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Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature
distribution in a solid material in thermal equilibrium. The
temperature is time-independent.

Problem: The time-independent temperature, T , of a bar of
length L with insulated horizontal sides and vertical extremes kept
at fixed temperatures T0, TL, is the solution of the BVP:

T ′′(x) = 0, x ∈ (0, L), T (0) = T0, T (L) = TL,
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Remark: The heat transfer occurs only along the x-axis.
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The Heat Equation.

Remarks:

I The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x .

I The temperature does not depend on y or z .

I The one-dimensional Heat Equation is:

∂tu(t, x) = k ∂2
xu(t, x),

where k > 0 is the heat conductivity, units: [k] =
(distance)2

(time)
.

I The Heat Equation is a Partial Differential Equation, PDE.

0

u(t,x)

t t t
u = 0 u < 0 u > 0
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The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L]→ R with
f (0) = f (L) = 0, find u : [0,∞)× [0, L]→ R solution of

∂tu(t, x) = k ∂2
xu(t, x),

I.C.: u(0, x) = f (x),

B.C.: u(t, 0) = 0, u(t, L) = 0.

u ( t, L ) = 0

x

t

0 L

t x

2
d u  =  k d   u

u ( 0, x )  =  f ( x )

u ( t, 0 ) = 0
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The separation of variables method.

Summary:

I The idea is to transform the PDE into infinitely many ODEs.

I We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler
functions, un, that is,

u(t, x) =
∞∑

n=1

cn un(t, x),

where un is simpler than u is the sense,

un(t, x) = vn(t) wn(x).

Here cn are constants, n = 1, 2, · · · .



The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

∂tu − k ∂2
xu = 0 ⇒

∞∑
n=1

cn

[
∂tun − k ∂2

xun

]
= 0.

A sufficient condition for the equation above is: To find un, for
n = 1, 2, · · · , solutions of

∂tun − k ∂2
xun = 0.

Step 3:
Find un(t, x) = vn(t) wn(x) solution of the IBVP

∂tun − k ∂2
xun = 0.

I.C.: un(0, x) = wn(x),

B.C.: un(t, 0) = 0, un(t, L) = 0.

The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for un into: (a) IVP for vn; (b) BVP for wn.

Notice:
∂tun(t, x) = ∂t

[
vn(t) wn(x)

]
= wn(x)

dvn

dt
(t).

∂2
xun(t, x) = ∂2

x

[
vn(t) wn(x)

]
= vn(t)

d2wn

dx2
(x).

Therefore, the equation ∂tun = k∂2
xun is given by

wn(x)
dvn

dt
(t) = k vn(t)

d2wn

dx2
(x)

1

k vn(t)

dvn

dt
(t) =

1

wn(x)

d2wn

dx2
(x).

Depends only on t = Depends only on x .
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Recall: 1

k vn(t)

dvn

dt
(t) =

1

wn(x)

d2wn

dx2
(x).

Depends only on t = Depends only on x .

I The Heat Equation has the following property:
The left-hand side depends only on t, while the right-hand
side depends only on x .

I When this happens in a PDE, one can use the separation of
variables method on that PDE.

I We conclude that for appropriate constants λm holds

1

k vn(t)

dvn

dt
(t) = −λn,

1

wn(x)

d2wn

dx2
(x) = −λn.

I We have transformed the original PDE into infinitely many
ODEs parametrized by n, positive integer.

The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE,
is transformed into:

(a) The IVP for vn,

1

k vn(t)

dvn

dt
(t) = −λn, I.C.: vn(0) = 1.

(b) The BVP for wn,

1

wn(x)

d2wn

dx2
(x) = −λn, B.C.: wn(0) = 0, wn(L) = 0.

Step 5:

(a) Solve the IVP for vn.

(b) Solve the BVP for wn.



The separation of variables method.

Step 5(a): Solving the IVP for vn.

v ′n(t) + kλn vn(t) = 0, I.C.: vn(0) = 1.

The integrating factor method implies that µ(t) = ekλnt .

ekλntv ′n(t) + kλn ekλnt vn(t) = 0 ⇒
[
ekλntvn(t)

]′
= 0.

ekλntvn(t) = cn ⇒ vn(t) = cn e−kλnt .

1 = vn(0) = c ⇒ vn(t) = e−kλnt .

The separation of variables method.

Step 5(a): Recall: vn(t) = e−kλnt .

Step 5(b): Eigenvalue-eigenvector problem for wn:
Find the eigenvalues λn and the non-zero eigenfunctions wn

solutions of the BVP

w ′′
n (x) + λn wn(x) = 0 B.C.: wn(0) = 0, wn(L) = 0.

We know that this problem has solution only for λn > 0.
Denote: λn = µ2

n. Proposing wn(x) = ernx , we get that

p(rn) = r2
n + µ2

n = 0 ⇒ rn± = ±µni

The real-valued general solution is

wn(x) = c1 cos(µnx) + c2 sin(µnx).



The separation of variables method.

Recall: vn(t) = e−kλnt , wn(x) = c1 cos(µnx) + c2 sin(µnx).

The boundary conditions imply,

0 = wn(0) = c1 ⇒ wn(x) = c2 sin(µnx).

0 = wn(L) = c2 sin(µnL), c2 6= 0, ⇒ sin(µnL) = 0.

µnL = nπ ⇒ µn =
nπ

L
⇒ λn =

(nπ

L

)2
.

Choosing c2 = 1, we get wn(x) = sin
(nπx

L

)
.

We conclude that: un(t, x) = e−k( nπ
L

)2t sin
(nπx

L

)
, n = 1, 2, · · · .

The separation of variables method.

Step 6: Recall: un(t, x) = e−k( nπ
L

)2t sin
(nπx

L

)
.

Compute the solution to the IBVP for the Heat Equation,

u(t, x) =
∞∑

n=1

cn un(t, x).

u(t, x) =
∞∑

n=1

cn e−k( nπ
L

)2t sin
(nπx

L

)
.

By construction, this solution satisfies the boundary conditions,

u(t, 0) = 0, u(t, L) = 0.

Given a function f with f (0) = f (L) = 0, the solution u above
satisfies the initial condition f (x) = u(0, x) iff holds

f (x) =
∞∑

n=1

cn sin
(nπx

L

)
.



The separation of variables method.

Recall:

u(t, x) =
∞∑

n=1

cn e−k( nπ
L

)2t sin
(nπx

L

)
, f (x) =

∞∑
n=1

cn sin
(nπx

L

)
.

This is a Sine Series for f . The coefficients cn are computed in the
usual way. Recall the orthogonality relation∫ L

0
sin

(nπx

L

)
sin

(mπx

L

)
dx =

 0, m 6= n,

L

2
, m = n.

Multiply the equation for u by sin
(

mπx
L

)
nd integrate,

∞∑
n=1

cn

∫ L

0
sin

(nπx

L

)
sin

(mπx

L

)
dx =

∫ L

0
f (x) sin

(mπx

L

)
dx .

cn =
2

L

∫ L

0

f (x) sin
(nπx

L

)
dx , u(t, x) =

∞∑
n=1

cn e−k( nπ
L )2t sin

(nπx

L

)
.

The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
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An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Let un(t, x) = vn(t) wn(x). Then

4wn(x)
dv

dt
(t) = vn(t)

d2w

dx2
(x) ⇒ 4v ′n(t)

vn(t)
=

w ′′
n (x)

wn(x)
= −λn.

The equations for vn and wn are

v ′n(t) +
λn

4
vn(t) = 0, w ′′

n (x) + λn wn(x) = 0.

We solve for vn with the initial condition vn(0) = 1.

e
λn
4

t v ′n(t) +
λn

4
e

λn
4

t vn(t) = 0 ⇒
[
e

λn
4

t vn(t)
]′

= 0.
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Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Recall:
[
e

λn
4

t vn(t)
]′

= 0. Therefore,

vn(t) = c e−
λn
4

t , 1 = vn(0) = c ⇒ vn(t) = e−
λn
4

t .

Next the BVP: w ′′
n (x) + λn wn(x) = 0, with wn(0) = wn(L) = 0.

Since λn > 0, introduce λn = µ2
n. The characteristic polynomial is

p(r) = r2 + µ2
n = 0 ⇒ rn± = ±µni .

The general solution, wn(x) = c1 cos(µnx) + c2 sin(µnx).

The boundary conditions imply

0 = wn(0) = c1, ⇒ wn(x) = c2 sin(µnx).

An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Recall: vn(t) = e−
λn
4

t , and wn(x) = c2 sin(µnx).

0 = wn(2) = c2 sin(µn2), c2 6= 0, ⇒ sin(µn2) = 0.

Then, µn2 = nπ, that is, µn =
nπ

2
. Choosing c2 = 1, we conclude,

λm =
(nπ

2

)2
, wn(x) = sin

(nπx

2

)
.

u(t, x) =
∞∑

n=1

cn e−( nπ
4

)2t sin
(nπx

2

)
.
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Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Recall: u(t, x) =
∞∑

n=1

cn e−( nπ
4

)2t sin
(nπx

2

)
.

The initial condition is 3 sin
(πx

2

)
=

∞∑
n=1

cn sin
(nπx

2

)
.

The orthogonality of the sine functions implies

3

∫ 2

0
sin

(πx

2

)
sin

(mπx

2

)
dx =

∞∑
n=1

∫ 2

0
sin

(nπx

2

)
sin

(mπx

2

)
dx .

If m 6= 1, then 0 = cm
2
2 , that is, cm = 0 for m 6= 1. Therefore,

3 sin
(πx

2

)
= c1 sin

(πx

2

)
⇒ c1 = 3.

An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: We conclude that

u(t, x) = 3 e−(π
4
)2t sin

(πx

2

)
.


