Math 234, Practice Test \#2

Show your work in all the problems.

1. In what directions is the derivative of

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

at $P=(1,1)$ equal to zero ?
2. Find an equation for the level surface of the function through the given point P.
(a)

$$
f(x, y, z)=z-x^{2}-y^{2}, P=(3,-1,1)
$$

(b)

$$
f(x, y, z)=\int_{x}^{y} \frac{d t}{\sqrt{1-t^{2}}}+\int_{\sqrt{2}}^{z} \frac{d t}{t \sqrt{t^{2}-1}}, P=(-1,1 / 2,1)
$$

3. Compute the limits of the following expressions if they exist. If you think they don't, consider different paths of approach to show that they do not.
(a)

$$
\frac{\sqrt{x}-\sqrt{y+1}}{x-y-1},(x, y) \rightarrow(4,3), x \neq y+1
$$

(b)

$$
\frac{x^{2}+y^{2}}{x y},(x, y) \rightarrow(0,0), x y \neq 0
$$

4. Compute all second order partial derivatives of the function

$$
f(x, y)=x \sin y+y \sin x+x y
$$

5. Find $\frac{d w}{d t}$ if $w=\sin (x y+\pi), x=e^{t}$ and $y=\ln (t+1)$. Then evaluate at $t=0$.

Solutions

1. We first compute the gradient vector of f :

$$
\nabla f=\left(\frac{4 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}},-\frac{4 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

Evaluating at $(1,1)$ yields

$$
\nabla f(1,1)=(1,-1) .
$$

The directions \mathbf{u} in which the directional derivative $\left(D_{\mathbf{u}} f\right)(1,1)$ is zero are the unit vectors orthogonal to $\nabla f(1,1)=(1,-1)$, i.e. $\mathbf{u}=\left(u_{1}, u_{2}\right)$ has to satisfy

$$
\nabla f(1,1) \bullet \mathbf{u}=(1,-1) \bullet\left(u_{1}, u_{2}\right)=u_{1}-u_{2}=0
$$

and $u_{1}^{2}+u_{2}^{2}=1$. We get

$$
\mathbf{u}=\frac{1}{\sqrt{2}}(1,1) \text { and } \quad-\mathbf{u}=-\frac{1}{\sqrt{2}}(1,1) .
$$

2. (a) The level surfaces are given by the equations

$$
c=z-x^{2}-y^{2}
$$

where c is a constant. In order to single out the one which passes through the point P we need to insert the coordinates of P and compute the constant c. Hence

$$
c=1-3^{2}-(-1)^{2}=-9
$$

so that the desired equation is $-9=z-x^{2}-y^{2}$.
(b) We compute the integrals first

$$
\int_{x}^{y} \frac{d t}{\sqrt{1-t^{2}}}=\sin ^{-1}(y)-\sin ^{-1}(x)
$$

and

$$
\int_{\sqrt{2}}^{z} \frac{d t}{t \sqrt{t^{2}-1}}=\sec ^{-1}|z|-\sec ^{-1}(\sqrt{2})=\sec ^{-1}|z|-\frac{\pi}{4}
$$

The latter follows from the fact that $\sec ^{-1}(\sqrt{2})$ is the 'angle' θ where $\cos \theta=1 / \sqrt{2}$ which is $\pi / 4$. We insert now $x=-1, y=1 / 2$ and $z=1$:

$$
\begin{aligned}
c & =f(-1,1 / 2,1) \\
& =\sin ^{-1}(1 / 2)-\sin ^{-1}(-1)+\sec ^{-1}|1|-\frac{\pi}{4} \\
& =\frac{\pi}{6}+\frac{\pi}{2}+0-\frac{\pi}{4} \\
& =\frac{5 \pi}{12}
\end{aligned}
$$

The equation of the level surface is then

$$
\frac{5 \pi}{12}=\sin ^{-1}(y)-\sin ^{-1}(x)+\sec ^{-1}|z|-\frac{\pi}{4}
$$

or

$$
\frac{2 \pi}{3}=\sin ^{-1}(y)-\sin ^{-1}(x)+\sec ^{-1}|z|
$$

3. (a) We use the following formula to simplify the given expression

$$
(\sqrt{x}-\sqrt{y+1})(\sqrt{x}+\sqrt{y+1})=(\sqrt{x})^{2}-(\sqrt{y+1})^{2}=x-(y+1)=x-y-1
$$

Then

$$
\frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}=\frac{1}{\sqrt{x}+\sqrt{y+1}}
$$

and the limit can simply be computed by inserting $(x, y)=(4,3)$ which yields $1 / 4$.
(b) No further simplification as in problem (a) is possible here. We look at the level curves

$$
c=\frac{x^{2}+y^{2}}{x y} \text { or } x^{2}+y^{2}-c x y=0
$$

Solving this for y (quadratic equation) we get

$$
y=\frac{1}{2}\left(c \pm \sqrt{c^{2}-4}\right) x=k x .
$$

Note that all these curves pass through the origin, so there is no limit for $(x, y) \rightarrow(0,0)$. In order to confirm, we insert $y=k x$ and we get

$$
\frac{x^{2}+y^{2}}{x y}=\frac{x^{2}+k^{2} x^{2}}{k x^{2}}=\frac{1+k^{2}}{k}
$$

Taking the limit $x \rightarrow 0$ still yields $\left(1+k^{2}\right) / k$, i.e. the value depends on the direction in which we approach the origin.
4. We have

$$
f(x, y)=x \sin y+y \sin x+x y
$$

The first order derivatives are given by

$$
f_{x}=\sin y+y \cos x+y, f_{y}=x \cos y+\sin x+x
$$

Then

$$
f_{x x}=-y \sin x, f_{y y}=-x \sin y, f_{x y}=f_{y x}=\cos y+\cos x+1
$$

5. We compute

$$
\frac{\partial w}{\partial x}=y \cos (x y+\pi), \frac{\partial w}{\partial y}=x \cos (x y+\pi)
$$

and

$$
x^{\prime}(t)=e^{t}, y^{\prime}(t)=\frac{1}{t+1}
$$

Then

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} x^{\prime}(t)+\frac{\partial w}{\partial y} y^{\prime}(t) \\
& =e^{t} \ln (t+1) \cos \left(e^{t} \ln (t+1)+\pi\right)+\frac{e^{t}}{t+1} \cos \left(e^{t} \ln (t+1)+\pi\right) \\
& =\left(\ln (t+1)+\frac{1}{t+1}\right) e^{t} \cos \left(e^{t} \ln (t+1)+\pi\right)
\end{aligned}
$$

Evaluating at $t=0$ yields

$$
\left.\frac{d w}{d t}\right|_{t=0}=\cos (\pi)=-1
$$

