\qquad
\qquad
TA: \qquad Section Time: \qquad
MTH 235 No notes. No books. No Calculators.
Exam 3
April 13, 2010
50 minutes
Sects: 6.1-6.6,

> If any question is not clear, ask for clarification.
> No credit will be given for illegible solutions.
> If you present different answers for the same problem, the worst answer will be graded.
> Show all your work. Box your answers.
7.1-7.6, 7.8 .

1. (20 points) Use the Laplace transform to find the solution y to the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=3 .
$$

2. (20 points) Use the Laplace transform to find the solution y to the initial value problem

$$
y^{\prime \prime}+2 y=-2 \delta(t-3), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

3. (15 points) Use convolutions to express the function f whose Laplace transform is

$$
\mathcal{L}[f(t)]=\frac{1}{\left(s^{2}+3\right)\left(s^{2}-4\right)} .
$$

4. (a) (20 points) Find the general solution \boldsymbol{x} to the 2×2 linear system

$$
\boldsymbol{x}^{\prime}(t)=A \boldsymbol{x}(t), \quad A=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] .
$$

(b) (5 points) Sketch a qualitative phase portrait of the solution trajectories.
5. (20 points) Find the solution \boldsymbol{x} to the initial value problem

$$
\boldsymbol{x}^{\prime}(t)=A \boldsymbol{x}(t), \quad \boldsymbol{x}(0)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad A=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right] .
$$

$\#$	Pts	Score
1	20	
2	20	
3	15	
4	25	
5	20	
Σ	100	

