(at)]

Hence, it is not difficult to see that

S S

2 2 00
<S —f;a )/ e *'sin(at) dt = %,
0

s >0,




Examples of Laplace Transforms.

Example
Compute L[sin(at)], where a € R.

Solution: Recall the identity:

2

(1 + z—Q) /ON e *'sin(at) dt = —% [e~"sin(at)]

Hence, it is not difficult to see that

S S

which is equivalent to

a

L[sin(at)] = 55— s> 0.

52487

2 2 00
<S —f;a )/ e *'sin(at) dt = %,
0

s >0,
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A table of Laplace Transforms.

fe) =1 Fis) = - s> 0,
f(t) =e™ F(s) = < i ; s > max{a, 0},
f(t)y=1t" F(s):s(:iil) s> 0,
£(t) = sin(at) F(s) = 52;% s>0,
£(t) = cos(at) F(s) = s2—|—;a2 s>0,
f(t) = sinh(at) F(s) = é s>0,
f(t) = cosh(at) F(s) = ﬁ s>0,
f(t) =t"e F(s) = 5= Z;(nﬂ) s > max{a, 0},
F(6) = esin(bt)  F(s) = ———— s> max{a,O0}.
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Review: Improper integrals.
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Properties of the Laplace Transform.

Theorem (Sufficient conditions)

If the function f : [0,00) — R is piecewise continuous and there
exist positive constants k and a such that

F(t)] < ke,
then the Laplace Transform of f exists for all s > a.

Theorem (Linear combination)
If the L[f] and L|g] are well-defined and a, b are constants, then

Llaf + bg] = aL[f]+ bL[g].

Proof: Integration is a linear operation:

/[af(t)+bg(t)] dt:a/f(t) dt~|—b/g(t)dt.
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Properties of the Laplace Transform.

Theorem (Derivatives)
If the L[f] and L[f'] are well-defined, then holds,

L[f'] = s L[f] + £(0). (1)
Furthermore, if L[f"] is well-defined, then it also holds
L[f"] = s? L[f] — s f(0) — '(0). (2)
Proof of Eq (2): Use Eq. (1) twice:
L[] = L[(F')] = sLI(F)] - £'(0) = s(sL[f] - £(0)) — £'(0),

that is,
L[f"] = s> L[f] — s f(0) — f'(0).
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Properties of the Laplace Transform.

Proof of Eq (1): Recall the definition of the Laplace Transform,

[ = / e=tF/(t) dt = lim / eStF/(£) dt
0 0

n—oo

Integrating by parts,

lim /nesff’(t)dt: lim Ke’“f(t))

n—oo n—oo

- /0"(—s)e5ff(t) dt

L[f'] = nILET;o [e*S”f(n)—f(O)} +s /OOO e *'f(t) dt = —£(0)+s L[f],

where we used that lim,_,., e7*"f(n) = 0 for s big enough, and we
also used that L[f] is well-defined.

We then conclude that £[f'] = s L[f] — f(0).



The Laplace Transform (Sect. 6.1).

The definition of the Laplace Transform.
Review: Improper integrals.

Examples of Laplace Transforms.

A table of Laplace Transforms.

Properties of the Laplace Transform.
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Laplace Transform and differential equations.

Remark: Laplace Transforms can be used to find solutions to
differential equations with constant coefficients.

Idea of the method:

[differential eq.] ﬂ, Algebraic eq. ﬂ)

for y(t). for L[y(t)].
Solve the Transform back
2, algebraic eq. ®), to obtain y(t).

for L[y(t)]. (Using the table.)
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Laplace Transform and differential equations.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y' +2y =0, y(0) = 3.

Solution: We know the solution: y(t) = 3e~2t.

(1): Compute the Laplace transform of the differential equation,
Lly' +2y]=L[0] = L[y +2y]=0.
Find an algebraic equation for L[y]. Recall linearity:
Lly'1+2L[y] =0.
Also recall the property: L[y'] = s L[y] — y(0), that is,

[sL - ()] +2£L1=0 = (s+2)Lly] = ¥(0).
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Example
Use the Laplace transform to find the solution y(t) to the IVP
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Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0) 3
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(3): Transform back to y(t).
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(2): Solve the algebraic equation for L[y].
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Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.

Solution: Recall: (s + 2)L[y] = y(0).

(2): Solve the algebraic equation for L[y].

0 0)=3 = o=

Lly] =

s+2 s+2
(3): Transform back to y(t). From the table:
1 3 3
aty] __ _ —2t — —2t
Lle ]_s—a = S+2—3£[e ] = 12 L[3e™].

Hence, L[y] = £[3e™?!]



Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.

Solution: Recall: (s + 2)L[y] = y(0).

(2): Solve the algebraic equation for L[y].

0 0)=3 = o=

Lly] =

s+2 s+2
(3): Transform back to y(t). From the table:
1 3 3
aty] __ _ —2t — —2t
Lle ]_s—a = S+2—3£[e ] = 12 L[3e™].

Hence, L[y] = L[3e7?"] = y(t)=3e %"



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].

» Homogeneous IVP.

First, second, higher order equations.
Non-homogeneous IVP.

Recall: Partial fraction decompositions.
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Remark: The method works with:
» Constant coefficient equations.
» Homogeneous and non-homogeneous equations.

» First, second, higher order equations.

Idea of the method:
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Solve the
(2)

—5  algebraic eq.
for L[y(t)].
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Solving differential equations using L] |.

Idea of the method:

[differential eq.] (1)  Algebraiceq. (2
—_— —

for y(t). for L[y(t)].
Solve the Transform back
2, algebraic eq. 9 to obtain y(t).
for L[y(t)]. (Using the table.)

Recall:
(a) Llaf(t)+ bg(t)] =aL[f(t)] + bL[g(t)];

(b) L[y™M] =s"Lly]—s("1) y(0) = s("2) y'(0) - - - — y("=1)(0).
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» Solving differential equations using L[ ].

» Homogeneous IVP.

First, second, higher order equations.
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Recall: Partial fraction decompositions.
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Solution: Compute the L[ | of the differential equation,
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Homogeneous IVP.
Example

Use the Laplace transform to find the solution y(t) to the IVP
y'—y =2y =0, y(0) =1, y'(0) = 0.

Solution: Recall: (s> —s —2) L[y] = (s — 1) y(0) + y/(0).

Differential equation for y £ Algebraic equation for L[y].

Introduce the initial condition,
(s> —s—2)L[y] =(s—1).
We can solve for the unknown L[y] as follows,

(s—1)

Lly] = m



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

SO|uti0n2 Recall: ,C[y] = m



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

s —5-2=0



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

1
?—s—2=0 = sizi[li 1438



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

5+:27

1
?—s—2=0 = si:f[li 1438 =
2 s =-—1,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =
1 S =2,
s$—5s-2=0 = S:tzi[li 1+8] = {+ /

(s—1)
(s—2)(s+1)

s =-—1,

Therefore, we rewrite: L[y] =



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

1 Sy =2,
$$—5-2=0 = s =-[1£V1+8 = .
2 s =-—1,
. (s—1)
Theref te: ="
erefore, we rewrite: L[y] G-2(s+1)
Find constants a and b such that
(s—1) a b

G241 s—2 s+1



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) . a b
Solution: Recall: -2 i) P 4 p




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a b
G241 s—2 s+1




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

(s—1)=s(a+ b)+ (a—2b)



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 1

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

a+b=1»
(s—1)=s(a+b)+(a—2b) = {a2b:1



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

a+b=1,
(s—1)=s(a+b)+(a—2b) = {a2b:1

1 2
Hence, a = 3 and b = —.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

(s—1)=s(a+b)+(a—2b) = {a+b=1,

a—2b=-1

1 2 1 1 2 1
H ,a=—-and b= -. Then, L[y| = = = .
ence, = an 3 en, L[y] 3(5=2) +3 11



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1

1 1
3 (s—2)

(s+1)

2
Solution: Recall: L[y] = + 3



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1
3 (s—2)

2 1
+ 3 . From the table:

Solution: Recall: L[y] = (s +1)

1
s—a

Lle] =



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1
3 (s—2)

2 1
+ 3 . From the table:

Solution: Recall: L[y] = (s +1)

1 1
s—a s—2

Lle] =



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
at] _ _ a2t — pla—t
£[e]—s_a = 5_2—£[e ], ] Lle™"].



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
Lle?t] = _ a2t — rle 1.
== = =L =Ll

So we arrive at the equation

£l = 5 £ + 5 £le ]



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
Lle?t] = _ a2t — rle 1.
== = =L =Ll

So we arrive at the equation

£l = § £+ 3 cle~] = £[5 (2 + 267)



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
Lle?t] = _ a2t — rle 1.
== = =L =Ll

So we arrive at the equation
_1 2t Z —t1 _ 1 2t —t
Lly) = 5 £le*]+ 5 Lle ]_5[3(e +2e )}

1
We conclude that: y(t) = g(ezt +2e7t).



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Compute the L[ | of the differential equation,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0 y(0)=1, y(0)=1
Solution: Compute the L[ | of the differential equation,

Lly” — 4y’ +4y] = L[0] = 0.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y =0, y(0)=1, y(0)=1
Solution: Compute the L[ | of the differential equation,
Lly" — 4y’ +4y] = L[0] = 0.
The L[] is a linear function,

Lly"] = 4Lly']+4Ly] =0.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=4y+4y=0,  y(0)=1 y(0)=1
Solution: Compute the L[ | of the differential equation,
Lly" — 4y’ +4y] = L[0] = 0.
The L[] is a linear function,
LY"T-4LY T+ 4Lyl =0.

Derivatives are transformed into power functions,

|52 LIyl = s9(0) = Y'(0)] — 4 |s LIy] = y(0)| +4L[y] = 0.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=4y+4y=0,  y(0)=1 y(0)=1
Solution: Compute the L[ | of the differential equation,
L[y” — 4y’ +4y] = L[0] = 0.
The L[] is a linear function,
LY"T-4LY T+ 4Lyl =0.
Derivatives are transformed into power functions,

|52 LIyl = s9(0) = Y'(0)] — 4 |s LIy] = y(0)| +4L[y] = 0.

Therefore, (s°> —4s+4)L[y] = (s — 4) y(0) + y'(0).



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Recall: (s? —4s+4) L[y] = (s — 4) y(0) + y/(0).



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Recall: (s? —4s+4) L[y] = (s — 4) y(0) + y/(0).

Introduce the initial conditions,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=4y'+4y=0,  y(0)=1  y(0)=1
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

Solve for L[y] as follows:



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'=4y+4y=0,  y(0)=1  y(0)=1

Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

Solve for L[y] as follows: L[y] = m



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

Solve for L[y] as follows: L[y] = m

The partial fraction method:



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'=4y+4y=0,  y(0)=1  y(0)=1

Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

Solve for L[y] as follows: L[y] =

s°—4s+4=0



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

. (4416 — 16]

Solve for L[y] as follows: L[y] =

?—4s+4=0 = s =

N |



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

. [4+V16-16] = s =s_=2.

Solve for L[y] as follows: L[y] =

?—4s+4=0 = s =

N |



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

. [4+V16-16] = s =s_=2.

Solve for L[y] as follows: L[y] =

?—4s+4=0 = s =

N |

(s —3)
(s—2)

We obtain: L[y] =



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP

y' =4y’ +4y =0, y(0)=1, y(0)=1

(s - 3)
(s—2)7

Solution: Recall: L[y] =



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ +4y =0, y(0) =1, y'(0) = 1.
(s—3)
(s —2)*

This expression is already in the partial fraction decomposition.

Solution: Recall: L[y] =



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =0, y(0) =1, y'(0) = 1.
(s—3)
(s—2)*
This expression is already in the partial fraction decomposition.
Idea: Rewrite the right-hand side in terms of function in the table.

(s=2)+2-3
(s —2)

Solution: Recall: L[y] =

Lly] =



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ +4y =0, y(0) =1, y'(0) = 1.

(s—3)

(s —2)*

This expression is already in the partial fraction decomposition.

Idea: Rewrite the right-hand side in terms of function in the table.
(s—2)+2-3 (s—-2) 1

=" (s=22 (s-2p

Solution: Recall: L[y] =




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =0, y(0) =1, y'(0) = 1.
(s—3)
(s—2)*
This expression is already in the partial fraction decomposition.
Idea: Rewrite the right-hand side in terms of function in the table.

E[y]:(s_2)+2_3_(5—2)_ 111

Solution: Recall: L[y] =

(s—22  (s—22 (s—2? s-2 (s—2)2



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ +4y =0, y(0) =1, y'(0) = 1.

(s—3)

(s —2)*

This expression is already in the partial fraction decomposition.

Idea: Rewrite the right-hand side in terms of function in the table.
(s—2)+2-3 (s—-2) 1 1 1

Lly] = (s — 2)2 _(5_2)2_(5_2)2:5_2_(5_2)2-

From the Laplace transforms table:

1
Lle™) = —

Solution: Recall: L[y] =




Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

y" —4y' +4y =0, y(0) =1, y'(0) = 1.
(s—3)
(s—2)*
This expression is already in the partial fraction decomposition.
Idea: Rewrite the right-hand side in terms of function in the table.
E[]—(S_2)+2_3—(5_2) 1 1 1
M= 6-22 T (522 (s-22 s—2 (s—272

From the Laplace transforms table:

1 1
at _ - — 2t
Lle ]_s—a = p— L[e],

Solution: Recall: L[y] =




Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

y" —4y' +4y =0, y(0) =1, y'(0) = 1.
(s—3)
(s—2)*
This expression is already in the partial fraction decomposition.
Idea: Rewrite the right-hand side in terms of function in the table.
E[]—(S_2)+2_3—(5_2) 1 1 1
M= 6-22 T (522 (s-22 s—2 (s—272

From the Laplace transforms table:

1 1
at _ - — 2t
Lle ]_s—a = p— L[e],

Solution: Recall: L[y] =

n!

S G el P )



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ +4y =0, y(0) =1, y'(0) = 1.

(s—3)

(s —2)*

This expression is already in the partial fraction decomposition.

Idea: Rewrite the right-hand side in terms of function in the table.
(s—2)+2-3 (s—-2) 1 1 1

Lly] = (s — 2)2 _(5_2)2_(5_2)2:5_2_(5_2)2-

From the Laplace transforms table:
1 1
Ve at] _ = =7 2t
[e ] s—a s — 2 [e ]7
n! 1

m = 527 = L[te2t].

Solution: Recall: L[y] =

Llt"e] =




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], o~ L[te*].



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], o~ L[te?!].

So we arrive at the equation

Lly] = L[e*] — L[te*]



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], G 12)2 = L[te?!].

So we arrive at the equation

L[y] = L[e*!] — L[te*] = [,[e2t - tezt].



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], G 12)2 = L[te?!].

So we arrive at the equation

L[y] = L[e*!] — L[te*] = [,[e2t - tezt].

We conclude that y(t) = et — te’t,



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].

» Homogeneous IVP.

First, second, higher order equations.
Non-homogeneous IVP.

Recall: Partial fraction decompositions.

vV vy



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(0)=1, y(0)=1, y"(0)=-2, y"(0)=0.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, y”/(O) =0.
Solution: Compute the L[ ] of the equation,

cly®] —acpi=o.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, y”/(O) =0.
Solution: Compute the L[ ] of the equation,

cly®] —acpi=o.

[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, _)/”/(0) =0.
Solution: Compute the L[ ] of the equation,
cly®] —acpi=o.

[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.

[s*Lly] —s*> +2s] —4L[y] =0



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, _)/”/(0) =0.
Solution: Compute the L[ ] of the equation,
cly®] —acpi=o.

[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.

[s* Lly] - s+ 25| —4L[y]=0 = (s*-4)Ly]= s — 2s,



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, _)/”/(0) =0.
Solution: Compute the L[ ] of the equation,

cly®] —acpi=o.
[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.
[s* Lly] - s+ 25| —4L[y]=0 = (s*-4)Ly]= s — 2s,

s3—2s

We obtain, L[y| = ")




First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,
y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
(s*—4)

Solution: Recall: L[y| =



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

3 _
Solution: Recall: L[y] = (554 _245)
s(s?> —2)

W= 2



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy

The last expression is in the table of Laplace Transforms,



First, second, higher order equations.

Example
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First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy

The last expression is in the table of Laplace Transforms,

Lly] = = E[cos(\@ t)].

(s2+ [Va])

We conclude that y(t) = cos(v/2t). <



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].

» Homogeneous IVP.

» First, second, higher order equations.

» Non-homogeneous IVP.

» Recall: Partial fraction decompositions.



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
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Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: Compute the Laplace transform of the equation,
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Solution: Compute the Laplace transform of the equation,

L[y" — 4y’ + 4y] = L[3sin(2t)].
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Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y =3sin(2t), y(0)=1, y(0)=1.
Solution: Compute the Laplace transform of the equation,
Lly" — 4y" + 4y] = L[3sin(2t)].
The right-hand side above can be expressed as follows,

L[3sin(2t)] = 3 L[sin(2t)]



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

2

L[3sin(2t)] =3 L[sin(2t)] =3 ——=5 212
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Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

. , 2 6
LBsin(2t)] =3 L[sin(20)] =3 55 = 5
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Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

. , 2 6
LBsin(2t)] =3 L[sin(20)] =3 55 = 5

Introduce this source term in the differential equation,



Non-homogeneous |VP.
Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

. , 2 6
LBsin(2t)] =3 L[sin(20)] =3 55 = 5

Introduce this source term in the differential equation,

6

Lly" —4Ly]+4Ly] = e



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

Y/~ 4y £y =3sin(2t),  y(0)=1, y(0)=1

Solution: Recall: L[y"] —4L[y'| +4L[y] = a7



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Recall: L[y"] —4L[y'| +4L[y] = 5.
olution: Recall: £[y"] ~ 4£[y') + 4Ll = - —
Derivatives are transformed into power functions,

[ 1]~ s(0) ~ y'(0)] 4 [s £1] — y(0)] +4Ll] = 5°

s24+4°



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

Y/~ 4y £y =3sin(2t),  y(0)=1, y(0)=1

Solution: Recall: ,C[y"] — 4£[y’] +4L[y] = vt

Derivatives are transformed into power functions,
|52 LIy = 5y(0) = Y'(0)] — 4 |s £Iy] - ¥(0)] + 4 £Iy] =
Rewrite the above equation,

(s* —4s+4) Lyl = (s — 4) y(0) +y'(0) +

6
s24+4°

_ 6
s2+4



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.

Solution: Recall: ,C[y"] — 4£[y’] +4L[y] = vt

Derivatives are transformed into power functions,
|52 LIy = 5y(0) = Y'(0)] — 4 |s £Iy] - ¥(0)] + 4 £Iy] =

Rewrite the above equation,
(s* —4s+4) Lyl = (s — 4) y(0) +y'(0) +

Introduce the initial conditions,

6
s24+4°

_ 6
s2+4

6

2 _
(s —4s+4)£[y]—s—3+52+4.




Non-homogeneous |VP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =3sin(2t), y(0)=1, y'(0)=1.
6

Solution: Recall: (s> —4s+4)L[y] =53+ 5.
olution: Recall: (s s+4)Lly]=s +52+4



Non-homogeneous |VP.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6
Solution: Recall: (s> —4s+4)Lly]=5—3+ .
olution: Recall: (s s+4)Lly]=s +S2+4
(s—3) N 6
(s2—4s+4) (s2—4+4)(s2+4)

Therefore, L[y] =



Non-homogeneous |VP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =3sin(2t), y(0)=1, y'(0)=1.
6

Solution: Recall: (s> —4s+4)L[y]=s—3+ ——.
olution: Recall: (s s+4)Lly]=s +S2+4

(-3 g
Therefore, L[y] = (52 —45+4) + (32— 4+ 8)(2+4)

From an Example above: s? —4s + 4 = (s — 2)2,



Non-homogeneous |VP.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =3sin(2t), y(0)=1, y(0)=1.
6
Solution: Recall: (s*> —4s+4)L[y]=5—3+ ——.
olution: Recall: (s s+4)Lly]=s +S2+4
(s—3) N 6
(s2—4s+4) (s2—4+4)(s2+4)

Therefore, L[y] =

From an Example above: s? —4s + 4 = (s — 2)2,

1 1 6
M=o Y ooy




Non-homogeneous |VP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6
Solution: Recall: (s*> —4s+4)L[y]=5—3+ ——.
olution: Recall: (s s+4)Lly]l=s +S2+4

(-3 g
Therefore, L[y] = (52 —45+4) + (32— 4+ 8)(2+4)

From an Example above: s? —4s +4 = (s — 2)?,
1 1 6
Lly] = — :
M= o Y o
From an Example above we know that

1 1
2t 2t
L[e te”'] = =2 (s_2)2




Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

. _ _ pr2 2
Solution: Recall: L[y] = L[e*" — te*"] + (s —2)2(s2 + 4)°



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +




Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +

Find constants a, b, ¢, d, such that

6 as+ b c d

_22(2+4) 244 (s5-2)  (s-2p




Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +

Find constants a, b, ¢, d, such that

6 as+b c d

G _22(s214) 214 (s—2) (s_27

6 (as+b)(s —2)> +c(s —2)(s®> +4)+ d(s> + 4)

(s —2)2(s2+4) (s> +4)(s—2)?



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +

Find constants a, b, ¢, d, such that

6 as+b c d

G _22(s214) 214 (s—2) (s_27

6 (as+b)(s —2)> +c(s —2)(s®> +4)+ d(s> + 4)

(s —2)2(s2+4) (s> +4)(s—2)?

6 = (as + b)(s — 2)*> + c(s — 2)(s* + 4) + d(s* + 4).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.

Solution: 6 = (as + b)(s — 2)® + c(s — 2)(s* + 4) + d(s* + 4).
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Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).

6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).
6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)

6 = a(s>—4s>+45)+b(s>—4s+4)+c(s3+4s5—25>—8)+d(s>+4).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).
6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)
6 = a(s>—4s>+45)+b(s>—4s+4)+c(s3+4s5—25>—8)+d(s>+4).

6=(a+tc)s®+(—4a+b—2c+d)s?
+ (4a — 4b+4c)s + (4b — 8c + 4d).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).
6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)
6 = a(s>—4s>+45)+b(s>—4s+4)+c(s3+4s5—25>—8)+d(s>+4).

6=(a+tc)s®+(—4a+b—2c+d)s?
+ (4a — 4b+4c)s + (4b — 8c + 4d).
We obtain the system

a+c=0, —4a+b—2c+d=0,
4a —4b+ 4c= 0, 4b —8c+4d = 6.



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is

3 3 3
a 3’ b=0, c —g’ d_Z
6 3 s 3 1 3 1
(s—2)2(s2+4) 8s2+4 8(s—2) 4(s—2)2



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is

6 3 s 3 1 +§ 1
(s—2)2(s2+4) 8s2+4 8(s—2) 4(s—2)2

Use the table of Laplace Transforms

6
(-27(+4)

3 3 t 3 t
= g Lleos(20)] = £ L[e*] + 7 L[te*].



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is

6 3 s 3 1 +§ 1
(s—2)2(s2+4) 8s2+4 8(s—2) 4(s—2)2

Use the table of Laplace Transforms
6

-2 +4)

6 R

G-22(+4)

3 3 t 3 t
= g Lleos(20)] = £ L[e*] + 7 L[te*].

3 3 2t 3 2t
£[8cos(2t) g€ +g e



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

Solution: Summary: L[y] = L[e** — te*!] + (s — 2)2(s2 + 4)’

6
(- 27 (7 +4)

_ A3 3 2t 3 ot
—£[8cos(2t) g€ +Zte .



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6
(s~ 2% +4)'

Solution: Summary: L[y] = L[e** — te®'] +

6
(s —2)2(s2 + 4)

_ A3 3 2t 3 ot
—£[§cos(2t)—§e +Zte }

Lly(t)] = L[(1 - 1) e + g (—1+2t) e + g cos(2t)].



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

Solution: Summary: L[y] = L[e** — te*!] + (s — 2)2(s2 + 4)’

6
(s —2)2(s2 + 4)

_ A3 3 2t 3 ot
—£[§cos(2t)—§e +Zte }

Lly(t)] = L[(1 - 1) e + g (—1+2t) e + g cos(2t)].

We conclude that

y(t)=(1—t)e’ + g (2t —1)e** + g cos(2t).



