\qquad
TA: \qquad Section Time: \qquad

MTH 234
Exam 2: Practice
October 19, 2010
50 minutes
Sects: 13.1, 13.3, 14.1-14.7.

No calculators or any other devices allowed. If any question is not clear, ask for clarification. No credit will be given for illegible solutions. If you present different answers for the same problem, the worst answer will be graded.
Show all your work. Box your answers.

1. (a) (15 points) Find the position \boldsymbol{r} and velocity vector functions \boldsymbol{v} of a particle that moves with an acceleration function $\boldsymbol{a}(t)=\langle 0,0,-10\rangle \mathrm{m} / \mathrm{sec}^{2}$, knowing that the initial velocity and position are given by, respectively, $\boldsymbol{v}(0)=\langle 0,1,2\rangle \mathrm{m} / \mathrm{sec}$ and $\boldsymbol{r}(0)=\langle 0,0,3\rangle \mathrm{m}$.
(b) (5 points) Draw an approximate picture of the graph of $\boldsymbol{r}(t)$ for $t \geq 0$.
2. (a) (10 points) Find and sketch the domain of the function $f(x, t)=\ln (3 x+2 t)$.
(b) (10 points) Find all possible constants c such that the function $f(x, t)$ above is solution of the wave equation, $f_{t t}-c^{2} f_{x x}=0$.
3. (a) (10 points) Find the direction in which $f(x, y)$ increases the most rapidly, and the directions in which $f(x, y)$ decreases the most rapidly at P_{0}, and also find the value of the directional derivative of $f(x, y)$ at P_{0} along these directions, where

$$
f(x, y)=x^{3} e^{-2 y}, \quad \text { and } \quad P_{0}=(1,0)
$$

(b) (10 points) Find the directional derivative of $f(x, y)$ above at the point P_{0} in the direction given by $\boldsymbol{v}=\langle 1,-1\rangle$.
4. (a) (10 points) Find the tangent plane approximation of $f(x, y)=x \cos (\pi y / 2)-y^{2} e^{-x}$ at the point $(0,1)$.
(b) (10 points) Use the linear approximation computed above to approximate the value of $f(-0.1,0.9)$.
5. (20 points) Find every local and absolute extrema of $f(x, y)=x^{2}+3 y^{2}+2 y$ on the unit disk $x^{2}+y^{2} \leq 1$, and indicate which ones are the absolute extrema. In the case of the interior stationary points, decide whether they are local maximum, minimum of saddle points.

$\#$	Pts	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Σ	100	

