

Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_0 , T_L , is the solution of the BVP:

Remark: The heat transfer occurs only along the x-axis.

The Heat Equation.

Remarks:

- \blacktriangleright The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x .
- \blacktriangleright The temperature does not depend on y or z.
- \blacktriangleright The one-dimensional Heat Equation is:

$$
\partial_t u(t,x) = k \partial_x^2 u(t,x),
$$

where $k > 0$ is the heat conductivity, units: $[k] = \frac{(\text{distance})^2}{\sqrt{1-\lambda^2}}$ $\frac{(\text{time})}{(\text{time})}$.

 \triangleright The Heat Equation is a Partial Differential Equation, PDE.

The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k > 0$ and a function $f : [0, L] \rightarrow \mathbb{R}$ with $f(0) = f(L) = 0$, find $u : [0, \infty) \times [0, L] \rightarrow \mathbb{R}$ solution of

$$
\partial_t u(t,x) = k \partial_x^2 u(t,x),
$$

I.C.:
$$
u(0, x) = f(x)
$$
,

B.C.:
$$
u(t, 0) = 0
$$
, $u(t, L) = 0$.

Summary:

- \triangleright The idea is to transform the PDE into infinitely many ODEs.
- \triangleright We describe this method in 6 steps.

Step 1:

One looks for solutions u given by an infinite series of simpler functions, u_n , that is,

$$
u(t,x)=\sum_{n=1}^{\infty}c_n u_n(t,x),
$$

where u_n is simpler than u is the sense,

$$
u_n(t,x)=v_n(t) w_n(x).
$$

Here c_n are constants, $n = 1, 2, \cdots$.

Step 2:

Introduce the series expansion for u into the Heat Equation,

$$
\partial_t u - k \partial_x^2 u = 0 \quad \Rightarrow \quad \sum_{n=1}^{\infty} c_n \left[\partial_t u_n - k \partial_x^2 u_n \right] = 0.
$$

A sufficient condition for the equation above is: To find u_n , for $n = 1, 2, \cdots$, solutions of

$$
\partial_t u_n - k \partial_x^2 u_n = 0.
$$

Step 3: Find $u_n(t, x) = v_n(t) w_n(x)$ solution of the IBVP

$$
\partial_t u_n - k \partial_x^2 u_n = 0.
$$

$$
I.C.: \t u_n(0,x) = w_n(x),
$$

B.C.:
$$
u_n(t,0) = 0
$$
, $u_n(t,L) = 0$.

The separation of variables method.

Step 4: (Key step.) Transform the IBVP for u_n into: (a) IVP for v_n ; (b) BVP for w_n .

Notice:

$$
\partial_t u_n(t,x) = \partial_t [v_n(t) w_n(x)] = w_n(x) \frac{dv_n}{dt}(t).
$$

$$
\partial_x^2 u_n(t,x) = \partial_x^2 \big[v_n(t) w_n(x) \big] = v_n(t) \frac{d^2 w_n}{dx^2}(x).
$$

Therefore, the equation $\partial_t u_n = k \partial_x^2$ $\int_{x}^{2} u_n$ is given by

$$
w_n(x) \frac{dv_n}{dt}(t) = k v_n(t) \frac{d^2 w_n}{dx^2}(x)
$$

$$
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x).
$$

Depends only on $t =$ Depends only on x.

Recall:

$$
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x).
$$

Depends only on $t =$ Depends only on x.

- \blacktriangleright The Heat Equation has the following property: The left-hand side depends only on t , while the right-hand side depends only on x.
- \triangleright When this happens in a PDE, one can use the separation of variables method on that PDE.
- \blacktriangleright We conclude that for appropriate constants λ_m holds

$$
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = -\lambda_n, \qquad \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x) = -\lambda_n.
$$

 \triangleright We have transformed the original PDE into infinitely many ODEs parametrized by n, positive integer.

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE, is transformed into:

(a) The IVP for v_n ,

$$
\frac{1}{k v_n(t)} \frac{dv_n}{dt}(t) = -\lambda_n, \quad \text{l.C.:} \quad v_n(0) = 1.
$$

(b) The BVP for w_n ,

$$
\frac{1}{w_n(x)}\,\frac{d^2w_n}{dx^2}(x)=-\lambda_n,\quad \text{B.C.:}\quad w_n(0)=0,\quad w_n(L)=0.
$$

Step 5:

- (a) Solve the IVP for v_n .
- (b) Solve the BVP for w_n .

Step 5(a): Solving the IVP for v_n .

$$
v'_n(t) + k\lambda_n v_n(t) = 0
$$
, I.C.: $v_n(0) = 1$.

The integrating factor method implies that $\mu(t)=e^{k\lambda_n t}$.

$$
e^{k\lambda_n t}v'_n(t) + k\lambda_n e^{k\lambda_n t}v_n(t) = 0 \quad \Rightarrow \quad \left[e^{k\lambda_n t}v_n(t)\right]' = 0.
$$

 $e^{k\lambda_n t}v_n(t)=c_n \Rightarrow v_n(t)=c_n e^{-k\lambda_n t}.$

$$
1 = v_n(0) = c \Rightarrow v_n(t) = e^{-k\lambda_n t}.
$$

The separation of variables method.

Step 5(a): Recall: $v_n(t) = e^{-k\lambda_n t}$.

Step 5(b): Eigenvalue-eigenvector problem for w_n : Find the eigenvalues λ_n and the non-zero eigenfunctions w_n solutions of the BVP

$$
w_n''(x) + \lambda_n w_n(x) = 0 \quad \text{B.C.:} \quad w_n(0) = 0, \quad w_n(L) = 0.
$$

We know that this problem has solution only for $\lambda_n > 0$. Denote: $\lambda_n = \mu_n^2$ n^2 . Proposing $w_n(x) = e^{r_n x}$, we get that

$$
p(r_n) = r_n^2 + \mu_n^2 = 0 \quad \Rightarrow \quad r_{n\pm} = \pm \mu_n i
$$

The real-valued general solution is

 $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$.

Recall: $v_n(t) = e^{-k\lambda_n t}$, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$. The boundary conditions imply, $0 = w_n(0) = c_1 \Rightarrow w_n(x) = c_2 \sin(\mu_n x).$ $0 = w_n(L) = c_2 \sin(\mu_n L), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n L) = 0.$ $\mu_n L = n\pi \Rightarrow \mu_n =$ $n\pi$ L $\Rightarrow \lambda_n = \left(\frac{n\pi}{l}\right)$ L $\big)^2$. Choosing $c_2 = 1$, we get $w_n(x) = \sin\left(\frac{n\pi x}{l}\right)$ L . We conclude that: $u_n(t,x) = e^{-k(\frac{n\pi}{L})}$ $\frac{2\pi}{L}$ ²t sin $\left(\frac{n\pi x}{L}\right)$ L), $n = 1, 2, \cdots$.

The separation of variables method.

Step 6: Recall: $u_n(t,x) = e^{-k(\frac{n\pi}{L})}$ $\frac{2\pi}{L}$ ²t sin $\left(\frac{n\pi x}{L}\right)$ L .

Compute the solution to the IBVP for the Heat Equation,

$$
u(t,x) = \sum_{n=1}^{\infty} c_n u_n(t,x).
$$

$$
u(t,x) = \sum_{n=1}^{\infty} c_n e^{-k(\frac{n\pi}{L})^2 t} \sin(\frac{n\pi x}{L}).
$$

By construction, this solution satisfies the boundary conditions,

 $u(t, 0) = 0, \qquad u(t, L) = 0.$

Given a function f with $f(0) = f(L) = 0$, the solution u above satisfies the initial condition $f(x) = u(0, x)$ iff holds

$$
f(x) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L}\right).
$$

The separation of variables method. Recall: $u(t, x) = \sum$ ∞ $n=1$ $c_n e^{-k(\frac{n\pi}{L})}$ $\frac{2\pi}{L}$ ²t sin $\left(\frac{n\pi x}{L}\right)$ L), $f(x) = \sum$ ∞ $n=1$ $c_n \sin\left(\frac{n\pi x}{l}\right)$ L . This is a Sine Series for f. The coefficients c_n are computed in the usual way. Recall the orthogonality relation \int_0^L 0 $\sin\left(\frac{n\pi x}{l}\right)$ L) sin $\left(\frac{m\pi x}{l}\right)$ L $\int dx =$ $\sqrt{ }$ \int \mathcal{L} $0, \quad m \neq n,$ L 2 $m = n$. Multiply the equation for *u* by sin $\left(\frac{m\pi x}{l}\right)$ L) nd integrate, \sum ∞ $n=1$ c_n \int_0^L 0 $\sin\left(\frac{n\pi x}{l}\right)$ L) sin $\left(\frac{m\pi x}{l}\right)$ L $\int dx =$ \int_0^L 0 $f(x)$ sin $\left(\frac{m\pi x}{l}\right)$ L $\int dx$. $c_n =$ 2 L \int_0^L 0 $f(x)$ sin $\left(\frac{n\pi x}{4}\right)$ L $\int dx$, $u(t,x) = \sum_{n=0}^{\infty} c_n e^{-k(\frac{n\pi}{L})^2 t} \sin\left(\frac{n\pi x}{L}\right)$ $n=1$ L .

The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

$$
u(t,x)=\sum_{n=1}^{\infty}c_n v_n(t) w_n(x).
$$

where

- \blacktriangleright v_n : Solution of an IVP.
- \triangleright w_n : Solution of a BVP, an eigenvalue-eigenfunction problem.
- \triangleright c_n : Fourier Series coefficients.

Remark:

The separation of variables method does not work for every PDE.

An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2$ $x^2 \mu$, $t > 0$, $x \in [0, 2]$,

$$
u(0,x) = 3\sin(\pi x/2), \quad u(t,0) = 0, \quad u(t,2) = 0.
$$

Solution: Let $u_n(t, x) = v_n(t) w_n(x)$. Then

$$
4w_n(x)\frac{dv}{dt}(t)=v_n(t)\frac{d^2w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v'_n(t)}{v_n(t)}=\frac{w''_n(x)}{w_n(x)}=-\lambda_n.
$$

The equations for v_n and w_n are

$$
v'_n(t) + \frac{\lambda_n}{4} v_n(t) = 0, \qquad w''_n(x) + \lambda_n w_n(x) = 0.
$$

We solve for v_n with the initial condition $v_n(0) = 1$.

$$
e^{\frac{\lambda_n}{4}t}v'_n(t)+\frac{\lambda_n}{4}e^{\frac{\lambda_n}{4}t}v_n(t)=0\quad\Rightarrow\quad\left[e^{\frac{\lambda_n}{4}t}v_n(t)\right]'=0.
$$

An example of separation of variables. Example Find the solution to the IBVP $4\partial_t u = \partial_x^2$ $x^2 \mu$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$ Solution: Recall: $\left[e^{\frac{\lambda_n}{4}t}v_n(t)\right]'=0$. Therefore, $v_n(t) = c e^{-\frac{\lambda_n}{4}t}, \quad 1 = v_n(0) = c \quad \Rightarrow \quad v_n(t) = e^{-\frac{\lambda_n}{4}t}.$ Next the BVP: w_n'' $w''_n(x) + \lambda_n w_n(x) = 0$, with $w_n(0) = w_n(L) = 0$. Since $\lambda_n > 0$, introduce $\lambda_n = \mu_n^2$ $\frac{2}{n}$. The characteristic polynomial is $p(r) = r^2 + \mu_n^2 = 0 \Rightarrow r_{n\pm} = \pm \mu_n i.$ The general solution, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$. The boundary conditions imply $0 = w_n(0) = c_1, \Rightarrow w_n(x) = c_2 \sin(\mu_n x).$

An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2$ $x^2 \mu$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$ Solution: Recall: $v_n(t) = e^{-\frac{\lambda_n}{4}t}$, and $w_n(x) = c_2 \sin(\mu_n x)$. $0 = w_n(2) = c_2 \sin(\mu_n 2), \quad c_2 \neq 0, \quad \Rightarrow \quad \sin(\mu_n 2) = 0.$ Then, μ_n 2 $=$ $n\pi$, that is, μ_n $=$ $n\pi$ 2 . Choosing $c_2 = 1$, we conclude, $\lambda_m = \left(\frac{n\pi}{2}\right)$ 2 \int_{0}^{2} , $w_n(x) = \sin\left(\frac{n\pi x}{2}\right)$ 2 . $u(t, x) = \sum$ ∞ $n=1$ $c_n e^{-\left(\frac{n\pi}{4}\right)}$ $(\frac{n\pi}{4})^2 t$ sin $(\frac{n\pi x}{2})$ 2 .

An example of separation of variables. Example Find the solution to the IBVP $4\partial_t u = \partial_x^2$ $x^2 \mu$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$ Solution: Recall: $u(t,x) = \sum$ ∞ $n=1$ $c_n e^{-\left(\frac{n\pi}{4}\right)}$ $(\frac{n\pi}{4})^2 t$ sin $(\frac{n\pi x}{2})$ 2 . The initial condition is 3 sin $\left(\frac{\pi x}{2}\right)$ 2 $=$ \sum ∞ $n=1$ $c_n \sin\left(\frac{n\pi x}{2}\right)$ 2 . The orthogonality of the sine functions implies 3 \int_0^2 0 $\sin\left(\frac{\pi x}{2}\right)$ 2) sin $\left(\frac{m\pi x}{2}\right)$ 2 $\int dx = \sum$ ∞ $n=1$ \int_0^2 0 $\sin\left(\frac{n\pi x}{2}\right)$ 2) sin $\left(\frac{m\pi x}{2}\right)$ 2 $\int dx$. If $m\neq 1$, then $0=c_m\,\frac{2}{2}$ $\frac{2}{2}$, that is, $c_m = 0$ for $m \neq 1$. Therefore, $3 \sin \left(\frac{\pi x}{2} \right)$ 2 $= c_1 \sin \left(\frac{\pi x}{2}\right)$ 2 $\Big) \Rightarrow c_1 = 3.$

An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2$ $x^2 \mu$, $t > 0$, $x \in [0, 2]$, $u(0, x) = 3 \sin(\pi x/2), \quad u(t, 0) = 0, \quad u(t, 2) = 0.$

Solution: We conclude that

$$
u(t,x)=3 e^{-(\frac{\pi}{4})^2 t} \sin\left(\frac{\pi x}{2}\right).
$$