- ▶ Two definitions for the dot product.
- ► Geometric definition of dot product.
- Orthogonal vectors.
- ▶ Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- ▶ Dot product in vector components.
- Scalar and vector projection formulas.

Two main ways to introduce the dot product

We choose the first way, the textbook chooses the second way.

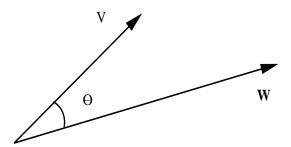
- ▶ Two definitions for the dot product.
- **▶** Geometric definition of dot product.
- Orthogonal vectors.
- ▶ Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- ▶ Dot product in vector components.
- Scalar and vector projection formulas.

The dot product of two vectors is a scalar

Definition

The *dot product* of the vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^n , with n=2,3, having magnitudes $|\mathbf{v}|$, $|\mathbf{w}|$ and angle in between θ , where $0 \le \theta \le \pi$, is denoted by $\mathbf{v} \cdot \mathbf{w}$ and given by

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta)$$
.



Initial points together.

The dot product of two vectors is a scalar

Example

Compute $\mathbf{v} \cdot \mathbf{w}$ knowing that \mathbf{v} , $\mathbf{w} \in \mathbb{R}^3$, with $|\mathbf{v}| = 2$, $\mathbf{w} = \langle 1, 2, 3 \rangle$ and the angle in between is $\theta = \pi/4$.

Solution: We first compute $|\mathbf{w}|$, that is,

$$|\mathbf{w}|^2 = 1^2 + 2^2 + 3^2 = 14 \quad \Rightarrow \quad |\mathbf{w}| = \sqrt{14}.$$

We now use the definition of dot product:

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta) = (2) \sqrt{14} \frac{\sqrt{2}}{2} \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w} = 2\sqrt{7}.$$

 \triangleleft

- ► The angle between two vectors usually is not know in applications.
- ▶ It is useful to have a formula for the dot product involving the vector components.

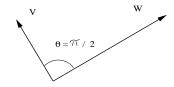
Dot product and vector projections (Sect. 12.3)

- ▶ Two definitions for the dot product.
- ► Geometric definition of dot product.
- **▶** Orthogonal vectors.
- ▶ Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- ▶ Dot product in vector components.
- Scalar and vector projection formulas.

Perpendicular vectors have zero dot product.

Definition

Two vectors are *perpendicular*, also called *orthogonal*, iff the angle in between is $\theta = \pi/2$.



Theorem

The non-zero vectors \mathbf{v} and \mathbf{w} are perpendicular iff $\mathbf{v} \cdot \mathbf{w} = 0$.

Proof.

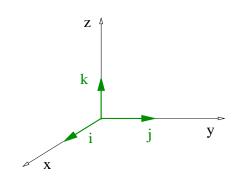
$$\begin{array}{c} 0 = \mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| \, |\mathbf{w}| \, \cos(\theta) \\ |\mathbf{v}| \neq 0, \quad |\mathbf{w}| \neq 0 \end{array} \right\} \quad \Leftrightarrow \quad \begin{cases} \cos(\theta) = 0 \\ 0 \leqslant \theta \leqslant \pi \end{array} \quad \Leftrightarrow \quad \theta = \frac{\pi}{2}.$$

The dot product of \mathbf{i} , \mathbf{j} and \mathbf{k} is simple to compute

Example

Compute all dot products involving the vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} .

Solution: Recall: $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, $\mathbf{k} = \langle 0, 0, 1 \rangle$.



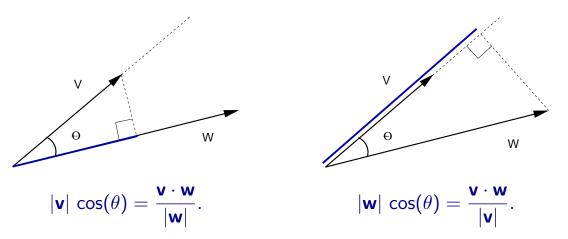
$${f i}\cdot{f i}=1, \qquad {f j}\cdot{f j}=1, \qquad {f k}\cdot{f k}=1, \\ {f i}\cdot{f j}=0, \qquad {f j}\cdot{f i}=0, \qquad {f k}\cdot{f i}=0, \\ {f i}\cdot{f k}=0, \qquad {f j}\cdot{f k}=0. \qquad {f k}\cdot{f j}=0.$$

- ▶ Two definitions for the dot product.
- ▶ Geometric definition of dot product.
- ► Orthogonal vectors.
- **▶** Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- ▶ Dot product in vector components.
- Scalar and vector projection formulas.

The dot product and orthogonal projections.

Remark: The dot product is closely related to orthogonal projections of one vector onto the other.

Recall: $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta)$.



Remark: If $|\mathbf{u}| = 1$, then $\mathbf{v} \cdot \mathbf{u}$ is the projection of \mathbf{v} along \mathbf{u} .

- ▶ Two definitions for the dot product.
- Geometric definition of dot product.
- Orthogonal vectors.
- ▶ Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- ▶ Dot product in vector components.
- Scalar and vector projection formulas.

Properties of the dot product.

Theorem

(a)
$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$
, (symmetric);
(b) $\mathbf{v} \cdot (a\mathbf{w}) = a(\mathbf{v} \cdot \mathbf{w})$, (linear);
(c) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$, (linear);
(d) $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2 \geqslant 0$, and $\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$, (positive);
(e) $\mathbf{0} \cdot \mathbf{v} = 0$.

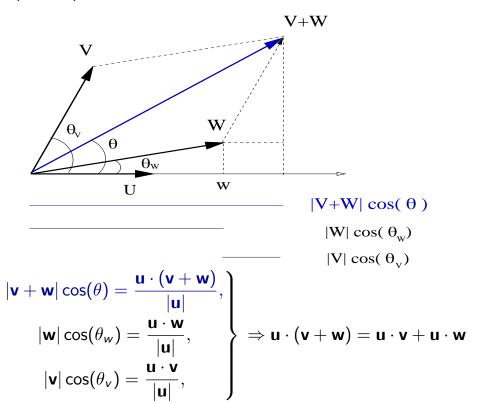
Proof.

Properties (a), (b), (d), (e) are simple to obtain from the definition of dot product $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta)$. For example, the proof of (b) for a > 0:

$$\mathbf{v} \cdot (a\mathbf{w}) = |\mathbf{v}| |a\mathbf{w}| \cos(\theta) = a |\mathbf{v}| |\mathbf{w}| \cos(\theta) = a (\mathbf{v} \cdot \mathbf{w}).$$

Properties of the dot product.

(c) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$, is non-trivial. The proof is:



Dot product and vector projections (Sect. 12.3)

- ▶ Two definitions for the dot product.
- ► Geometric definition of dot product.
- Orthogonal vectors.
- ▶ Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- **▶** Dot product in vector components.
- Scalar and vector projection formulas.

The dot product in vector components (Case \mathbb{R}^2)

Theorem

If
$$\mathbf{v} = \langle v_x, v_y \rangle$$
 and $\mathbf{w} = \langle w_x, w_y \rangle$, then $\mathbf{v} \cdot \mathbf{w}$ is given by

$$\mathbf{v}\cdot\mathbf{w}=v_{x}w_{x}+v_{y}w_{y}.$$

Proof.

Recall: $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j}$ and $\mathbf{w} = w_x \mathbf{i} + w_y \mathbf{j}$. The linear property of the dot product implies

$$\mathbf{v} \cdot \mathbf{w} = (v_x \, \mathbf{i} + v_y \, \mathbf{j}) \cdot (w_x \, \mathbf{i} + w_y \, \mathbf{j})$$

$$\mathbf{v} \cdot \mathbf{w} = v_x w_x \mathbf{i} \cdot \mathbf{i} + v_x w_y \mathbf{i} \cdot \mathbf{j} + v_y w_x \mathbf{j} \cdot \mathbf{i} + v_y w_y \mathbf{j} \cdot \mathbf{j}.$$

Recall: $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = 1$ and $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0$. We conclude that

$$\mathbf{v}\cdot\mathbf{w}=v_{\mathsf{x}}w_{\mathsf{x}}+v_{\mathsf{y}}w_{\mathsf{y}}.$$

The dot product in vector components (Case \mathbb{R}^3)

Theorem

If
$$\mathbf{v} = \langle v_x, v_y, v_z \rangle$$
 and $\mathbf{w} = \langle w_x, w_y, w_z \rangle$, then $\mathbf{v} \cdot \mathbf{w}$ is given by
$$\mathbf{v} \cdot \mathbf{w} = v_x w_x + v_y w_y + v_z w_z.$$

- ▶ The proof is similar to the case in \mathbb{R}^2 .
- ▶ The dot product is simple to compute from the vector component formula $\mathbf{v} \cdot \mathbf{w} = v_x w_x + v_y w_y + v_z w_z$.
- ► The geometrical meaning of the dot product is simple to see from the formula $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta)$.

Example

Find the cosine of the angle between $\mathbf{v} = \langle 1, 2 \rangle$ and $\mathbf{w} = \langle 2, 1 \rangle$

Solution:

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta) \quad \Rightarrow \quad \cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|}.$$

Furthermore,

$$\left. egin{aligned} \mathbf{v} \cdot \mathbf{w} &= (1)(2) + (2)(1) \\ \left| \mathbf{v} \right| &= \sqrt{1^2 + 2^2} = \sqrt{5}, \\ \left| \mathbf{w} \right| &= \sqrt{2^2 + 1^2} = \sqrt{5}, \end{aligned}
ight. \Rightarrow \cos(\theta) = \frac{4}{5}.$$

 \triangleleft

Dot product and vector projections (Sect. 12.3)

- ▶ Two definitions for the dot product.
- ► Geometric definition of dot product.
- Orthogonal vectors.
- ▶ Dot product and orthogonal projections.
- ▶ Properties of the dot product.
- ▶ Dot product in vector components.
- Scalar and vector projection formulas.

Scalar and vector projection formulas.

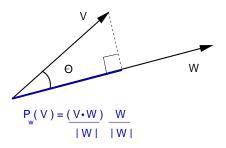
Theorem

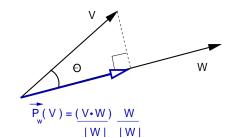
The scalar projection of \mathbf{v} along \mathbf{w} is the number $p_w(v)$,

$$\rho_w(v) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|}.$$

The vector projection of \mathbf{v} along \mathbf{w} is the vector $\mathbf{p}_w(v)$,

$$\mathbf{p}_{w}(v) = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|}\right) \frac{\mathbf{w}}{|\mathbf{w}|}.$$





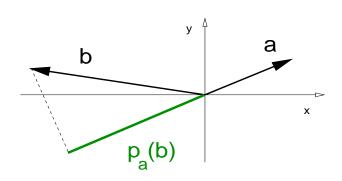
Example

Find the scalar projection of $\mathbf{b} = \langle -4, 1 \rangle$ onto $\mathbf{a} = \langle 1, 2 \rangle$.

Solution: The scalar projection of **b** onto **a** is the number

$$p_a(b) = |\mathbf{b}| \cos(\theta) = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{(-4)(1) + (1)(2)}{\sqrt{1^2 + 2^2}}.$$

We therefore obtain $p_a(b) = -\frac{2}{\sqrt{5}}$.



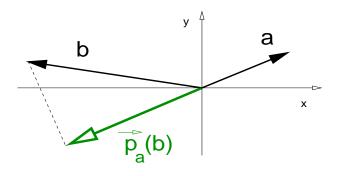
Example

Find the vector projection of $\mathbf{b}=\langle -4,1\rangle$ onto $\mathbf{a}=\langle 1,2\rangle$.

Solution: The vector projection of **b** onto **a** is the vector

$$\mathbf{p}_{a}(b) = \left(\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \left(-\frac{2}{\sqrt{5}}\right) \frac{1}{\sqrt{5}} \langle 1, 2 \rangle.$$

We therefore obtain $\mathbf{p}_a(b) = -\left\langle \frac{2}{5}, \frac{4}{5} \right\rangle$.



Example

Find the vector projection of $\mathbf{a} = \langle 1, 2 \rangle$ onto $\mathbf{b} = \langle -4, 1 \rangle$.

Solution: The vector projection of a onto b is the vector

$$\mathbf{p}_b(a) = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}\right) \, \frac{\mathbf{b}}{|\mathbf{b}|} = \left(-\frac{2}{\sqrt{17}}\right) \frac{1}{\sqrt{17}} \, \langle -4, 1 \rangle.$$

We therefore obtain $\mathbf{p}_a(b) = \left\langle \frac{8}{17}, -\frac{2}{17} \right\rangle$.

