Math 234, Practice Test #4

Show your work in all the problems.

1. Evaluate the line integral

/ 2zy dw + (2 + y°) dy
c

where C' is the circular arc given by

r(t) = (z(t),y(t)) = (cost,sint) , 0 <t < g

2. Find a potential function for the vector field F = (cosy + ycosx)i +
(sinz — xsiny + m)j

3. Use Green’s theorem to evaluate the integral

7{ Jydx + 2z dy
c

where C' is the boundary of the region 0 <z <7, 0 <y <sinx

4. Let S be the surface consisting of the hemisphere z = \/a? — 22 — y?,
z > 0 and the circle 22 + y? < a in the xy-plane, let n be the outward

unit normal vector, and let F be the vector field F = 2?%i + ¢3j + 2°k.
Use the divergence theorem to compute

//SFondcr.

5. Find the area of the portion of the paraboloid # = 4 — y? — 22 that lies
above the ring 1 < y? + 22 < 5 in the yz-plane.

6. (Extra credit problem) Find the work done by the force
F(z,y) = (ye*, ze™)

as it acts on a particle moving from P = (—1,0) to @ = (1,0) along
the semicircular arc C' given by r(t) = (—cost,sint), 0 <t <.

7. (Extra credit problem) Use the surface integral in Stokes’ theorem to
calculate the circulation of the field F around the curve C' in the indi-
cated direction

F=2%%+j+ 2k
C is the intersection of the cylinder 2% + y? = 4 and the hemisphere
22 +y? 4+ 22 = 16, z > 0, counterclockwise when viewed from above.



Solutions

1. We compute

w/2 d
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0
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2. The potential function ¢ has to satisfy
— =cosy+ycosx and — =sinx —x siny + 7

ox dy

The first equation implies that
¢(x,y) = x cosy +y sinz + f(y)

where f is a function depending on y only. In order to find it differen-
tiate with respect to y and use the second equation

0
% _ —z siny +sinz + f'(y) =sinz — z siny + 7.

dy

We see that f/'(y) = m, i.e. the function f equals f(y) = my + ¢ where
c is constant. Hence

o(z,y) =2 cosy+y sinz + 7y +c, cisa constant
3. Green’s theorem asserts that
74 Mdz + Ndy = // (N, — M,) dz dy
c R

2



Hence M = 3y, N = 2z and N, = 2, M, = 3 so that the given integral
equals

—/ / dydx:—/ sinxdr = cosm —cos() = —2

0o Jo 0

. The surface S encloses a domain which we denote by D. We compute
0

VeF = () + 5-(y") + 5-(2) = 3(2" + y° + %),

We use the divergence theorem, and we calculate the triple integral
using spherical coordinates

//SFonda - ///DVoFdV
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. Let f(z,y,2) = x + y*> + 2% so that the paraboloid is given by the
equation f(x,y,z) = 4. Then the surface area is givern by

V/]
————dydz
//R |V fep]
where R is the region in the yz-plane given by 1 < y? + 22 < 5, and

where p is a vector of length one perpendicular to the region R, for
example p = (1,0,0) would do the job. We also compute

Vf=(1,2y,22), |Vfl=\1+4y>?+ 422, |Vfep| =1

It will be convenient to use polar coordinates

y=rcost , z=rsinf
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for the calculation of the double integral since the region R is then
simply decribed by 1 < r? < 5. Then

//R‘vyiﬂdydz — /O%/Iﬁ\/mrdrde

*p|
substitute u = 1 + 4r%, du = 8rdr

1 r2r 21

- < / Vi dudf
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6. The objective is to compute the line integral

/Fodr
C

but it is a bad idea to compute it directly (try it to see why). There
is an easier way. The key observation is that the vector field F =
(M,N) = (ye™,xze™) is conservative since N, = M, = xye™ + e*V.
Because the field is conservative the line integral does not depend on
the curve C| i.e. if D is another curve connecting P and @ then

/Fodr:/ Fedr
C D

so we may choose an easier path from P to () than the circular arc. A
good one is the straight line segment

D x(t) = (2(t), y(t) = (£,0) , 1 <t < 1
on the x-axis. We get

dr = (1,0)dt , F(r(t)) = (0,t)

1
/For:/ 0dt =0
D —1

Another way to compute the integral is to find a potential function ¢.
Then

and

[ Fer=0(Q) —o(P)
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The potential function ¢ must satisfy
¢ = ye and ¢, = xe™

so that ¢(x,y) = €™ and
L Fer=06(Q) = 6(P) = 6(1,0) = 9(~1,0) =1 =1 = 0,

. Stokes theorem asserts that

/CFodr: //S(VXF)onda

where S is a two-sided surface with boundary C' and unit normal vector
n. Note that we are free to choose S as we like (as long as it has C
as its boundary). The easiest choice would be the horizontal disk with
radius 2 (draw a picture of the situation, hard to do on the computer)

S+t <4, z=+12.

In order to traverse C' counterclockwise when viewed from above we
need to choose n = (0,0,1). We compute

i j k P
VxF=| & & & |= —a—(:chg)k = —3y*2r’k
22y 1 2 Y

The surface S is given by the equation f(x,y,z) = z = v/12, and its
'shadow region’ R in the xy-plane is the circle 2% + y? < 4. We choose
p = (0,0,1) (perpendicular to R in the xy-plane) so that

NI
NZi I

and with polar coordinates in the xy-plane

//S(VXF)onda - //R(VXF)Q%dxdy

= // —3y%r*k e kdx dy
R

27 2
= —3/ / rcos? 0sin? 0 rdr db
o Jo
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do
0

2 7«6
J— 1 2 JR—
3/0 (cos O sin h) [6]

2
—32/ (cos @sin 0)? do
0

2
—8/ (2 cos fsin 0)? df
0

2m
-8 / (sin(26))? d6
0
substitute u = 20, du = 2 df

4m
—4 / sin® u du
0
1
trig identity sin®u = 5(1 — cos(2u))

» lu sin(ZU)]
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