Name(print) \qquad Student Number Section Number

Page	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total
Points							

Instructions:

1. Since grading will be based on method you must show all work .
2.Boldfaced letters indicate vecturs such as \mathbf{F} or \mathbf{k}.
3.Check that your exam has the 12 problems.
2. $(16$ pts) Let $\mathrm{A}=(1,2,3), \mathrm{B}=(6,5,4)$ and $\mathrm{C}=(8,9,7)$.
a) Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$
b) Find $\overrightarrow{A B}+\overrightarrow{A C}$
c) Find $\overrightarrow{A B} \bullet \overrightarrow{A C}$
d) Find $\overrightarrow{A B} \times \overrightarrow{A C}$
3. (16 pts) a) Find the parametric equations for the line through the point ($1,0,-1$) and perpendicular to the plane $2 \mathrm{x}-3 \mathrm{y}+5 \mathrm{z}=35$.
b) Find the point where this line intersects the plane.
4. (18 pts) The velocity of a particle is given by $\overrightarrow{v(t)}=t^{2} \vec{i}+\left(t^{3}+1\right) \vec{j}$ and the particle is at the point $(2,1)$ when $t=0$.
a) Where is the particle when $t=2$?
b) Write the integral (DO NOT EVALUATE) that gives the arc-length the particle travels when $0 \leq t \leq 2$.
c) Find the acceleration of the particle.
5. $(20 \mathrm{pts})$ a) Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.
b) Find the equation of the tangent plane to the surface at the point $(1,1,10)$.
5.(15pts) Let $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\frac{\partial f}{\partial x}=x-y$ and $\frac{\partial f}{\partial y}=y-x$ find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ in terms of s and t.
6. (15 pts) Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they are a local maximum, a local minimum or a saddle point.
7. (16 pts) Given the integral $\int_{0}^{1} \int_{\sqrt[3]{x}}^{1} e^{\frac{x}{y}} d y d x$
a) Sketch the region of integration.
b) Evaluate the integral by reversing the order of integration..

8, (16pts) Consider the force field $\vec{F}=y z \vec{i}+x z \vec{j}-x y \vec{k}$
a) Set up a line integral for the work done by this force field in moving a particle along the curve $\vec{r}(t)=t^{3} \vec{i}+t^{2} \vec{j}+t \vec{k}, 0 \leq t \leq 2$.
b) Evaluate this integral.
9. (22 pts) Let $\vec{F}=\left(y \cos z-y z e^{x}\right) \vec{i}+\left(x \cos z-z e^{x}\right) \vec{j}-\left(x y \sin z+y e^{x}\right) \vec{k}$
a) Show that this force field is conservative.
b) Find a potential function for this vector field.
c) Evaluate $\int_{C} \vec{F} \bullet \overrightarrow{d r}$ where C is the curve $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+\pi t^{3} \vec{k}, 0 \leq t \leq 1$
10. (14 pts) Use Green's Theorem to evaluate the integral
$\int_{C} M(x, y) d x+N(x, y) d y$ where $M(x, y)=y+e^{x}$ and $N(x, y)=2 x^{2}+\cos y$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.
11. (18 pts) Find the surface area of that portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $\mathrm{z}=0$. Use polar coordinates to evaluate the integral.
12. (14 pts) Use Stokes's Theorem to evaluate $\iint_{S} \vec{\nabla} \times(y \vec{i}) \bullet \vec{n} d \sigma$ where S is the hemisphere
$x^{2}+y^{2}+z^{2}=1, z \geq 0$ and \vec{n} is the outward unit normal to S.

