Math 234, Practice Test \#1

Show your work in all the problems.

1. Find parametric equations for the line in which the planes $x+2 y+z=1$ and $x-y+2 z=-8$ intersect.
2. Compute the distance from the point $(2,2,3)$ to the plane through the points $A=(0,0,0), B=(2,0,-1)$ and $C=(2,-1,0)$.
3. Compute the area of the parallelogram with three of its vertices given by

$$
A=(2,-2,1), B=(3,-1,2) \text { and } C=(3,-1,1)
$$

4. (Cancellation in a dot product ?) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors with $\mathbf{u} \neq 0$. Is it true that $\mathbf{u} \bullet \mathbf{v}=\mathbf{u} \bullet \mathbf{w}$ implies $\mathbf{v}=\mathbf{w}$? If you think it is true explain why, otherwise provide a counterexample.
5. Sketch the surface given by the equation $z=1-x^{2}$.
6. Describe the given sets with a single equation or a pair of equations: The circle of radius 1 centered at $(-3,4,1)$ and lying in a plane parallel to the
(a) xy-plane
(b) yz-plane
(c) xz-plane

Solutions

1. Normal vectors of the two planes are given by

$$
\mathbf{n}_{1}=(1,2,1) \text { and } \mathbf{n}_{2}=(1,-1,2)
$$

respectively. The line of intersection is perpendicular to both \mathbf{n}_{1} and \mathbf{n}_{2}. The following vector is then parallel to the line of intersection:

$$
\begin{aligned}
\mathbf{n}_{1} \times \mathbf{n}_{2} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
1 & -1 & 2
\end{array}\right| \\
& =\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right| \mathbf{k} \\
& =5 \mathbf{i}-\mathbf{j}-3 \mathbf{k} \\
& =(5,-1,-3)
\end{aligned}
$$

We also need to find a point which lies on the line of intersection. We insert $x=1-2 y-z$ (which is derived from the first equation) into the second equation, and we get

$$
-8=x-y+2 z=1-2 y-z-y+2 z=1-3 y+z
$$

as well as $z=-9+3 y$ and $x=1-2 y-z=10-5 y$. This means we can pick any value we want for y and compute x, z using the previous formulas. For $y=0$ we get $x=10$ and $z=-9$ so that the point $(10,0,-9)$ lies on the line of intersection. Parametric equations of the line are then given by

$$
x=10+5 t, y=-t, z=-9-3 t
$$

Comment: There are many possible solutions which are all correct (and for which you would get full credit). For example, the vector $(-5,1,3)$ is also parallel to the line of intersection (do you know why ?). Later on, instead of choosing $y=0$ to find a point on the line we could have chosen something else, for example $y=1$. We would have obtained $x=10-5 y=5$ and $z=-9+3 y=-6$, so that we use the point $(5,1,-6)$ instead. Remember that there are many points on a line,
and there is no reason to prefer one over the other. The parametric equations would then look as follows

$$
x=5-5 t, y=1+t, z=-6+3 t .
$$

Although these equations are different they describe the same line, and they are therefore also a valid solution to the problem.
2. We need to find a normal vector \mathbf{n} to the plane, i.e. a vector perpendicular to both $\overrightarrow{A B}=(2,0,-1)$ and $\overrightarrow{A C}=(2,-1,0)$. We get a such a vector by taking the cross product

$$
\mathbf{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & -1 \\
2 & -1 & 0
\end{array}\right|=-\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}
$$

If P is any point in the plane then the distance d between $S=(2,2,3)$ and the plane is given by

$$
d=\frac{|\stackrel{\rightharpoonup}{P S} \bullet \mathbf{n}|}{|\mathbf{n}|}
$$

The easiest pick for P is probably $(0,0,0)$, so that $\overrightarrow{P S}=(2,2,3)$. We get

$$
\stackrel{\rightharpoonup}{P S} \bullet \mathbf{n}=(2,2,3) \bullet(-1,-2,-2)=-2-4-6=-12
$$

and

$$
|\mathbf{n}|=\sqrt{(-1)^{2}+(-2)^{2}+(-2)^{2}}=\sqrt{9}=3
$$

so that

$$
d=\frac{|-12|}{3}=4 .
$$

3. The area of the parallelogram is given by

$$
|\overrightarrow{A B} \times \overrightarrow{A C}|
$$

We have

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right|=-\mathbf{i}+\mathbf{j}=(-1,1,0)
$$

and

$$
|\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{2}
$$

4. The statement is false. Pick two different vectors \mathbf{v} and \mathbf{w}, for example $\mathbf{v}=(1,0,0)$ and $\mathbf{w}=(0,1,0)$. Then choose \mathbf{u} perpendicular to both \mathbf{v} and \mathbf{w}, for example $\mathbf{u}=(0,0,1)$ would do. Then
$\mathbf{u} \bullet \mathbf{v}=\mathbf{u} \bullet \mathbf{w}=0$
but $\mathbf{v} \neq \mathbf{w}$.
5. The surface is a cylinder over the parabola $z=1-x^{2}$ in the xz-plane:

6. (a) $(x+3)^{2}+(y-4)^{2}=1, z=1$
(b) $(y-4)^{2}+(z-1)^{2}=1, x=-3$
(c) $(x+3)^{2}+(z-1)^{1}=1, y=4$
