Name: \qquad PID Number: \qquad
MTH 415

Practice Final Exam

August 17, 2009

- No calculators or any other devices are allowed on this exam.
- Read each question carefully. If any question is not clear, ask for clarification.
- Write your solutions clearly and legibly; no credit will be given for illegible solutions.
- Answer each question completely, and show all your work.
- If you present different answers, then the worst answer will be graded.

Signature:

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Σ	200	

1. (20 points) Consider the matrix $A=\left[\begin{array}{ccc}5 & 3 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1\end{array}\right]$. Find the coefficients $\left(A^{-1}\right)_{21}$ and $\left(\mathrm{A}^{-1}\right)_{32}$ of the matrix A^{-1}, that is, of the inverse matrix of A . Show your work.
2. (20 points)
(a) Find $k \in \mathbb{R}$ such that the volume of the parallelepiped formed by the vectors below is equal to 4 , where

$$
\mathrm{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathrm{v}_{2}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right], \quad \mathrm{v}_{3}=\left[\begin{array}{l}
k \\
1 \\
1
\end{array}\right]
$$

(b) Set $k=1$ and define the matrix $\mathrm{A}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right]$. Matrix A determines the linear transformation $\mathrm{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Is this linear transformation injective (one-to-one)? Is it surjective (onto)?
3. Consider the matrix $\mathrm{A}=\left[\begin{array}{cc}-1 / 2 & -3 \\ 1 / 2 & 2\end{array}\right]$.
(a) (10 points) Show that matrix A is diagonalizable.
(b) (10 points) Using that A is diagonalizable, find the $\lim _{k \rightarrow \infty} A^{k}$.
4. (20 points) Determine whether the subset $V \subset \mathbb{R}^{3}$ is a subspace, where

$$
V=\left\{\left[\begin{array}{c}
-a+b \\
a-2 b \\
a-7 b
\end{array}\right] \quad \text { with } \quad a, b \in \mathbb{R}\right\} .
$$

If the set is a subspace, find an orthogonal basis in the inner product space $\left(\mathbb{R}^{3}, \cdot\right)$.
5. True of false: (Justify your answers.)
(a) (10 points) If the set of columns of $A \in \mathbb{F}^{m, n}$ is a linearly independent set, then $A x=b$ has exactly one solution for every $b \in \mathbb{F}^{m}$.
(b) (10 points) The set of column vectors of an 5×7 is never linearly independent.
6. (20 points) Consider the linear transformations $\boldsymbol{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $\boldsymbol{S}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
\left[\boldsymbol{T}\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{s_{3}}\right)\right]_{s_{2}}=\left[\begin{array}{c}
x_{1}-x_{2}+x_{3} \\
-x_{1}+2 x_{2}+x_{3}
\end{array}\right]_{s_{2}}, \quad\left[\boldsymbol{S}\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{s_{3}}\right)\right]_{s_{3}}=\left[\begin{array}{c}
3 x_{3} \\
2 x_{2} \\
x_{1}
\end{array}\right]_{s_{3}}
$$

where \mathcal{S}_{3} and \mathcal{S}_{2} are the standard basis of \mathbb{R}^{3} and \mathbb{R}^{2}, respectively.
(a) Find a matrix $[\boldsymbol{T}]_{s_{3} s_{2}}$ and the matrix $[\boldsymbol{S}]_{s_{3} s_{3}}$. Show your work.
(b) Find the matrix of the composition $\boldsymbol{T} \circ \boldsymbol{S}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ in the standard basis, that is, find $[\boldsymbol{T} \circ \boldsymbol{S}]_{s_{3} s_{2}}$.
(c) Is $\boldsymbol{T} \circ \boldsymbol{S}$ injective (one-to-one)? Is $\boldsymbol{T} \circ \boldsymbol{S}$ surjective (onto)? Justify your answer.
7. (20 points) Consider the vector space \mathbb{R}^{2} with the standard basis \mathcal{S} and let $\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation

$$
[\boldsymbol{T}]_{s s}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]_{s s}
$$

Find $[\boldsymbol{T}]_{b b}$, the matrix of \boldsymbol{T} in the basis \mathcal{B}, where $\mathcal{B}=\left\{\left[\mathrm{b}_{1}\right]_{s}=\left[\begin{array}{l}1 \\ 2\end{array}\right]_{s},\left[\mathrm{~b}_{2}\right]_{s}=\left[\begin{array}{c}1 \\ -2\end{array}\right]_{s}\right\}$.
8. Let $(V,\langle\rangle$,$) be an inner product space with inner product norm \|\|$. Let $\boldsymbol{T}: V \rightarrow V$ be a linear transformation and $\boldsymbol{x}, \boldsymbol{y} \in V$ be vectors satisfying the following conditions:

$$
\boldsymbol{T}(\boldsymbol{x})=2 \boldsymbol{x}, \quad \boldsymbol{T}(\boldsymbol{y})=-3 \boldsymbol{y}, \quad\|\boldsymbol{x}\|=1 / 3, \quad\|\boldsymbol{y}\|=1, \quad \boldsymbol{x} \perp \boldsymbol{y}
$$

(a) (10 points) Compute $\|\boldsymbol{v}\|$ for the vector $\boldsymbol{v}=3 \boldsymbol{x}-\boldsymbol{y}$.
(b) (10 points) Compute $\|\boldsymbol{T}(\boldsymbol{v})\|$ for the vector \boldsymbol{v} given above.
9. (20 points) Consider the matrix $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 2 & 1\end{array}\right]$ and the vector $\mathrm{b}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$.
(a) Find the least-squares solution \hat{x} to the matrix equation $A x=b$.
(b) Verify whether the vector $\mathrm{A} \hat{\mathrm{x}}-\mathrm{b}$ belong to the space $R(\mathrm{~A})^{\perp}$? Justify your answers.
10. Consider the matrix $A=\left[\begin{array}{ccc}2 & -1 & 2 \\ 0 & 1 & h \\ 0 & 0 & 2\end{array}\right]$.
(a) (10 points) Find all eigenvalues of matrix A and their corresponding algebraic multiplicities.
(b) (10 points) Find the value(s) of the real number h such that the matrix A above has a two-dimensional eigenspace, and find a basis for this eigenspace.

