No Calculators

1 (16 points) A particle's acceleration at time t is given by

$$
\begin{aligned}
\frac{d^{2} \mathbf{r}}{d t^{2}}(t) & =<-\sin t-\cos t, \cos t-\sin t, 0> \\
\text { initial velocity } \frac{d \mathbf{r}}{d t}(0) & =<1,1,1>, \quad \text { initial position } \mathbf{r}(0)=<0,0,0>
\end{aligned}
$$

Find the particle's position $\mathbf{r}(t)$ at time t and the arc length of its trajectory from time $t=0$ to $t=1$.

Integration gives velocity $\mathbf{r}^{\prime}=<\cos t-\sin t, \sin t+\cos t, 0>+\mathbf{c}$ and \mathbf{c} needs to be such that the initial velocity is correct. Hence $\mathbf{r}^{\prime}=<\cos t-\sin t, \sin t+\cos t, 1>$. Integration gives position $\mathbf{r}=<\sin t+\cos t,-\cos t+\sin t, t>+\mathbf{c}_{1}$ and \mathbf{c}_{1} needs to be such that the initial position is correct. Hence

$$
\mathbf{r}(t)=<\sin t+\cos t-1,1-\cos t+\sin t, t>
$$

Since $\left|\mathbf{r}^{\prime}\right|^{2}=(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}+1=3$ we have that the arc length equals

$$
\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t=\sqrt{3}
$$

2 (14 points) Does $f(x, y)=x y /(x-y)$ have a limit as (x, y) approaches $(0,0) ?$ Justify your answer.

No.
Solving $f(x, y)=1$ gives $y=x /(1+x)$, hence $f(x, x /(1+x))=1$ as $x \rightarrow 0$.
Solving $f(x, y)=-1$ gives $y=x /(1-x)$, hence $f(x, x /(1-x))=-1$ as $x \rightarrow 0$.
By the Two-Path Test the limit does not exist.

3 (14 points) Find the value of $\partial z / \partial x$ at the point $(1,1,1)$ if the equation

$$
x y+z^{3} x-2 y z=0
$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

Differentiation gives $y+3 z^{2} z_{x} x+z^{3}-2 y z_{x}=0$ hence $z_{x}=-2$.

4 (14 points) Let $w=f(r, \phi)$, where r and ϕ are the polar coordinates, i.e. $x=r \cos \phi$ and $y=r \sin \phi$. Express w_{x} as a function of r and ϕ.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}, \phi=\tan ^{-1}(y / x) \\
& r_{x}=x / r=\cos \phi, \phi_{x}=-y /\left(x^{2}+y^{2}\right)=-(\sin \phi) / r \\
& w_{x}=f_{r} r_{x}+f_{\phi} \phi_{x}=f_{r} \cos \phi-f_{\phi}(\sin \phi) / r
\end{aligned}
$$

5 (14 points) Find the equations of tangent plane and of the normal line to the surface $z=x^{2}-y^{2}$ at the point $(2,-1,3)$.

$$
\begin{aligned}
& f=x^{2}-y^{2}-z=0 \\
& f_{x}=2 x=4, f_{y}=-2 y=2, f_{z}=-1, \nabla f=<4,2,-1> \\
& \text { Tangent plane: } 4(x-2)+2(y+1)-(z-3)=0 \\
& \text { Normal line: } x=2+4 t, y=-1+2 t, z=3-t
\end{aligned}
$$

6 (14 points) Let $f(x, y, z)=x / y-y z$. Give a good estimate of the maximum increase of f as we move a distance 0.01 from the point $(1,1,-1)$.

$$
\begin{aligned}
& f_{x}=1 / y=1, f_{y}=-x / y^{2}-z=0, f_{z}=-1 \\
& \nabla f=<1,0,-1>,|\nabla f|=\sqrt{2} \\
& f \text { increases the most in the direction } \mathbf{u}=\nabla f /|\nabla f| \\
& \left.\frac{d f}{d s}\right|_{\mathbf{u}}=\nabla f \cdot \mathbf{u}=|\nabla f| \\
& d f=|\nabla f| d s=0.01 \sqrt{2}
\end{aligned}
$$

7 (14 points) Let $f(x, y)=e^{\frac{x^{2}}{y}-1} \cos \left(x^{2}-y^{3}\right)$. Find the linearization of f at the point $(1,1)$.

$$
\begin{aligned}
& f_{x}=\frac{2 x}{y} e^{\frac{x^{2}}{y}-1} \cos \left(x^{2}-y^{3}\right)-e^{\frac{x^{2}}{y}-1} \sin \left(x^{2}-y^{3}\right)(2 x)=2 \\
& f_{y}=-\frac{x^{2}}{y^{2}} e^{\frac{x^{2}}{y}-1} \cos \left(x^{2}-y^{3}\right)-e^{\frac{x^{2}}{y}-1} \sin \left(x^{2}-y^{3}\right)\left(-3 y^{2}\right)=-1
\end{aligned}
$$

Linearization:

$$
L(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)=1+2(x-1)-(y-1)=2 x-y
$$

8 (10 points) (extra credit points only if you get 90 or more points on problems 1-7) The difference \mathbf{r} between the positions of two bodies moving in their gravitational field can be rescaled to satisfy

$$
\mathbf{r}^{\prime \prime}=-\frac{\mathbf{r}}{|\mathbf{r}|^{3}}
$$

Show that $\mathbf{r}^{\prime} \times \mathbf{r}$ is a constant.

$$
\left(\mathbf{r}^{\prime} \times \mathbf{r}\right)^{\prime}=\mathbf{r}^{\prime \prime} \times \mathbf{r}+\mathbf{r}^{\prime} \times \mathbf{r}^{\prime}=\mathbf{r}^{\prime \prime} \times \mathbf{r}=-|\mathbf{r}|^{-3} \mathbf{r} \times \mathbf{r}=0
$$

