The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[]$.
 - Homogeneous IVP.
 - First, second, higher order equations.
 - Non-homogeneous IVP.
 - ▶ Recall: Partial fraction decompositions.

Solving differential equations using $\mathcal{L}[\]$.

Remark: The method works with:

- ► Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

Idea of the method:

$$\mathcal{L} \left[egin{array}{ll} \mbox{differential eq.} \mbox{for } y(t). \end{array}
ight] \qquad \stackrel{\mbox{\scriptsize (1)}}{\longrightarrow} \qquad \mbox{Algebraic eq.} \qquad \stackrel{\mbox{\scriptsize (2)}}{\longrightarrow} \qquad \mbox{for } \mathcal{L}[y(t)]. \end{array}
ight.$$

Solve the
$$\xrightarrow{(2)}$$
 algebraic eq. $\xrightarrow{(3)}$ to obtain $y(t)$. for $\mathcal{L}[y(t)]$. (Using the table.)

Solving differential equations using $\mathcal{L}[\]$.

Idea of the method:

$$\mathcal{L} \begin{bmatrix} \text{differential eq.} \\ \text{for } y(t). \end{bmatrix} \xrightarrow{\text{(1)}} & \text{Algebraic eq.} \\ \text{for } \mathcal{L}[y(t)]. \end{bmatrix}$$

$$\xrightarrow{\text{Solve the}} & \text{Transform back} \\ \xrightarrow{\text{(2)}} & \text{algebraic eq.} \\ & \text{for } \mathcal{L}[y(t)]. \\ & \text{for } \mathcal{L}[y(t)]. \\ \end{bmatrix} (\text{Using the table.})$$

Recall:

(a)
$$\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)];$$

(b)
$$\mathcal{L}[y^{(n)}] = s^n \mathcal{L}[y] - s^{(n-1)} y(0) - s^{(n-2)} y'(0) - \dots - y^{(n-1)}(0).$$

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[]$.
 - Homogeneous IVP.
 - ▶ First, second, higher order equations.
 - ▶ Non-homogeneous IVP.
 - Recall: Partial fraction decompositions.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - y' - 2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y'' - y' - 2y] = 0.$$

The $\mathcal{L}[\]$ is a linear function, so

$$\mathcal{L}[y''] - \mathcal{L}[y'] - 2\mathcal{L}[y] = 0.$$

Derivatives are transformed into power functions,

$$\left[s^2 \mathcal{L}[y] - s y(0) - y'(0)\right] - \left[s \mathcal{L}[y] - y(0)\right] - 2 \mathcal{L}[y] = 0,$$

We the obtain $(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$.

Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$.

Differential equation for $y \xrightarrow{\mathcal{L}[\]}$ Algebraic equation for $\mathcal{L}[y]$. Introduce the initial condition,

$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1).$$

We can solve for the unknown $\mathcal{L}[y]$ as follows,

$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

The partial fraction method: Find the zeros of the denominator,

$$s^2-s-2=0 \quad \Rightarrow \quad s_{\pm}=rac{1}{2}igl[1\pm\sqrt{1+8}igr] \quad \Rightarrow \quad egin{cases} s_+=2, \ s_-=-1, \end{cases}$$

Therefore, we rewrite:
$$\mathcal{L}[y] = \frac{(s-1)}{(s-2)(s+1)}$$
.

Find constants a and b such that

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

A simple calculation shows

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1} = \frac{a(s+1) + b(s-2)}{(s-2)(s+1)}$$

$$(s-1)=s(a+b)+(a-2b) \quad \Rightarrow \quad \left\{ egin{array}{l} a+b=1, \ a-2b=-1. \end{array}
ight.$$

Hence,
$$a = \frac{1}{3}$$
 and $b = \frac{2}{3}$. Then, $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$. From the table:

$$\mathcal{L}[e^{at}] = rac{1}{s-a} \quad \Rightarrow \quad rac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad rac{1}{s+1} = \mathcal{L}[e^{-t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \frac{1}{3} \mathcal{L}[e^{2t}] + \frac{2}{3} \mathcal{L}[e^{-t}] = \mathcal{L}\Big[\frac{1}{3} (e^{2t} + 2e^{-t})\Big]$$

We conclude that: $y(t) = \frac{1}{3}(e^{2t} + 2e^{-t})$.

Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[0] = 0.$$

The $\mathcal{L}[]$ is a linear function,

$$\mathcal{L}[y''] - 4 \mathcal{L}[y'] + 4 \mathcal{L}[y] = 0.$$

Derivatives are transformed into power functions,

$$\left[s^2 \mathcal{L}[y] - s y(0) - y'(0) \right] - 4 \left[s \mathcal{L}[y] - y(0) \right] + 4 \mathcal{L}[y] = 0,$$

Therefore,
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

The partial fraction method: Find the roots of the denominator,

$$s^2 - 4s + 4 = 0 \quad \Rightarrow \quad s_{\pm} = \frac{1}{2} \big[4 \pm \sqrt{16 - 16} \big] \quad \Rightarrow \quad s_{+} = s_{-} = 2.$$

We obtain:
$$\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$$
.

Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$$
.

This expression is already in the partial fraction decomposition.

Idea: Rewrite the right-hand side in terms of function in the table.

$$\mathcal{L}[y] = \frac{(s-2)+2-3}{(s-2)^2} = \frac{(s-2)}{(s-2)^2} - \frac{1}{(s-2)^2} = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

From the Laplace transforms table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}],$$
 $\mathcal{L}[t^n e^{at}] = \frac{n!}{(s-a)^{(n+1)}} \quad \Rightarrow \quad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}$$
 and

$$\frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \mathcal{L}[e^{2t}] - \mathcal{L}[te^{2t}] = \mathcal{L}[e^{2t} - te^{2t}].$$

 \triangleleft

We conclude that
$$y(t) = e^{2t} - te^{2t}$$
.

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[$].
 - ► Homogeneous IVP.
 - ► First, second, higher order equations.
 - ▶ Non-homogeneous IVP.
 - Recall: Partial fraction decompositions.

First, second, higher order equations.

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Compute the $\mathcal{L}[\]$ of the equation,

$$\mathcal{L}[y^{(4)}] - 4\,\mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0)] - 4 \mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 + 2s] - 4 \mathcal{L}[y] = 0 \implies (s^4 - 4) \mathcal{L}[y] = s^3 - 2s,$$

We obtain, $\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$.

First, second, higher order equations.

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall: $\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$.

$$\mathcal{L}[y] = rac{s(s^2-2)}{(s^2-2)(s^2+2)} \quad \Rightarrow \quad \mathcal{L}[y] = rac{s}{(s^2+2)}.$$

The last expression is in the table of Laplace Transforms,

$$\mathcal{L}[y] = \frac{s}{\left(s^2 + \left\lceil\sqrt{2}\right\rceil^2\right)} = \mathcal{L}\left[\cos(\sqrt{2}t)\right].$$

We conclude that $y(t) = \cos(\sqrt{2}t)$.

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[]$.
 - Homogeneous IVP.
 - ▶ First, second, higher order equations.
 - ► Non-homogeneous IVP.
 - ▶ Recall: Partial fraction decompositions.

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[3\sin(2t)].$$

The right-hand side above can be expressed as follows,

$$\mathcal{L}[3\sin(2t)] = 3\mathcal{L}[\sin(2t)] = 3\frac{2}{s^2+2^2} = \frac{6}{s^2+4}.$$

Introduce this source term in the differential equation,

$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}.$$

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}$$
.

Derivatives are transformed into power functions,

$$\left[s^2 \mathcal{L}[y] - s y(0) - y'(0)\right] - 4 \left[s \mathcal{L}[y] - y(0)\right] + 4 \mathcal{L}[y] = \frac{6}{s^2 + 4}.$$

Rewrite the above equation,

$$(s^2-4s+4) \mathcal{L}[y] = (s-4) y(0) + y'(0) + \frac{6}{s^2+4}.$$

Introduce the initial conditions,

$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}.$$

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}$$
.

Therefore,
$$\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)} + \frac{6}{(s^2-4+4)(s^2+4)}$$
.

From an Example above: $s^2 - 4s + 4 = (s-2)^2$,

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2} + \frac{6}{(s-2)^2(s^2+4)}.$$

From an Example above we know that

$$\mathcal{L}[e^{2t} - te^{2t}] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
.

Use Partial fractions to simplify the last term above.

Find constants a, b, c, d, such that

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{as+b}{s^2+4} + \frac{c}{(s-2)} + \frac{d}{(s-2)^2}$$

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{(as+b)(s-2)^2 + c(s-2)(s^2+4) + d(s^2+4)}{(s^2+4)(s-2)^2}$$

$$6 = (as+b)(s-2)^2 + c(s-2)(s^2+4) + d(s^2+4).$$

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution:
$$6 = (as + b)(s - 2)^2 + c(s - 2)(s^2 + 4) + d(s^2 + 4)$$
.

$$6 = (as + b)(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4)$$

$$6 = a(s^3 - 4s^2 + 4s) + b(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4).$$

$$6 = (a+c)s^3 + (-4a+b-2c+d)s^2 + (4a-4b+4c)s + (4b-8c+4d).$$

We obtain the system

$$a + c = 0,$$
 $-4a + b - 2c + d = 0,$
 $4a - 4b + 4c = 0,$ $4b - 8c + 4d = 6.$

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: The solution for this linear system is

$$a = \frac{3}{8},$$
 $b = 0,$ $c = -\frac{3}{8},$ $d = \frac{3}{4}.$
$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8}\frac{s}{s^2+4} - \frac{3}{8}\frac{1}{(s-2)} + \frac{3}{4}\frac{1}{(s-2)^2}.$$

Use the table of Laplace Transforms

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8}\mathcal{L}[\cos(2t)] - \frac{3}{8}\mathcal{L}[e^{2t}] + \frac{3}{4}\mathcal{L}[te^{2t}].$$
$$\frac{6}{(s-2)^2(s^2+4)} = \mathcal{L}\left[\frac{3}{8}\cos(2t) - \frac{3}{8}e^{2t} + \frac{3}{4}te^{2t}\right].$$

Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Summary:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
,

$$\frac{6}{(s-2)^2(s^2+4)} = \mathcal{L}\Big[\frac{3}{8}\cos(2t) - \frac{3}{8}e^{2t} + \frac{3}{4}te^{2t}\Big].$$

$$\mathcal{L}[y(t)] = \mathcal{L}[(1-t)e^{2t} + \frac{3}{8}(-1+2t)e^{2t} + \frac{3}{8}\cos(2t)].$$

We conclude that

$$y(t) = (1-t)e^{2t} + \frac{3}{8}(2t-1)e^{2t} + \frac{3}{8}\cos(2t).$$