Math 234, Practice Test \#4

Show your work in all the problems.

1. Evaluate the line integral

$$
\int_{C} 2 x y d x+\left(x^{2}+y^{2}\right) d y
$$

where C is the circular arc given by

$$
\mathbf{r}(t)=(x(t), y(t))=(\cos t, \sin t), 0 \leq t \leq \frac{\pi}{2}
$$

2. Find a potential function for the vector field $\mathbf{F}=(\cos y+y \cos x) \mathbf{i}+$ $(\sin x-x \sin y+\pi) \mathbf{j}$
3. Use Green's theorem to evaluate the integral

$$
\oint_{C} 3 y d x+2 x d y
$$

where C is the boundary of the region $0 \leq x \leq \pi, 0 \leq y \leq \sin x$
4. Let S be the surface consisting of the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$, $z \geq 0$ and the circle $x^{2}+y^{2} \leq a$ in the xy-plane, let \mathbf{n} be the outward unit normal vector, and let \mathbf{F} be the vector field $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$. Use the divergence theorem to compute

$$
\iint_{S} \mathbf{F} \bullet \mathbf{n} d \sigma .
$$

5. Find the area of the portion of the paraboloid $x=4-y^{2}-z^{2}$ that lies above the ring $1 \leq y^{2}+z^{2} \leq 5$ in the yz-plane.
6. (Extra credit problem) Find the work done by the force

$$
\mathbf{F}(x, y)=\left(y e^{x y}, x e^{x y}\right)
$$

as it acts on a particle moving from $P=(-1,0)$ to $Q=(1,0)$ along the semicircular arc C given by $\mathbf{r}(t)=(-\cos t, \sin t), 0 \leq t \leq \pi$.
7. (Extra credit problem) Use the surface integral in Stokes' theorem to calculate the circulation of the field \mathbf{F} around the curve C in the indicated direction

$$
\mathbf{F}=x^{2} y^{3} \mathbf{i}+\mathbf{j}+z \mathbf{k}
$$

C is the intersection of the cylinder $x^{2}+y^{2}=4$ and the hemisphere $x^{2}+y^{2}+z^{2}=16, z \geq 0$, counterclockwise when viewed from above.

Solutions

1. We compute

$$
\begin{aligned}
\int_{C} 2 x y d x+\left(x^{2}+y^{2}\right) d y= & \int_{0}^{\pi / 2}(2 \cos t \sin t)\left(\frac{d}{d t} \cos t\right) d t+ \\
& +\int_{0}^{\pi / 2}\left(\cos ^{2} t+\sin ^{2} t\right)\left(\frac{d}{d t} \sin t\right) d t \\
= & -2 \int_{0}^{\pi / 2} \sin ^{2} t \cos t d t+\int_{0}^{\pi / 2} \cos t d t \\
= & -\left.\frac{2}{3} \sin ^{3} t\right|_{0} ^{\pi / 2}+\left.\sin t\right|_{0} ^{\pi / 2} \\
= & -\frac{2}{3}+1 \\
= & \frac{1}{3}
\end{aligned}
$$

2. The potential function ϕ has to satisfy

$$
\frac{\partial \phi}{\partial x}=\cos y+y \cos x \text { and } \frac{\partial \phi}{\partial y}=\sin x-x \sin y+\pi
$$

The first equation implies that

$$
\phi(x, y)=x \cos y+y \sin x+f(y)
$$

where f is a function depending on y only. In order to find it differentiate with respect to y and use the second equation

$$
\frac{\partial \phi}{\partial y}=-x \sin y+\sin x+f^{\prime}(y)=\sin x-x \sin y+\pi
$$

We see that $f^{\prime}(y)=\pi$, i.e. the function f equals $f(y)=\pi y+c$ where c is constant. Hence

$$
\phi(x, y)=x \cos y+y \sin x+\pi y+c, \quad c \text { is a constant }
$$

3. Green's theorem asserts that

$$
\oint_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d x d y
$$

Hence $M=3 y, N=2 x$ and $N_{x}=2, M_{y}=3$ so that the given integral equals

$$
-\int_{0}^{\pi} \int_{0}^{\sin x} d y d x=-\int_{0}^{\pi} \sin x d x=\cos \pi-\cos 0=-2
$$

4. The surface S encloses a domain which we denote by D. We compute

$$
\nabla \bullet \mathbf{F}=\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(y^{3}\right)+\frac{\partial}{\partial z}\left(z^{3}\right)=3\left(x^{2}+y^{2}+z^{2}\right) .
$$

We use the divergence theorem, and we calculate the triple integral using spherical coordinates

$$
\begin{aligned}
\iint_{S} \mathbf{F} \bullet \mathbf{n} d \sigma & =\iiint_{D} \nabla \bullet \mathbf{F} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a}\left(3 \rho^{2}\right) \rho^{2} d \rho d \phi d \theta \\
& =\left.3 \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{\rho^{5}}{5} \sin \phi\right|_{0} ^{a} d \phi d \theta \\
& =\frac{3 a^{5}}{5} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \sin \phi d \phi d \theta \\
& =\frac{3 a^{5}}{5} \int_{0}^{2 \pi} d \theta \\
& =\frac{6 \pi a^{5}}{5}
\end{aligned}
$$

5. Let $f(x, y, z)=x+y^{2}+z^{2}$ so that the paraboloid is given by the equation $f(x, y, z)=4$. Then the surface area is givern by

$$
\iint_{R} \frac{|\nabla f|}{|\nabla f \bullet \mathbf{p}|} d y d z
$$

where R is the region in the yz-plane given by $1 \leq y^{2}+z^{2} \leq 5$, and where \mathbf{p} is a vector of length one perpendicular to the region R, for example $\mathbf{p}=(1,0,0)$ would do the job. We also compute

$$
\nabla f=(1,2 y, 2 z),|\nabla f|=\sqrt{1+4 y^{2}+4 z^{2}},|\nabla f \bullet \mathbf{p}|=1
$$

It will be convenient to use polar coordinates

$$
y=r \cos \theta \quad, \quad z=r \sin \theta
$$

for the calculation of the double integral since the region R is then simply decribed by $1 \leq r^{2} \leq 5$. Then

$$
\begin{aligned}
\iint_{R} \frac{|\nabla f|}{|\nabla f \bullet \mathbf{p}|} d y d z= & \int_{0}^{2 \pi} \int_{1}^{\sqrt{5}} \sqrt{1+4 r^{2}} r d r d \theta \\
& \text { substitute } u=1+4 r^{2}, d u=8 r d r \\
= & \frac{1}{8} \int_{0}^{2 \pi} \int_{5}^{21} \sqrt{u} d u d \theta \\
= & \left.\frac{\pi}{4} \frac{2}{3} u^{3 / 2}\right|_{5} ^{21} \\
= & \frac{\pi}{6}(21 \sqrt{21}-5 \sqrt{5})
\end{aligned}
$$

6. The objective is to compute the line integral

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}
$$

but it is a bad idea to compute it directly (try it to see why). There is an easier way. The key observation is that the vector field $\mathbf{F}=$ $(M, N)=\left(y e^{x y}, x e^{x y}\right)$ is conservative since $N_{x}=M_{y}=x y e^{x y}+e^{x y}$. Because the field is conservative the line integral does not depend on the curve C, i.e. if D is another curve connecting P and Q then

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{D} \mathbf{F} \bullet d \mathbf{r}
$$

so we may choose an easier path from P to Q than the circular arc. A good one is the straight line segment

$$
D: \mathbf{r}(t)=(x(t), y(t))=(t, 0),-1 \leq t \leq 1
$$

on the x -axis. We get

$$
d \mathbf{r}=(1,0) d t, \mathbf{F}(\mathbf{r}(t))=(0, t)
$$

and

$$
\int_{D} \mathbf{F} \bullet \mathbf{r}=\int_{-1}^{1} 0 d t=0
$$

Another way to compute the integral is to find a potential function ϕ. Then

$$
\int_{C} \mathbf{F} \bullet \mathbf{r}=\phi(Q)-\phi(P)
$$

The potential function ϕ must satisfy

$$
\phi_{x}=y e^{x y} \text { and } \phi_{y}=x e^{x y}
$$

so that $\phi(x, y)=e^{x y}$ and

$$
\int_{C} \mathbf{F} \bullet \mathbf{r}=\phi(Q)-\phi(P)=\phi(1,0)-\phi(-1,0)=1-1=0 .
$$

7. Stokes theorem asserts that

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \bullet \mathbf{n} d \sigma
$$

where S is a two-sided surface with boundary C and unit normal vector n. Note that we are free to choose S as we like (as long as it has C as its boundary). The easiest choice would be the horizontal disk with radius 2 (draw a picture of the situation, hard to do on the computer)

$$
S: x^{2}+y^{2} \leq 4, z=\sqrt{12}
$$

In order to traverse C counterclockwise when viewed from above we need to choose $\mathbf{n}=(0,0,1)$. We compute

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y^{3} & 1 & z
\end{array}\right|=-\frac{\partial}{\partial y}\left(x^{2} y^{3}\right) \mathbf{k}=-3 y^{2} x^{2} \mathbf{k}
$$

The surface S is given by the equation $f(x, y, z)=z=\sqrt{12}$, and its 'shadow region' R in the xy-plane is the circle $x^{2}+y^{2} \leq 4$. We choose $\mathbf{p}=(0,0,1)$ (perpendicular to R in the xy-plane) so that

$$
\frac{\nabla f}{|\nabla f|}=(0,0,1)
$$

and with polar coordinates in the xy-plane

$$
\begin{aligned}
\iint_{S}(\nabla \times \mathbf{F}) \bullet \mathbf{n} d \sigma & =\iint_{R}(\nabla \times \mathbf{F}) \bullet \frac{\nabla f}{|\nabla f \bullet \mathbf{p}|} d x d y \\
& =\iint_{R}-3 y^{2} x^{2} \mathbf{k} \bullet \mathbf{k} d x d y \\
& =-3 \int_{0}^{2 \pi} \int_{0}^{2} r^{4} \cos ^{2} \theta \sin ^{2} \theta r d r d \theta
\end{aligned}
$$

$$
\begin{aligned}
= & -\left.3 \int_{0}^{2 \pi}(\cos \theta \sin \theta)^{2}\left[\frac{r^{6}}{6}\right]\right|_{0} ^{2} d \theta \\
= & -32 \int_{0}^{2 \pi}(\cos \theta \sin \theta)^{2} d \theta \\
= & -8 \int_{0}^{2 \pi}(2 \cos \theta \sin \theta)^{2} d \theta \\
= & -8 \int_{0}^{2 \pi}(\sin (2 \theta))^{2} d \theta \\
& \operatorname{substitute} u=2 \theta, d u=2 d \theta \\
= & -4 \int_{0}^{4 \pi} \sin ^{2} u d u \\
& \operatorname{trig} \text { identity } \sin ^{2} u=\frac{1}{2}(1-\cos (2 u)) \\
= & -\left.4\left[\frac{u}{2}-\frac{\sin (2 u)}{4}\right]\right|_{0} ^{4 \pi} \\
= & -8 \pi
\end{aligned}
$$

