

Separable ODE.

Definition

Given functions $h, g : \mathbb{R} \to \mathbb{R}$, a first order ODE on the unknown function $y : \mathbb{R} \to \mathbb{R}$ is called *separable* iff the ODE has the form

$$
h(y) y'(t) = g(t).
$$

Remark:

A differential equation $y'(t) = f(t, y(t))$ is separable iff

$$
y' = \frac{g(t)}{h(y)}
$$
 \Leftrightarrow $f(t, y) = \frac{g(t)}{h(y)}$.

Notation:

In lecture: t, $y(t)$ and $h(y) y'(t) = g(t)$. In textbook: x, $y(x)$ and $M(x) + N(y) y'(x) = 0$. Therefore: $h(y) = N(y)$ and $g(t) = -M(t)$.

Separable ODE.

Example

Determine whether the differential equation below is separable,

$$
y'(t) = \frac{t^2}{1 - y^2(t)}.
$$

Solution: The differential equation is separable, since it is equivalent to

$$
(1 - y^2) y'(t) = t^2
$$
 \Rightarrow
$$
\begin{cases} g(t) = t^2, \\ h(y) = 1 - y^2. \end{cases}
$$

 \triangleleft

 \triangleleft

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(t)=c\ t^2,\quad h(y)=c\ (1-y^2),\quad c\in\mathbb{R}.
$$

Separable ODE.

Example

Determine whether The differential equation below is separable,

$$
y'(t) + y^2(t) \cos(2t) = 0
$$

Solution: The differential equation is separable, since it is equivalent to

$$
\frac{1}{y^2}y'(t) = -\cos(2t) \quad \Rightarrow \quad \begin{cases} g(t) = -\cos(2t), \\ h(y) = \frac{1}{y^2}. \end{cases}
$$

Remark: The functions g and h are not uniquely defined. Another choice here is:

$$
g(t) = \cos(2t), \quad h(y) = -\frac{1}{y^2}
$$

.

Solutions to separable ODE.

Theorem (Separable equations)

If the functions $g, h : \mathbb{R} \to \mathbb{R}$ are continuous, with $h \neq 0$ and with primitives G and H, respectively; that is,

$$
G'(t) = g(t), \qquad H'(u) = h(u),
$$

then, the separable ODE

$$
h(y) y' = g(t)
$$

has infinitely many solutions $y : \mathbb{R} \to \mathbb{R}$ satisfying the algebraic equation

$$
H(y(t))=G(t)+c,
$$

where $c \in \mathbb{R}$ is arbitrary.

Remark: Given functions g, h , find their primitives G, H .

Solutions to separable ODE.

Example

Find all solutions $y : \mathbb{R} \to \mathbb{R}$ to the ODE $y'(t) = \frac{t^2}{1-t^2}$ $1 - y^2(t)$.

Solution: The equation is equivalent to $(1-y^2)\,y'(t)=t^2.$ Therefore, the functions g , h are given by

$$
g(t)=t^2, \qquad h(u)=1-u^2.
$$

Their primitive functions, G and H , respectively, are given by

Then, the Theorem above implies that the solution y satisfies the algebraic equation $\overline{2}$

$$
y(t) - \frac{y^3(t)}{3} = \frac{t^3}{3} + c, \quad c \in \mathbb{R}.
$$

Solutions to separable ODE.

Remarks:

- \blacktriangleright The equation $y(t)$ $y^3(t)$ 3 = t^3 3 $+ c$ is algebraic in y, since there is no y' in the equation.
- \blacktriangleright Every function y satisfying the algebraic equation

$$
y(t) - \frac{y^3(t)}{3} = \frac{t^3}{3} + c,
$$

is a solution of the differential equation above.

 \triangleright We now verify the previous statement: Differentiate on both sides with respect to t , that is,

$$
y'(t) - 3\left(\frac{y^2(t)}{3}\right)y'(t) = 3\frac{t^2}{3} \Rightarrow (1 - y^2)y' = t^2.
$$

Separable differential equations (Sect. 2.2). ▶ Separable ODE. \triangleright Solutions to separable ODE. \blacktriangleright Explicit and implicit solutions. \blacktriangleright Homogeneous equations.

Explicit and implicit solutions.

Remark:

The solution $y(t)$ – $y^3(t)$ 3 = t^3 3 $+ c$ is given in implicit form.

Definition

Assume the notation in the Theorem above. The solution y of a separable ODE is given in *implicit form* iff function y is specified by

 $H(y(t)) = G(t) + c$,

The solution y of a separable ODE is given in explicit form iff function H is invertible and y is specified by

$$
y(t) = H^{-1}(G(t) + c).
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y'(t) + y^2(t)\cos(2t) = 0
$$
, $y(0) = 1$.

Solution: The differential equation is separable, with

$$
g(t) = -\cos(2t),
$$
 $h(y) = \frac{1}{y^2}.$

The main idea in the proof of the Theorem above is this: integrate on both sides of the equation,

$$
\frac{y'(t)}{y^2(t)} = -\cos(2t) \quad \Leftrightarrow \quad \int \frac{y'(t)}{y^2(t)} dt = -\int \cos(2t) dt + c.
$$

The substitution $u = y(t)$, $du = y'(t) dt$, implies that

$$
\int \frac{du}{u^2} = -\int \cos(2t) dt + c \quad \Leftrightarrow \quad -\frac{1}{u} = -\frac{1}{2}\sin(2t) + c.
$$

Explicit and implicit solutions.

Example

Use the main idea in the proof of the Theorem above to find the solution of the IVP

$$
y'(t) + y^2(t) \cos(2t) = 0
$$
, $y(0) = 1$.

Solution: Recall: – 1 u $= -$ 1 2 $\sin(2t) + c$. Substitute the unknown function y back in the equation above,

> − 1 $y(t)$ $= -$ 1 2 $\sin(2t) + c.$ (Implicit form.) $y(t) = \frac{2}{(2\pi)^{2}}$ $\mathsf{sin}(2t) - 2\mathsf{c}$. (Explicit form.)

The initial condition implies that $1=y(0)=\frac{1}{2}$ 2 $0 - 2c$, so $c = -1$. We conclude that $y(t) = \frac{2}{\sin(2t) + 2}$.

Separable differential equations (Sect. 2.2). ▶ Separable ODE. \triangleright Solutions to separable ODE. \blacktriangleright Explicit and implicit solutions. \blacktriangleright Homogeneous equations.

Definition

The first order ODE $y'(t) = f(t, y(t))$ is called homogeneous iff for every numbers $c, t, u \in \mathbb{R}$ the function f satisfies

 $f(ct, cu) = f(t, u).$

Remark:

- \triangleright The function f is invariant under the change of scale of its arguments.
- If $f(t, u)$ has the property above, it must depend only on u/t .
- ▶ So, there exists $F : \mathbb{R} \to \mathbb{R}$ such that $f(t, u) = F\left(\frac{u}{u}\right)$ t .
- \triangleright Therefore, a first order ODE is homogeneous iff it has the form

$$
y'(t) = F\left(\frac{y(t)}{t}\right).
$$

Homogeneous equations.

Example

Show that the equation below is homogeneous,

$$
(t-y)y'-2y+3t+\frac{y^2}{t}=0.
$$

Solution: Rewrite the equation in the standard form

$$
(t-y)y' = 2y - 3t - \frac{y^2}{t} \Rightarrow y' = \frac{(2y - 3t - \frac{y^2}{t})}{(t-y)}.
$$

Divide numerator and denominator by t . We get,

$$
y' = \frac{\left(2y - 3t - \frac{y^2}{t}\right)}{(t - y)} \frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t}\right)} \Rightarrow y' = \frac{2\left(\frac{y}{t}\right) - 3 - \left(\frac{y}{t}\right)^2}{\left[1 - \left(\frac{y}{t}\right)\right]}.
$$

Example

Show that the equation below is homogeneous,

$$
(t-y)y'-2y+3t+\frac{y^2}{t}=0.
$$

Solution: Recall:
$$
y' = \frac{2(\frac{y}{t}) - 3 - (\frac{y}{t})^2}{[1 - (\frac{y}{t})]}.
$$

We conclude that the ODE is homogeneous, because the right-hand side of the equation above depends only on y/t .

Indeed, in our case:

$$
f(t,y) = \frac{2y - 3t - (y^2/t)}{t - y}, \qquad F(x) = \frac{2x - 3 - x^2}{1 - x},
$$

and $f(t, y) = F(y/t)$.

Homogeneous equations.

Example

Determine whether the equation below is homogeneous,

$$
y'=\frac{t^2}{1-y^3}.
$$

Solution:

Divide numerator and denominator by t^3 , we obtain

$$
y' = \frac{t^2}{(1-y^3)} \frac{\left(\frac{1}{t^3}\right)}{\left(\frac{1}{t^3}\right)} \quad \Rightarrow \quad y' = \frac{\left(\frac{1}{t}\right)}{\left(\frac{1}{t^3}\right) - \left(\frac{y}{t}\right)^3}.
$$

We conclude that the differential equation is not homogeneous. \triangleleft

Theorem

If the differential equation $y'(t) = f(t, y(t))$ is homogeneous, then the differential equation for the unknown $v(t) = \frac{y(t)}{t}$ t is separable.

Remark: Homogeneous equations can be transformed into separable equations.

Proof: If $y' = f(t, y)$ is homogeneous, then it can be written as $y' = F(y/t)$ for some function F. Introduce $v = y/t$. This means,

 $y(t) = t v(t) \Rightarrow y'(t) = v(t) + t v'(t).$

Introducing all this into the ODE we get

$$
v + tv' = F(v) \quad \Rightarrow \quad v' = \frac{(F(v) - v)}{t}.
$$

This last equation is separable.

Homogeneous equations.

Example

Find all solutions y of the ODE $y' = \frac{t^2 + 3y^2}{2}$ 2ty .

Solution: The equation is homogeneous, since

$$
y' = \frac{t^2 + 3y^2}{2ty} \frac{\left(\frac{1}{t^2}\right)}{\left(\frac{1}{t^2}\right)} \quad \Rightarrow \quad y' = \frac{1 + 3\left(\frac{y}{t}\right)^2}{2\left(\frac{y}{t}\right)}.
$$

Therefore, we introduce the change of unknown $v = y/t$, so $y = t v$ and $y' = v + t v'$. Hence

$$
v + tv' = \frac{1 + 3v^2}{2v}
$$
 \Rightarrow $tv' = \frac{1 + 3v^2}{2v} - v = \frac{1 + 3v^2 - 2v^2}{2v}$
We obtain the separable equation $v' = \frac{1}{2}(\frac{1 + v^2}{2v}).$

t

 $2v$

 \Box

Example

Find all solutions y of the ODE $y' = \frac{t^2 + 3y^2}{2}$ 2ty . Solution: Recall: $v'=\frac{1}{v}$ t $\left(\frac{1 + v^2}{ } \right)$ $2v$. We rewrite and integrate it, $2v$ $\frac{2v}{1+v^2}v'=\frac{1}{t}$ t ⇒ $\int 2v$ $\frac{2v}{1+v^2}v' dt =$ \int 1 t $dt + c_0$. The substitution $u = 1 + v^2(t)$ implies $du = 2v(t) v'(t) dt$, so $\int du$ u = $\int dt$ t $+c_0$ \Rightarrow $\ln(u) = \ln(t) + c_0$ \Rightarrow $u = e^{\ln(t) + c_0}.$ But $u = e^{\ln(t)} e^{\epsilon_0}$, so denoting $\epsilon_1 = e^{\epsilon_0}$, then $u = \epsilon_1 t$. Hence $1 + v^2 = c_1 t \Rightarrow 1 + \left(\frac{y}{t}\right)$ t $\Big)^2=c_1t\quad\Rightarrow\quad y(t)=\pm t$ √ $c_1 t - 1.$