
Math 234, Practice Test #4

Show your work in all the problems.

1. Evaluate the line integral
∫

C
2xy dx+ (x2 + y2) dy

where C is the circular arc given by

r(t) = (x(t), y(t)) = (cos t, sin t) , 0 ≤ t ≤ π

2

2. Find a potential function for the vector field F = (cos y + y cos x)i +
(sin x− x sin y + π)j

3. Use Green’s theorem to evaluate the integral
∮

C
3y dx+ 2x dy

where C is the boundary of the region 0 ≤ x ≤ π, 0 ≤ y ≤ sin x

4. Let S be the surface consisting of the hemisphere z =
√
a2 − x2 − y2,

z ≥ 0 and the circle x2 + y2 ≤ a in the xy-plane, let n be the outward
unit normal vector, and let F be the vector field F = x3i + y3j + z3k.
Use the divergence theorem to compute

∫ ∫

S
F • n dσ.

5. Find the area of the portion of the paraboloid x = 4− y2− z2 that lies
above the ring 1 ≤ y2 + z2 ≤ 5 in the yz-plane.

6. (Extra credit problem) Find the work done by the force

F(x, y) = (yexy, xexy)

as it acts on a particle moving from P = (−1, 0) to Q = (1, 0) along
the semicircular arc C given by r(t) = (− cos t, sin t), 0 ≤ t ≤ π.

7. (Extra credit problem) Use the surface integral in Stokes’ theorem to
calculate the circulation of the field F around the curve C in the indi-
cated direction

F = x2y3i+ j + zk

C is the intersection of the cylinder x2 + y2 = 4 and the hemisphere
x2 + y2 + z2 = 16, z ≥ 0, counterclockwise when viewed from above.
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Solutions

1. We compute

∫

C
2xy dx+ (x2 + y2) dy =

∫ π/2

0

(2 cos t sin t)

(

d

dt
cos t

)

dt+

+
∫ π/2

0

(cos2 t+ sin2 t)

(

d

dt
sin t

)

dt

= −2
∫ π/2

0

sin2 t cos t dt+
∫ π/2

0

cos t dt

= − 2

3
sin3 t

∣

∣

∣

∣

π/2

0

+ sin t|π/20

= −2

3
+ 1

=
1

3

2. The potential function φ has to satisfy

∂φ

∂x
= cos y + y cosx and

∂φ

∂y
= sin x− x sin y + π

The first equation implies that

φ(x, y) = x cos y + y sin x+ f(y)

where f is a function depending on y only. In order to find it differen-
tiate with respect to y and use the second equation

∂φ

∂y
= −x sin y + sin x+ f ′(y) = sin x− x sin y + π.

We see that f ′(y) = π, i.e. the function f equals f(y) = πy + c where
c is constant. Hence

φ(x, y) = x cos y + y sin x+ πy + c , c is a constant

3. Green’s theorem asserts that
∮

C
Mdx+Ndy =

∫ ∫

R
(Nx −My) dx dy
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Hence M = 3y, N = 2x and Nx = 2, My = 3 so that the given integral
equals

−
∫ π

0

∫

sinx

0

dy dx = −
∫ π

0

sin x dx = cos π − cos 0 = −2

4. The surface S encloses a domain which we denote by D. We compute

∇ • F =
∂

∂x
(x3) +

∂

∂y
(y3) +

∂

∂z
(z3) = 3(x2 + y2 + z2).

We use the divergence theorem, and we calculate the triple integral
using spherical coordinates

∫ ∫

S
F • n dσ =

∫ ∫ ∫

D
∇ • F dV

=
∫

2π

0

∫ π/2

0

∫ a

0

(3ρ2)ρ2dρ dφ dθ

= 3
∫

2π

0

∫ π/2

0

ρ5

5
sinφ

∣

∣

∣

∣

∣

a

0

dφ dθ

=
3a5

5

∫

2π

0

∫ π/2

0

sin φ dφ dθ

=
3a5

5

∫

2π

0

dθ

=
6πa5

5

5. Let f(x, y, z) = x + y2 + z2 so that the paraboloid is given by the
equation f(x, y, z) = 4. Then the surface area is givern by

∫ ∫

R

|∇f |
|∇f • p|dy dz

where R is the region in the yz-plane given by 1 ≤ y2 + z2 ≤ 5, and
where p is a vector of length one perpendicular to the region R, for
example p = (1, 0, 0) would do the job. We also compute

∇f = (1, 2y, 2z) , |∇f | =
√

1 + 4y2 + 4z2 , |∇f • p| = 1

It will be convenient to use polar coordinates

y = r cos θ , z = r sin θ
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for the calculation of the double integral since the region R is then
simply decribed by 1 ≤ r2 ≤ 5. Then

∫ ∫

R

|∇f |
|∇f • p|dy dz =

∫

2π

0

∫

√
5

1

√
1 + 4r2 r dr dθ

substitute u = 1 + 4r2, du = 8r dr

=
1

8

∫

2π

0

∫

21

5

√
u du dθ

=
π

4

2

3
u3/2

∣

∣

∣

∣

21

5

=
π

6
(21

√
21− 5

√
5)

6. The objective is to compute the line integral
∫

C
F • dr

but it is a bad idea to compute it directly (try it to see why). There
is an easier way. The key observation is that the vector field F =
(M,N) = (yexy, xexy) is conservative since Nx = My = xyexy + exy.
Because the field is conservative the line integral does not depend on
the curve C, i.e. if D is another curve connecting P and Q then

∫

C
F • dr =

∫

D
F • dr

so we may choose an easier path from P to Q than the circular arc. A
good one is the straight line segment

D : r(t) = (x(t), y(t)) = (t, 0) ,−1 ≤ t ≤ 1

on the x-axis. We get

dr = (1, 0) dt , F(r(t)) = (0, t)

and
∫

D
F • r =

∫

1

−1

0 dt = 0

Another way to compute the integral is to find a potential function φ.
Then ∫

C
F • r = φ(Q)− φ(P )
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The potential function φ must satisfy

φx = yexy and φy = xexy

so that φ(x, y) = exy and
∫

C
F • r = φ(Q)− φ(P ) = φ(1, 0)− φ(−1, 0) = 1− 1 = 0.

7. Stokes theorem asserts that
∫

C
F • dr =

∫ ∫

S
(∇× F) • n dσ

where S is a two-sided surface with boundary C and unit normal vector
n. Note that we are free to choose S as we like (as long as it has C

as its boundary). The easiest choice would be the horizontal disk with
radius 2 (draw a picture of the situation, hard to do on the computer)

S : x2 + y2 ≤ 4 , z =
√
12.

In order to traverse C counterclockwise when viewed from above we
need to choose n = (0, 0, 1). We compute

∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x2y3 1 z

∣

∣

∣

∣

∣

∣

∣

= − ∂

∂y
(x2y3)k = −3y2x2k

The surface S is given by the equation f(x, y, z) = z =
√
12, and its

’shadow region’ R in the xy-plane is the circle x2 + y2 ≤ 4. We choose
p = (0, 0, 1) (perpendicular to R in the xy-plane) so that

∇f

|∇f | = (0, 0, 1)

and with polar coordinates in the xy-plane

∫ ∫

S
(∇× F) • n dσ =

∫ ∫

R
(∇× F) • ∇f

|∇f • p| dx dy

=
∫ ∫

R
−3y2x2k • k dx dy

= −3
∫

2π

0

∫

2

0

r4 cos2 θ sin2 θ r dr dθ
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= −3
∫

2π

0

(cos θ sin θ)2
[

r6

6

]∣

∣

∣

∣

∣

2

0

dθ

= −32
∫

2π

0

(cos θ sin θ)2 dθ

= −8
∫

2π

0

(2 cos θ sin θ)2 dθ

= −8
∫

2π

0

(sin(2θ))2 dθ

substitute u = 2θ, du = 2 dθ

= −4
∫

4π

0

sin2 u du

trig identity sin2 u =
1

2
(1− cos(2u))

= −4

[

u

2
− sin(2u)

4

]∣

∣

∣

∣

∣

4π

0

= −8π
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