Name: _____ PID Number: _____

MTH 415 Practice Final Exam August 17, 2009

- No calculators or any other devices are allowed on this exam.
- Read each question carefully. If any question is not clear, ask for clarification.
- Write your solutions clearly and legibly; no credit will be given for illegible solutions.
- Answer each question completely, and show all your work.
- If you present different answers, then the worst answer will be graded.

Signature: _____

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Σ	200	

1. (20 points) Consider the matrix $A = \begin{bmatrix} 5 & 3 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$. Find the coefficients $(A^{-1})_{21}$ and $(A^{-1})_{32}$ of the matrix A^{-1} , that is, of the inverse matrix of A. Show your work.

- **2.** (20 points)
 - (a) Find $k \in \mathbb{R}$ such that the volume of the parallelepiped formed by the vectors below is equal to 4, where

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} k\\1\\1 \end{bmatrix}$$

(b) Set k = 1 and define the matrix $A = [v_1, v_2, v_3]$. Matrix A determines the linear transformation $A : \mathbb{R}^3 \to \mathbb{R}^3$. Is this linear transformation injective (one-to-one)? Is it surjective (onto)?

- **3.** Consider the matrix $A = \begin{bmatrix} -1/2 & -3 \\ 1/2 & 2 \end{bmatrix}$. (a) (10 points) Show that matrix A is diagonalizable.

 - (b) (10 points) Using that A is diagonalizable, find the $\lim_{k\to\infty} A^k$.

4. (20 points) Determine whether the subset $V \subset \mathbb{R}^3$ is a subspace, where

$$V = \left\{ \begin{bmatrix} -a+b\\a-2b\\a-7b \end{bmatrix} \quad \text{with} \quad a,b \in \mathbb{R} \right\}.$$

If the set is a subspace, find an orthogonal basis in the inner product space (\mathbb{R}^3, \cdot) .

5. True of false: (Justify your answers.)

- (a) (10 points) If the set of columns of $A \in \mathbb{F}^{m,n}$ is a linearly independent set, then $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $\mathbf{b} \in \mathbb{F}^m$.
- (b) (10 points) The set of column vectors of an 5×7 is never linearly independent.

6. (20 points) Consider the linear transformations $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $S: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$\left[\boldsymbol{T}\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}_{s_3}\right)\right]_{s_2} = \begin{bmatrix}x_1 - x_2 + x_3\\-x_1 + 2x_2 + x_3\end{bmatrix}_{s_2}, \qquad \left[\boldsymbol{S}\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}_{s_3}\right)\right]_{s_3} = \begin{bmatrix}3x_3\\2x_2\\x_1\end{bmatrix}_{s_3},$$

- where S_3 and S_2 are the standard basis of \mathbb{R}^3 and \mathbb{R}^2 , respectively. (a) Find a matrix $[\mathbf{T}]_{s_3s_2}$ and the matrix $[\mathbf{S}]_{s_3s_3}$. Show your work. (b) Find the matrix of the composition $\mathbf{T} \circ \mathbf{S} : \mathbb{R}^3 \to \mathbb{R}^2$ in the standard basis, that is, find $[\boldsymbol{T} \circ \boldsymbol{S}]_{s_3 s_2}$.
- (c) Is $\mathbf{T} \circ \mathbf{S}$ injective (one-to-one)? Is $\mathbf{T} \circ \mathbf{S}$ surjective (onto)? Justify your answer.

7. (20 points) Consider the vector space \mathbb{R}^2 with the standard basis S and let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation

$$[\mathbf{T}]_{ss} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}_{ss}.$$

Find $[\mathbf{T}]_{bb}$, the matrix of \mathbf{T} in the basis \mathcal{B} , where $\mathcal{B} = \left\{ [\mathbf{b}_1]_s = \begin{bmatrix} 1\\2 \end{bmatrix}_s, [\mathbf{b}_2]_s = \begin{bmatrix} 1\\-2 \end{bmatrix}_s \right\}.$

8. Let (V, \langle , \rangle) be an inner product space with inner product norm || ||. Let $T: V \to V$ be a linear transformation and $x, y \in V$ be vectors satisfying the following conditions:

$$T(\mathbf{x}) = 2 \mathbf{x}, \quad T(\mathbf{y}) = -3 \mathbf{y}, \quad \|\mathbf{x}\| = 1/3, \quad \|\mathbf{y}\| = 1, \quad \mathbf{x} \perp \mathbf{y}.$$

(a) (10 points) Compute $\|\boldsymbol{v}\|$ for the vector $\boldsymbol{v} = 3\boldsymbol{x} - \boldsymbol{y}$.

(b) (10 points) Compute $\| \mathbf{T}(\mathbf{v}) \|$ for the vector \mathbf{v} given above.

9. (20 points) Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$ and the vector $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.

- (a) Find the least-squares solution \hat{x} to the matrix equation $Ax = \vec{b}$.
- (b) Verify whether the vector $A\hat{x} b$ belong to the space $R(A)^{\perp}$? Justify your answers.

- **10.** Consider the matrix $A = \begin{bmatrix} 2 & -1 & 2 \\ 0 & 1 & h \\ 0 & 0 & 2 \end{bmatrix}$. (a) (10 points) Find all eigenvalues of matrix A and their corresponding algebraic mul
 - tiplicities.
 - (b) (10 points) Find the value(s) of the real number h such that the matrix A above has a two-dimensional eigenspace, and find a basis for this eigenspace.