Name:	ID Number:		
TA:	Section Time:		
	MTH 235 No notes. No books. No Calculators.		
	Exam 3 If any question is not clear, ask for clarification.		
	April 13, 2010	No credit will be given for illegible solutions.	
	50 minutes If you present different answers for the same problem		
	Sects: 6.1-6.6, the worst answer will be graded.		
7.1-7.6, 7.8. Show all your work. Box you		$Show\ all\ your\ work.\ \boxed{Box\ your\ answers.}$	

 ${f 1.}$ (20 points) Use the Laplace transform to find the solution y to the initial value problem

$$y'' + 3y' + 2y = 0,$$
 $y(0) = 0,$ $y'(0) = 3.$

 ${f 2.}$ (20 points) Use the Laplace transform to find the solution y to the initial value problem

$$y'' + 2y = -2\delta(t-3),$$
 $y(0) = 0,$ $y'(0) = 0.$

 $\bf 3.$ (15 points) Use convolutions to express the function f whose Laplace transform is

$$\mathcal{L}[f(t)] = \frac{1}{(s^2 + 3)(s^2 - 4)}.$$

4. (a) (20 points) Find the general solution ${\pmb x}$ to the 2 × 2 linear system

$$\mathbf{x}'(t) = A \mathbf{x}(t), \qquad A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}.$$

(b) (5 points) Sketch a qualitative phase portrait of the solution trajectories.

 ${f 5.}$ (20 points) Find the solution ${m x}$ to the initial value problem

$$\mathbf{x}'(t) = A \mathbf{x}(t), \qquad \mathbf{x}(0) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}.$$

#	Pts	Score
1	20	
2	20	
3	15	
4	25	
5	20	
Σ	100	