The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

Read:

- The direction field. Example 2 in Section 1.1 in the Textbook.
- See direction field plotters in Internet. For example, see: http://math.rice.edu/ dfield/dfpp.html This link is given in our class webpage.

Overview of differential equations.

Definition

A differential equation is an equation, where the unknown is a function, and both the function and its derivative appear in the equation.

Remark: There are two main types of differential equations:

- Ordinary Differential Equations (ODE): Derivatives with respect to only one variable appear in the equation.

Example:

Newton's second law of motion: ma=F.

- Partial differential Equations (PDE): Partial derivatives of two or more variables appear in the equation.

Example:

The wave equation for sound propagation in air.

Overview of differential equations.

Example

Newton's second law of motion is an ODE: The unknown is $\mathbf{x}(t)$, the particle position as function of time t and the equation is

$$
\frac{d^{2}}{d t^{2}} \mathbf{x}(t)=\frac{1}{m} \mathbf{F}(t, \mathbf{x}(t))
$$

with m the particle mass and \mathbf{F} the force acting on the particle.

Example

The wave equation is a PDE: The unknown is $u(t, x)$, a function that depends on two variables, and the equation is

$$
\frac{\partial^{2}}{\partial t^{2}} u(t, x)=v^{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

with v the wave speed. Sound propagation in air is described by a wave equation, where u represents the air pressure.

Overview of differential equations.

Remark: Differential equations are a central part in a physical description of nature:

- Classical Mechanics:
- Newton's second law of motion. (ODE)
- Lagrange's equations. (ODE)
- Electromagnetism:
- Maxwell's equations. (PDE)
- Quantum Mechanics:
- Schrödinger's equation. (PDE)
- General Relativity:
- Einstein equation. (PDE)
- Quantum Electrodynamics:
- The equations of QED. (PDE).
- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

Linear Ordinary Differential Equations

Remark: Given a function $y: \mathbb{R} \rightarrow \mathbb{R}$, we use the notation

$$
y^{\prime}(t)=\frac{d y}{d t}(t)
$$

Definition

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a first order $O D E$ in the unknown function $y: \mathbb{R} \rightarrow \mathbb{R}$ is the equation

$$
y^{\prime}(t)=f(t, y(t)) .
$$

The first order ODE above is called linear iff there exist functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t, y)=-a(t) y+b(t)$. That is, f is linear on its argument y, hence a first order linear ODE is given by

$$
y^{\prime}(t)=-a(t) y(t)+b(t) .
$$

Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-2 y(t)+3
$$

In this case function $a(t)=-2$ and $b(t)=3$. Since these function do not depend on t, the equation above is called of constant coefficients.

Example

A first order linear ODE is given by

$$
y^{\prime}(t)=-\frac{2}{t} y(t)+4 t
$$

In this case function $a(t)=-2 / t$ and $b(t)=4 t$. Since these functions depend on t, the equation above is called of variable coefficients.

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

The integrating factor method.

Remark: Solutions to first order linear ODE can be obtained using the integrating factor method.

Theorem (Constant coefficients)

Given constants $a, b \in \mathbb{R}$ with $a \neq 0$, the linear differential equation

$$
y^{\prime}(t)=-a y(t)+b
$$

has infinitely many solutions, one for each value of $c \in \mathbb{R}$, given by

$$
y(t)=c e^{-a t}+\frac{b}{a} .
$$

The integrating factor method.

Proof: Multiply the differential equation $y^{\prime}(t)+a y(t)=b$ by a non-zero function μ, that is,

$$
\mu(t)\left(y^{\prime}+a y\right)=\mu(t) b
$$

Key idea: The non-zero function μ is called an integrating factor iff holds

$$
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}
$$

Not every function μ satisfies the equation above. Let us find what are the solutions μ of the equation above. Notice that

$$
\begin{gathered}
\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime} \quad \Leftrightarrow \quad \mu y^{\prime}+\mu a y=\mu^{\prime} y+\mu y^{\prime} \\
a y \mu=\mu^{\prime} y \quad \Leftrightarrow \quad a \mu=\mu^{\prime} \quad \Leftrightarrow \quad \frac{\mu^{\prime}(t)}{\mu(t)}=a .
\end{gathered}
$$

The integrating factor method.

Proof: Recall: $\frac{\mu^{\prime}(t)}{\mu(t)}=a$. Therefore,

$$
\begin{array}{cc}
{[\ln (\mu(t))]^{\prime}=a \quad \Leftrightarrow \quad \ln (\mu(t))=a t+c_{0}} \\
\mu(t)=e^{a t+c_{0}} & \Leftrightarrow \quad \mu(t)=e^{a t} e^{c_{0}}
\end{array}
$$

Choosing the solution with $c_{0}=0$ we obtain $\mu(t)=e^{a t}$.
For that function μ holds that $\mu\left(y^{\prime}+a y\right)=(\mu y)^{\prime}$. Therefore, multiplying the ODE $y^{\prime}+a y=b$ by $\mu=e^{a t}$ we get

$$
\begin{gathered}
(\mu y)^{\prime}=b \mu \quad \Leftrightarrow \quad\left(e^{a t} y\right)^{\prime}=b e^{a t} \quad \Leftrightarrow \quad e^{a t} y=\int b e^{a t} d t+c \\
y(t) e^{a t}=\frac{b}{a} e^{a t}+c \quad \Leftrightarrow \quad y(t)=c e^{-a t}+\frac{b}{a} .
\end{gathered}
$$

The integrating factor method.

Example

Find all functions y solution of the $\operatorname{ODE} y^{\prime}=2 y+3$.
Solution: The ODE is $y^{\prime}=-a y+b$ with $a=-2$ and $b=3$.
The functions $y(t)=c e^{-a t}+\frac{b}{a}$, with $c \in \mathbb{R}$, are solutions.
We conclude that the ODE has infinitely many solutions, given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

Since we did one integration, it is reasonable that the solution contains a
 constant of integration, $c \in \mathbb{R}$.

Verification: $c e^{2 t}=y+(3 / 2)$, so $2 c e^{2 t}=y^{\prime}$, therefore we conclude that y satisfies the ODE $y^{\prime}=2 y+3$.

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

The Initial Value Problem.

Definition

The Initial Value Problem (IVP) for a linear ODE is the following:
Given functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and constants $t_{0}, y_{0} \in R$, find a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of the problem

$$
y^{\prime}=a(t) y+b(t), \quad y\left(t_{0}\right)=y_{0} .
$$

Remark: The initial condition selects one solution of the ODE.
Theorem (Constant coefficients)
Given constants $a, b, t_{0}, y_{0} \in \mathbb{R}$, with $a \neq 0$, the initial value problem

$$
y^{\prime}=-a y+b, \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution

$$
y(t)=\left(y_{0}-\frac{b}{a}\right) e^{-a\left(t-t_{0}\right)}+\frac{b}{a} .
$$

The Initial Value Problem.

Example

Find the solution to the initial value problem

$$
y^{\prime}=2 y+3, \quad y(0)=1
$$

Solution: Every solution of the ODE above is given by

$$
y(t)=c e^{2 t}-\frac{3}{2}, \quad c \in \mathbb{R}
$$

The initial condition $y(0)=1$ selects only one solution:

$$
1=y(0)=c-\frac{3}{2} \Rightarrow c=\frac{5}{2}
$$

We conclude that $y(t)=\frac{5}{2} e^{2 t}-\frac{3}{2}$.

The integrating factor method (Sect. 2.1).

- Overview of differential equations.
- Linear Ordinary Differential Equations.
- The integrating factor method.
- Constant coefficients.
- The Initial Value Problem.
- Variable coefficients.

The integrating factor method.
Theorem (Variable coefficients)
Given continuous functions $a, b: \mathbb{R} \rightarrow \mathbb{R}$ and given constants $t_{0}, y_{0} \in \mathbb{R}$, the IVP

$$
y^{\prime}=-a(t) y+b(t) \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution

$$
y(t)=\frac{1}{\mu(t)}\left[y_{0}+\int_{t_{0}}^{t} \mu(s) b(s) d s\right]
$$

where the integrating factor function is given by

$$
\mu(t)=e^{A(t)}, \quad A(t)=\int_{t_{0}}^{t} a(s) d s
$$

Remark: See the proof in the Lecture Notes.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: We first express the ODE as in the Theorem above,

$$
y^{\prime}=-\frac{2}{t} y+4 t
$$

Therefore, $a(t)=\frac{2}{t}$ and $b(t)=4 t$, and also $t_{0}=1$ and $y_{0}=2$.
We first compute the integrating factor function $\mu=e^{A(t)}$, where

$$
\begin{gathered}
A(t)=\int_{t_{0}}^{t} a(s) d s=\int_{1}^{t} \frac{2}{s} d s=2[\ln (t)-\ln (1)] \\
A(t)=2 \ln (t)=\ln \left(t^{2}\right) \quad \Rightarrow \quad e^{A(t)}=t^{2}
\end{gathered}
$$

We conclude that $\mu(t)=t^{2}$.

The integrating factor method.

Example

Find the solution y to the IVP

$$
t y^{\prime}+2 y=4 t^{2}, \quad y(1)=2
$$

Solution: The integrating factor is $\mu(t)=t^{2}$. Hence,

$$
\begin{gathered}
t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=t^{2}(4 t) \quad \Leftrightarrow \quad t^{2} y^{\prime}+2 t y=4 t^{3} \\
\left(t^{2} y\right)^{\prime}=4 t^{3} \quad \Leftrightarrow \quad t^{2} y=t^{4}+c \quad \Leftrightarrow \quad y=t^{2}+\frac{c}{t^{2}} .
\end{gathered}
$$

The initial condition implies $2=y(1)=1+c$, that is, $c=1$. We conclude that $y(t)=t^{2}+\frac{1}{t^{2}}$.

