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Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, q, g , and
constants x1 < x2, y1, y2, b1, b2, b̃1, b̃2,

find a function y solution of the differential equation

y ′′ + p(x) y ′ + q(x) y = g(x),

together with the extra, boundary conditions,

b1 y(x1) + b2 y ′(x1) = y1,

b̃1 y(x2) + b̃2 y ′(x2) = y2.

Remarks:
I Both y and y ′ might appear in the boundary condition,

evaluated at the same point.

I In this notes we only study the case of constant coefficients,

y ′′ + a1 y ′ + a0 y = g(x).



Two-point Boundary Value Problem.

Example

Examples of BVP. Assume x1 6= x2.

(1) Find y solution of

y ′′ + a1 y ′ + a0 y = g(x), y(x1) = y1, y(x2) = y2.

(2) Find y solution of

y ′′ + a1 y ′ + a0 y = g(x), y ′(x1) = y1, y ′(x2) = y2.

(3) Find y solution of

y ′′ + a1 y ′ + a0 y = g(x), y(x1) = y1, y ′(x2) = y2.
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Example from physics.

Problem: The equilibrium (time independent) temperature of a
bar of length L with insulated horizontal sides and the bar vertical
extremes kept at fixed temperatures T0, TL is the solution of the
BVP:

T ′′(x) = 0, x ∈ (0, L), T (0) = T0, T (L) = TL,
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Comparison: IVP vs BVP.

Review: IVP:
Find the function values y(t) solutions of the differential equation

y ′′ + a1 y ′ + a0 y = g(t),

together with the initial conditions

y(t0) = y1, y ′(t0) = y2.

Remark: In physics:

I y(t): Position at time t.

I Initial conditions: Position and velocity at the initial time t0.

Comparison: IVP vs BVP.

Review: BVP:
Find the function values y(x) solutions of the differential equation

y ′′ + a1 y ′ + a0 y = g(x),

together with the initial conditions

y(x1) = y1, y(x2) = y2.

Remark: In physics:

I y(x): A physical quantity (temperature) at a position x .

I Boundary conditions: Conditions at the boundary of the
object under study, where x1 6= x2.
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Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

y ′′ + a1 y ′ + a0 y = 0, y(t0) = y0, y ′(t0) = y1,

and let r± be the roots of the characteristic polynomial

p(r) = r2 + a1 r + a0.

If r+ 6= r−, real or complex, then for every choice of y0, y1, there
exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter
what y0 and y1 we choose.



Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:

y ′′ + a1 y ′ + a0 y = 0, y(0) = y0, y(L) = y1,

and let r± be the roots of the characteristic polynomial

p(r) = r2 + a1 r + a0.

(A) If r+ 6= r−, real, then for every choice of L 6= 0 and y0, y1,
there exists a unique solution y to the BVP above.

(B) If r± = α± iβ, with β 6= 0, and α, β ∈ R, then the solutions
to the BVP above belong to one of these possibilities:

(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.

Existence, uniqueness of solutions to BVP.

Proof of IVP: We study the case r+ 6= r-. The general solution is

y(t) = c1 er- t + c2 er+ t , c1, c2 ∈ R.

The initial conditions determine c1 and c2 as follows:

y0 = y(t0) = c1 er- t0 + c2 er+ t0

y1 = y ′(t0) = c1r- er- t0 + c2r+ er+ t0

Using matrix notation,[
er- t0 er+ t0

r- er-t0 r+ er+ t0

] [
c1

c2

]
=

[
y0

y1

]
.

The linear system above has a unique solution c1 and c2 for every
constants y0 and y1 iff the det(Z ) 6= 0, where

Z =

[
er- t0 er+ t0

r- er- t0 r+ er+ t0

]
⇒ Z

[
c1

c2

]
=

[
y0

y1

]
.



Existence, uniqueness of solutions to BVP.

Proof of IVP:

Recall: Z =

[
er- t0 er+ t0

r- er- t0 r+ er+ t0

]
⇒ Z

[
c1

c2

]
=

[
y0

y1

]
.

A simple calculation shows

det(Z ) =
(
r+ − r-

)
e(r++r-) t0 6= 0 ⇔ r+ 6= r-.

Since r+ 6= r-, the matrix Z is invertible and so[
c1

c2

]
= Z−1

[
y0

y1

]
.

We conclude that for every choice of y0 and y1, there exist a unique
value of c1 and c2, so the IVP above has a unique solution.

Existence, uniqueness of solutions to BVP.

Proof of BVP: The general solution is

y(x) = c1 er- x + c2 er+ x , c1, c2 ∈ R.

The boundary conditions determine c1 and c2 as follows:

y0 = y(0) = c1 + c2.

y1 = y(L) = c1 er- L + c2 er+ L

Using matrix notation,[
1 1

er- L er+ L

] [
c1

c2

]
=

[
y0

y1

]
.

The linear system above has a unique solution c1 and c2 for every
constants y0 and y1 iff the det(Z ) 6= 0, where

Z =

[
1 1

er- L er+ L

]
⇒ Z

[
c1

c2

]
=

[
y0

y1

]
.



Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: Z =

[
1 1

er- L er+ L

]
⇒ Z

[
c1

c2

]
=

[
y0

y1

]
.

A simple calculation shows

det(Z ) = er+ L − er- L 6= 0 ⇔ er+ L 6= er- L.

(A) If r+ 6= r- and real-valued, then det(Z ) 6= 0.

We conclude: For every choice of y0 and y1, there exist a
unique value of c1 and c2, so the BVP in (A) above has a
unique solution.

(B) If r± = α± iβ, with α, β ∈ R and β 6= 0, then

det(Z ) = eαL
(
e iβL − e−iβL

)
⇒ det(Z ) = 2i eαL sin(βL).

Since det(Z ) = 0 iff βL = nπ, with n integer,

(1) If βL 6= nπ, then BVP has a unique solution.
(2) If βL = nπ then BVP either has no solutions or it has infinitely

many solutions.

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

y ′′ + y = 0, y(0) = 1, y(π) = −1.

Solution: The characteristic polynomial is

p(r) = r2 + 1 ⇒ r± = ±i .

The general solution is

y(x) = c1 cos(x) + c2 sin(x).

The boundary conditions are

1 = y(0) = c1, − 1 = y(π) = −c1 ⇒ c1 = 1, c2 free.

We conclude: y(x) = cos(x) + c2 sin(x), with c2 ∈ R.

The BVP has infinitely many solutions. C



Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

y ′′ + y = 0, y(0) = 1, y(π) = 0.

Solution: The characteristic polynomial is

p(r) = r2 + 1 ⇒ r± = ±i .

The general solution is

y(x) = c1 cos(x) + c2 sin(x).

The boundary conditions are

1 = y(0) = c1, 0 = y(π) = −c1

The BVP has no solution. C

Existence, uniqueness of solutions to BVP.

Example

Find y solution of the BVP

y ′′ + y = 0, y(0) = 1, y(π/2) = 1.

Solution: The characteristic polynomial is

p(r) = r2 + 1 ⇒ r± = ±i .

The general solution is

y(x) = c1 cos(x) + c2 sin(x).

The boundary conditions are

1 = y(0) = c1, 1 = y(π/2) = c2 ⇒ c1 = c2 = 1.

We conclude: y(x) = cos(x) + sin(x).

The BVP has a unique solution. C
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Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number λ and a non-zero function y solutions to the
boundary value problem

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n × n matrix A, find λ and a
non-zero n-vector v solutions of

Av− λ v = 0.

Differences:

I A −→

{
computing a second derivative and

applying the boundary conditions.

}
I v −→ {a function y}.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Remarks: We will show that:

(1) If λ 6 0, then the BVP has no solution.

(2) If λ > 0, then there exist infinitely many eigenvalues λn and
eigenfunctions yn, with n any positive integer, given by

λn =
(nπ

L

)2
, yn(x) = sin

(nπx

L

)
,

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions. For example, for
y(0) = 0, y ′(L) = 0; or for y ′(0) = 0, y ′(L) = 0.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Solution: Case λ = 0. The equation is

y ′′ = 0 ⇒ y(x) = c1 + c2x .

The boundary conditions imply

0 = y(0) = c1, 0 = c1 + c2L ⇒ c1 = c2 = 0.

Since y = 0, there are NO non-zero solutions for λ = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Solution: Case λ < 0. Introduce the notation λ = −µ2. The
characteristic equation is

p(r) = r2 − µ2 = 0 ⇒ r± = ±µ.

The general solution is

y(x) = c1 eµx + c2 e−µx .

The boundary condition are

0 = y(0) = c1 + c2,

0 = y(L) = c1 eµL + c2 e−µL.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Solution: Recall: y(x) = c1 eµx + c2 eµx and

c1 + c2 = 0, c1 eµL + c2 e−µL = 0.

We need to solve the linear system[
1 1

eµL e−µL

] [
c1

c2

]
=

[
0
0

]
⇔ Z

[
c1

c2

]
=

[
0
0

]
, Z =

[
1 1

eµL e−µL

]
Since det(Z ) = e−µL− eµL 6= 0 for L 6= 0, matrix Z is invertible, so
the linear system above has a unique solution c1 = 0 and c2 = 0.

Since y = 0, there are NO non-zero solutions for λ < 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Solution: Case λ > 0. Introduce the notation λ = µ2. The
characteristic equation is

p(r) = r2 + µ2 = 0 ⇒ r± = ±µi .

The general solution is

y(x) = c1 cos(µx) + c2 sin(µx).

The boundary condition are

0 = y(0) = c1, ⇒ y(x) = c2 sin(µx).

0 = y(L) = c2 sin(µL), c2 6= 0 ⇒ sin(µL) = 0.

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every λ ∈ R and non-zero functions y solutions of the BVP

y ′′(x) + λ y(x) = 0, y(0) = 0, y(L) = 0, L > 0.

Solution: Recall: c1 = 0, c2 6= 0, and sin(µL) = 0.

The non-zero solution condition is the reason for c2 6= 0. Hence

sin(µL) = 0 ⇒ µnL = nπ ⇒ µn =
nπ

L
.

Recalling that λn = µ2
n, and choosing c2 = 1, we conclude

λn =
(nπ

L

)2
, yn(x) = sin

(nπx

L

)
. C


