Math 234, Practice Test #1

Show your work in all the problems.

- 1. Find parametric equations for the line in which the planes x+2y+z=1and x-y+2z=-8 intersect.
- 2. Compute the distance from the point (2, 2, 3) to the plane through the points A = (0, 0, 0), B = (2, 0, -1) and C = (2, -1, 0).
- 3. Compute the area of the parallelogram with three of its vertices given by

$$A = (2, -2, 1)$$
, $B = (3, -1, 2)$ and $C = (3, -1, 1)$

- 4. (Cancellation in a dot product ?) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors with $\mathbf{u} \neq 0$. Is it true that $\mathbf{u} \bullet \mathbf{v} = \mathbf{u} \bullet \mathbf{w}$ implies $\mathbf{v} = \mathbf{w}$? If you think it is true explain why, otherwise provide a counterexample.
- 5. Sketch the surface given by the equation $z = 1 x^2$.
- 6. Describe the given sets with a single equation or a pair of equations: The circle of radius 1 centered at (-3, 4, 1) and lying in a plane parallel to the
 - (a) xy-plane
 - (b) yz-plane
 - (c) xz-plane

Solutions

1. Normal vectors of the two planes are given by

$$\mathbf{n}_1 = (1, 2, 1)$$
 and $\mathbf{n}_2 = (1, -1, 2)$

respectively. The line of intersection is perpendicular to both \mathbf{n}_1 and \mathbf{n}_2 . The following vector is then parallel to the line of intersection:

$$\mathbf{n}_{1} \times \mathbf{n}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 1 & -1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 1 & -1 \end{vmatrix} \mathbf{k}$$
$$= 5\mathbf{i} - \mathbf{j} - 3\mathbf{k}$$
$$= (5, -1, -3)$$

We also need to find a point which lies on the line of intersection. We insert x = 1 - 2y - z (which is derived from the first equation) into the second equation, and we get

$$-8 = x - y + 2z = 1 - 2y - z - y + 2z = 1 - 3y + z$$

as well as z = -9 + 3y and x = 1 - 2y - z = 10 - 5y. This means we can pick any value we want for y and compute x, z using the previous formulas. For y = 0 we get x = 10 and z = -9 so that the point (10, 0, -9) lies on the line of intersection. Parametric equations of the line are then given by

$$x = 10 + 5t$$
, $y = -t$, $z = -9 - 3t$

<u>Comment</u>: There are many possible solutions which are all correct (and for which you would get full credit). For example, the vector (-5, 1, 3)is also parallel to the line of intersection (do you know why ?). Later on, instead of choosing y = 0 to find a point on the line we could have chosen something else, for example y = 1. We would have obtained x = 10 - 5y = 5 and z = -9 + 3y = -6, so that we use the point (5, 1, -6) instead. Remember that there are many points on a line, and there is no reason to prefer one over the other. The parametric equations would then look as follows

$$x = 5 - 5t$$
, $y = 1 + t$, $z = -6 + 3t$.

Although these equations are different they describe the same line, and they are therefore also a valid solution to the problem.

2. We need to find a normal vector **n** to the plane, i.e. a vector perpendicular to both $\overrightarrow{AB} = (2, 0, -1)$ and $\overrightarrow{AC} = (2, -1, 0)$. We get a such a vector by taking the cross product

$$\mathbf{n} = \vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 2 & -1 & 0 \end{vmatrix} = -\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$$

If P is any point in the plane then the distance d between S = (2, 2, 3)and the plane is given by

$$d = \frac{|\vec{PS} \bullet \mathbf{n}|}{|\mathbf{n}|}$$

The easiest pick for P is probably (0, 0, 0), so that $\overrightarrow{PS} = (2, 2, 3)$. We get

$$PS \bullet \mathbf{n} = (2, 2, 3) \bullet (-1, -2, -2) = -2 - 4 - 6 = -12$$

and

$$|\mathbf{n}| = \sqrt{(-1)^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3$$

so that

$$d = \frac{|-12|}{3} = 4.$$

3. The area of the parallelogram is given by

$$|\overline{AB} \times \overline{AC}|$$

.

We have

$$\vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = -\mathbf{i} + \mathbf{j} = (-1, 1, 0)$$

and

$$|\overline{AB} \times \overline{AC}| = \sqrt{2}.$$

4. The statement is false. Pick two different vectors \mathbf{v} and \mathbf{w} , for example $\mathbf{v} = (1, 0, 0)$ and $\mathbf{w} = (0, 1, 0)$. Then choose \mathbf{u} perpendicular to both \mathbf{v} and \mathbf{w} , for example $\mathbf{u} = (0, 0, 1)$ would do. Then

$$\mathbf{u} \bullet \mathbf{v} = \mathbf{u} \bullet \mathbf{w} = 0$$

but $\mathbf{v} \neq \mathbf{w}$.

5. The surface is a cylinder over the parabola $z = 1 - x^2$ in the xz-plane:

- 6. (a) $(x+3)^2 + (y-4)^2 = 1$, z = 1(b) $(y-4)^2 + (z-1)^2 = 1$, x = -3
 - (c) $(x+3)^2 + (z-1)^1 = 1$, y = 4