TEST 1

answers

No Calculators

1 (48 points) A hummingbird starts at a feeder located at $F(0,0,10)$ (distances in feet) and flies straight toward a point $B(10,20,30)$ on a branch with a speed $3 \mathrm{ft} / \mathrm{s}$. An observer is located at $O(5,10,10)$.
(a) (5) How long does it take the hummingbird to reach the branch?

$$
\begin{gathered}
\overrightarrow{F B}=<10,20,20>, \quad|\overrightarrow{F B}|=\sqrt{100+400+400}=30 \\
\text { travel time }=\frac{|\overrightarrow{F B}|}{\text { speed }}=\frac{30}{3}=10 \text { seconds. }
\end{gathered}
$$

(b) (5) What is the hummingbird's velocity vector?

$$
\mathbf{v}=\text { speed } \times \text { unit direction vector }=3 \frac{1}{|\overrightarrow{F B}|} \overrightarrow{F B}=<1,2,2>
$$

(c) (5) Write down the equation of the line that contains the hummingbird's path.

$$
\begin{gathered}
\mathbf{r}=\mathbf{r}_{0}+\mathbf{v} t \quad \text { where } \quad \mathbf{r}_{0}=<0,0,10>\quad \text { is the starting point, hence } \\
x=t \quad y=2 t \quad z=10+2 t
\end{gathered}
$$

(d) (5) Where is the hummingbird going to be in 2 seconds?

$$
x=2 \quad y=2 * 2=4 \quad z=10+2 * 2=14
$$

e) (7) What is the projection of $\overrightarrow{F O}$ onto $\overrightarrow{F B}$?

$$
\left.\operatorname{proj}_{\overrightarrow{F B}} \overrightarrow{F O}=\frac{\overrightarrow{F B} \cdot \overrightarrow{F O}}{|\overrightarrow{F B}|^{2}} \overrightarrow{F B}=\frac{25}{9}<1,2,2\right\rangle=\left\langle\frac{25}{9}, \frac{50}{9}, \frac{50}{9}\right\rangle
$$

f) (7) What is the equation of the plane that contains the triangle $\triangle F O B$?

$$
\begin{aligned}
& \overrightarrow{F B} \times \overrightarrow{F O}=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
10 & 20 & 20 \\
5 & 10 & 0
\end{array}\right)=<-200,100,0>=\text { normal to the plane } \\
& (0,0,10) \text { is a point in the plane, hence } \\
& -200(x-0)+100(y-0)+0(z-10)=0 \quad \text { or } \quad 2 x-y=0
\end{aligned}
$$

g) (7) What is the area of the triangle $\triangle F O B$?

$$
\text { area }=\frac{1}{2}|\overrightarrow{F B} \times \overrightarrow{F O}|=\frac{1}{2} \sqrt{200^{2}+100^{2}}=50 \sqrt{5}
$$

h) (7) How close to the observer will the hummingbird get?
using g:

$$
\text { distance }=\frac{|\overrightarrow{F B} \times \overrightarrow{F O}|}{|\overrightarrow{F B}|}=\frac{100 \sqrt{5}}{30}
$$

using e:
distance $=\left|\overrightarrow{F O}-\operatorname{proj}_{\overrightarrow{F B}} \overrightarrow{F O}\right|=\sqrt{\left(5-\frac{25}{9}\right)^{2}+\left(10-\frac{50}{9}\right)^{2}+\left(\frac{50}{9}\right)^{2}}=\frac{10 \sqrt{5}}{3}$

2 (24 points)
a) Find the parametric equation of the line through the point $P(1,0,-1)$ and perpendicular to the plane $5 x-2 y+3 z=7$.

$$
\text { normal to the plane }=\mathbf{v}=<5,-2,3>
$$

$$
\text { line: } x=1+5 t \quad y=0-2 t \quad z=-1+3 t
$$

b) Find the point R where this line intersects the plane.
finding t such that $\quad 5(1+5 t)-2(-2 t)+3(-1+3 t)=7 \quad$ gives $t=\frac{5}{38}$

$$
\begin{gathered}
x=1+\frac{25}{38}=\frac{63}{38} \quad y=-\frac{10}{38} \quad z=-1+\frac{15}{38}=-\frac{23}{38} \\
R=\left(\frac{63}{38},-\frac{10}{38},-\frac{23}{38}\right)
\end{gathered}
$$

c) Find the distance of the point P from the plane.
using b

$$
\text { distance }=|\overrightarrow{P R}|=\sqrt{\left(1-\frac{63}{38}\right)^{2}+\left(\frac{10}{38}\right)^{2}+\left(-1+\frac{23}{38}\right)^{2}}=\frac{5}{\sqrt{38}}
$$

as in the book, p.886, choosing a point $Q=(1,-1,0)$ on the plane gives

$$
\text { distance }=\frac{|\overrightarrow{P Q} \cdot \mathbf{v}|}{|\mathbf{v}|}=\frac{5}{\sqrt{38}}
$$

3 (18 points) Find an equation of the plane that contains the origin and the line

$$
x=1+2 t, \quad y=1-t, \quad z=2 t, \quad-\infty<t<\infty .
$$

vector parallel to the line $\mathbf{v}=\langle 2,-1,2>$
point on the line $(t=0)$: $Q=(1,1,0)$, position vector $\mathbf{u}=\langle 1,1,0\rangle$. normal to the plane:

$$
\mathbf{v} \times \mathbf{u}=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 2 \\
1 & 1 & 0
\end{array}\right)=<-2,2,3>
$$

plane: $-2 x+2 y+3 z=0$

4 (10 points) Sketch and identify the surface $x^{2}+y^{2}-z^{2}+1=0$.
In the plane $z=c$ we have a circle $x^{2}+y^{2}=c^{2}-1$ radius $\sqrt{c^{2}-1}$, hence $|z|$ has to be ≥ 1.
So, we have hyperboloid of two sheets (p. 895)

5 (10 extra credit points if you get 90 or more points on problems 1-4 points) Find the projection of the line

$$
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}, \quad-\infty<t<\infty
$$

onto a plane which contains a point with a position vector \mathbf{r}_{1} and has a normal \mathbf{n}. Hint: Start by following the first steps in problem 2.

Let $P(t)$ be a point at a fixed t on the line. The equation of the line perpendicular to the plane and passing through $P(t)$ is

$$
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}+s \mathbf{n}, \quad-\infty<s<\infty
$$

It intersects the plane when

$$
\left(\mathbf{r}_{0}+t \mathbf{v}+s \mathbf{n}-\mathbf{r}_{1}\right) \cdot \mathbf{n}=0
$$

hence

$$
s=-\frac{\left(\mathbf{r}_{0}+t \mathbf{v}-\mathbf{r}_{1}\right) \cdot \mathbf{n}}{|\mathbf{n}|^{2}}
$$

Hence the projection of $P(t)$ on the plane is

$$
\mathbf{r}_{0}+t \mathbf{v}-\frac{\left(\mathbf{r}_{0}+t \mathbf{v}-\mathbf{r}_{1}\right) \cdot \mathbf{n}}{|\mathbf{n}|^{2}} \mathbf{n}
$$

- which represents a line with a direction

$$
\mathbf{v}-\frac{\mathbf{v} \cdot \mathbf{n}}{|\mathbf{n}|^{2}} \mathbf{n}=\mathbf{v}-\operatorname{proj}_{\mathbf{n}} \mathbf{v}
$$

and passing through a point

$$
\mathbf{r}_{0}-\frac{\left(\mathbf{r}_{0}-\mathbf{r}_{1}\right) \cdot \mathbf{n}}{|\mathbf{n}|^{2}} \mathbf{n}
$$

