Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.

- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Definition

The *directional derivative* of the function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $P_0 = (x_0, y_0) \in D$ in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y \rangle$ is given by

$$(D_{\mathbf{u}}f)_{P_0} = \lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

if the limit exists.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Definition

The *directional derivative* of the function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $P_0 = (x_0, y_0) \in D$ in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y \rangle$ is given by

$$(D_{\mathbf{u}}f)_{P_0} = \lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)],$$

if the limit exists.

Notation: The directional derivative is also denoted as

 $\left(\frac{df}{dt}\right)_{\mathbf{u},P_0}.$

Example

The partial derivatives f_x and f_y are particular cases of directional derivatives $(D_{\mathbf{u}}f)_{P_0} = \lim_{t\to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)]$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

The partial derivatives f_x and f_y are particular cases of directional derivatives $(D_{\mathbf{u}}f)_{P_0} = \lim_{t\to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)]$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

•
$$\mathbf{u} = \langle 1, 0 \rangle = \mathbf{i}$$
, then $(D_{\mathbf{i}}f)_{P_0} = f_x(x_0, y_0)$.

Example

The partial derivatives f_x and f_y are particular cases of directional derivatives $(D_{\mathbf{u}}f)_{P_0} = \lim_{t\to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)]$:

- ロ ト - 4 回 ト - 4 □ - 4

•
$$\mathbf{u} = \langle 1, 0 \rangle = \mathbf{i}$$
, then $(D_{\mathbf{i}}f)_{P_0} = f_x(x_0, y_0)$.

• $\mathbf{u} = \langle 0, 1 \rangle = \mathbf{j}$, then $(D_{\mathbf{j}} f)_{P_0} = f_y(x_0, y_0)$.

Example

The partial derivatives f_x and f_y are particular cases of directional derivatives $(D_{\mathbf{u}}f)_{P_0} = \lim_{t\to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)]$:

•
$$\mathbf{u} = \langle 1, 0 \rangle = \mathbf{i}$$
, then $(D_{\mathbf{i}}f)_{P_0} = f_x(x_0, y_0)$.
• $\mathbf{u} = \langle 0, 1 \rangle = \mathbf{j}$, then $(D_{\mathbf{j}}f)_{P_0} = f_y(x_0, y_0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Remark: The condition $|\mathbf{u}| = 1$ implies that the parameter *t* in the line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \mathbf{u} t$ is the distance between the points $(x(t), y(t)) = (x_0 + u_x t, y_0 + u_y t)$ and (x_0, y_0) .

Remark: The condition $|\mathbf{u}| = 1$ implies that the parameter *t* in the line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \mathbf{u} t$ is the distance between the points $(x(t), y(t)) = (x_0 + u_x t, y_0 + u_y t)$ and (x_0, y_0) .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

$$d=|\langle x-x_0,y-y_0\rangle|,=|\langle u_xt,u_yt\rangle|,=|t|\,|\mathbf{u}|,$$
 that is, $d=|t|.$

Remark: The condition $|\mathbf{u}| = 1$ implies that the parameter *t* in the line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \mathbf{u} t$ is the distance between the points $(x(t), y(t)) = (x_0 + u_x t, y_0 + u_y t)$ and (x_0, y_0) .

Proof.

$$d=|\langle x-x_0,y-y_0\rangle|,=|\langle u_xt,u_yt\rangle|,=|t|\,|\mathbf{u}|,$$
 that is, $d=|t|.$

Remark: The directional derivative of f(x, y) at $P_0 = (x_0, y_0)$ along **u**, denoted as $(D_{\mathbf{u}}f)_{P_0}$, is the pointwise rate of change of fwith respect to the distance along the line parallel to **u** passing through (x_0, y_0) .

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.

- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Remark: The directional derivative $(D_{\mathbf{u}}f)_{P_0}$ is the derivative of f along the line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \mathbf{u} t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The directional derivative $(D_{\mathbf{u}}f)_{P_0}$ is the derivative of f along the line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \mathbf{u} t$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If the function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $P_0 = (x_0, y_0)$ and $\mathbf{u} = \langle u_x, u_y \rangle$ is a unit vector, then

$$(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y.$$

Proof.

The line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \langle u_x, u_y \rangle t$ has parametric equations: $x(t) = x_0 + u_x t$ and $y(t) = y_0 + u_y t$;

Proof.

The line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \langle u_x, u_y \rangle t$ has parametric equations: $x(t) = x_0 + u_x t$ and $y(t) = y_0 + u_y t$; Denote f evaluated along the line as $\hat{f}(t) = f(x(t), y(t))$.

Proof.

The line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \langle u_x, u_y \rangle t$ has parametric equations: $x(t) = x_0 + u_x t$ and $y(t) = y_0 + u_y t$; Denote f evaluated along the line as $\hat{f}(t) = f(x(t), y(t))$. Now, on the one hand, $\hat{f}'(0) = (D_{\mathbf{u}}f)_{p_0}$, since

$$\hat{f}'(0) = \lim_{t \to 0} \frac{1}{t} [\hat{f}(t) - \hat{f}(0)],$$

=
$$\lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)],$$

=
$$D_{\mathbf{u}} f(x_0, y_0).$$

Proof.

The line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \langle u_x, u_y \rangle t$ has parametric equations: $x(t) = x_0 + u_x t$ and $y(t) = y_0 + u_y t$; Denote f evaluated along the line as $\hat{f}(t) = f(x(t), y(t))$. Now, on the one hand, $\hat{f}'(0) = (D_{\mathbf{u}}f)_{p_0}$, since

$$\hat{f}'(0) = \lim_{t \to 0} \frac{1}{t} [\hat{f}(t) - \hat{f}(0)],$$

=
$$\lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)],$$

=
$$D_{\mathbf{u}} f(x_0, y_0).$$

On the other hand, the chain rule implies:

$$\hat{f}'(0) = f_x(x_0, y_0) \, x'(0) + f_y(x_0, y_0) \, y'(0).$$

Proof.

The line $\mathbf{r}(t) = \langle x_0, y_0 \rangle + \langle u_x, u_y \rangle t$ has parametric equations: $x(t) = x_0 + u_x t$ and $y(t) = y_0 + u_y t$; Denote f evaluated along the line as $\hat{f}(t) = f(x(t), y(t))$. Now, on the one hand, $\hat{f}'(0) = (D_{\mathbf{u}}f)_{p_0}$, since

$$\hat{f}'(0) = \lim_{t \to 0} \frac{1}{t} [\hat{f}(t) - \hat{f}(0)],$$

=
$$\lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t) - f(x_0, y_0)],$$

=
$$D_{\mathbf{u}} f(x_0, y_0).$$

On the other hand, the chain rule implies:

$$\hat{f}'(0) = f_x(x_0, y_0) x'(0) + f_y(x_0, y_0) y'(0).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, $(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y$.

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We need to find a unit vector in the direction of \mathbf{v} .

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We need to find a unit vector in the direction of \mathbf{v} .

Such vector is
$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle.$$

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v} .

Such vector is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle.$

We now use the formula $(D_{\mathbf{u}}f)_{p_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y$.

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v} .

Such vector is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle.$ We now use the formula $(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y.$ That is, $(D_{\mathbf{u}}f)_{P_0} = \cos(x_0 + 3y_0)(1/\sqrt{5}) + 3\cos(x_0 + 3y_0)(2/\sqrt{5}).$

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v} .

Such vector is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle.$ We now use the formula $(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y.$ That is, $(D_{\mathbf{u}}f)_{P_0} = \cos(x_0 + 3y_0)(1/\sqrt{5}) + 3\cos(x_0 + 3y_0)(2/\sqrt{5}).$ Equivalently, $(D_{\mathbf{u}}f)_{P_0} = (7/\sqrt{5})\cos(x_0 + 3y_0).$

Example

Compute the directional derivative of $f(x, y) = \sin(x + 3y)$ at the point $P_0 = (4, 3)$ in the direction of vector $\mathbf{v} = \langle 1, 2 \rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v} .

Such vector is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 2 \rangle.$ We now use the formula $(D_{\mathbf{u}}f)_{P_0} = f_x(x_0, y_0) u_x + f_y(x_0, y_0) u_y.$ That is, $(D_{\mathbf{u}}f)_{P_0} = \cos(x_0 + 3y_0)(1/\sqrt{5}) + 3\cos(x_0 + 3y_0)(2/\sqrt{5}).$ Equivalently, $(D_{\mathbf{u}}f)_{P_0} = (7/\sqrt{5})\cos(x_0 + 3y_0).$ Then , $(D_{\mathbf{u}}f)_{P_0} = (7/\sqrt{5})\cos(10).$

(日) (同) (三) (三) (三) (○) (○)

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.

- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Definition

The *directional derivative* of the function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ at the point $P_0 = (x_0, y_0, z_0) \in D$ in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is given by

 $(D_{\mathbf{u}}f)_{P_0} = \lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t, z_0 + u_z t) - f(x_0, y_0, z_0)],$

if the limit exists.

Definition

The *directional derivative* of the function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ at the point $P_0 = (x_0, y_0, z_0) \in D$ in the direction of a unit vector $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is given by

 $(D_{\mathbf{u}}f)_{P_0} = \lim_{t \to 0} \frac{1}{t} [f(x_0 + u_x t, y_0 + u_y t, z_0 + u_z t) - f(x_0, y_0, z_0)],$

if the limit exists.

Theorem

If the function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ is differentiable at $P_0 = (x_0, y_0, z_0)$ and $\mathbf{u} = \langle u_x, u_y, u_z \rangle$ is a unit vector, then

 $\left(D_{\mathbf{u}}f\right)_{P_0} = f_x(x_0, y_0, z_0) \, u_x + f_y(x_0, y_0, z_0) \, u_y + f_z(x_0, y_0, z_0) \, u_z.$

Example

Find $(D_{\mathbf{u}}f)_{P_0}$ for $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at the point $P_0 = (3, 2, 1)$ along the direction given by $\mathbf{v} = \langle 2, 1, 1 \rangle$.

Example

Find $(D_{\mathbf{u}}f)_{P_0}$ for $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at the point $P_0 = (3, 2, 1)$ along the direction given by $\mathbf{v} = \langle 2, 1, 1 \rangle$.

Solution: We first find a unit vector along \mathbf{v} ,

$$\mathbf{u} = rac{\mathbf{v}}{|\mathbf{v}|} \quad \Rightarrow \quad \mathbf{u} = rac{1}{\sqrt{6}} \langle 2, 1, 1
angle$$

Example

Find $(D_{\mathbf{u}}f)_{P_0}$ for $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at the point $P_0 = (3, 2, 1)$ along the direction given by $\mathbf{v} = \langle 2, 1, 1 \rangle$. Solution: We first find a unit vector along \mathbf{v} ,

$$\mathbf{u} = rac{\mathbf{v}}{|\mathbf{v}|} \quad \Rightarrow \quad \mathbf{u} = rac{1}{\sqrt{6}} \langle 2, 1, 1 \rangle.$$

Then, $(D_{\mathbf{u}}f)$ is given by $(D_{\mathbf{u}}f) = (2x)u_x + (4y)u_y + (6z)u_z$.

Example

Find $(D_{\mathbf{u}}f)_{P_0}$ for $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at the point $P_0 = (3, 2, 1)$ along the direction given by $\mathbf{v} = \langle 2, 1, 1 \rangle$. Solution: We first find a unit vector along \mathbf{v} ,

$$\mathbf{u} = rac{\mathbf{v}}{|\mathbf{v}|} \quad \Rightarrow \quad \mathbf{u} = rac{1}{\sqrt{6}} \langle 2, 1, 1 \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then, $(D_{\mathbf{u}}f)$ is given by $(D_{\mathbf{u}}f) = (2x)u_x + (4y)u_y + (6z)u_z$. We conclude, $(D_{\mathbf{u}}f)_{P_0} = (6)\frac{2}{\sqrt{6}} + (8)\frac{1}{\sqrt{6}} + (6)\frac{1}{\sqrt{6}}$,

Example

Find $(D_{\mathbf{u}}f)_{P_0}$ for $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at the point $P_0 = (3, 2, 1)$ along the direction given by $\mathbf{v} = \langle 2, 1, 1 \rangle$. Solution: We first find a unit vector along \mathbf{v} ,

$$\mathbf{u} = rac{\mathbf{v}}{|\mathbf{v}|} \quad \Rightarrow \quad \mathbf{u} = rac{1}{\sqrt{6}} \langle 2, 1, 1 \rangle.$$

Then, $(D_{\mathbf{u}}f)$ is given by $(D_{\mathbf{u}}f) = (2x)u_x + (4y)u_y + (6z)u_z$. We conclude, $(D_{\mathbf{u}}f)_{P_0} = (6)\frac{2}{\sqrt{6}} + (8)\frac{1}{\sqrt{6}} + (6)\frac{1}{\sqrt{6}}$, that is, $(D_{\mathbf{u}}f)_{P_0} = \frac{26}{\sqrt{6}}$.

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Properties of the the gradient vector.

The gradient vector and directional derivatives.

Remark: The directional derivative of a function can be written in terms of a dot product.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark: The directional derivative of a function can be written in terms of a dot product.

▶ In the case of 2 variable functions: $D_{\mathbf{u}}f = f_{x}u_{x} + f_{y}u_{y}$

 $D_{\mathbf{u}}f = (\nabla f) \cdot \mathbf{u}$, with $\nabla f = \langle f_x, f_y \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The directional derivative of a function can be written in terms of a dot product.

▶ In the case of 2 variable functions: $D_{\mathbf{u}}f = f_x u_x + f_y u_y$

 $D_{\mathbf{u}}f = (\nabla f) \cdot \mathbf{u}$, with $\nabla f = \langle f_x, f_y \rangle$.

► In the case of 3 variable functions: $D_{\mathbf{u}}f = f_x u_x + f_y u_y + f_z u_z$,

 $D_{\mathbf{u}}f = (\nabla f) \cdot \mathbf{u}$, with $\nabla f = \langle f_x, f_y, f_z \rangle$.

Definition

The gradient vector of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f = \langle f_x, f_y \rangle$.

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^3 \to \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f = \langle f_x, f_y, f_z \rangle$.

Definition

The gradient vector of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f = \langle f_x, f_y \rangle$.

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^3 \to \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f = \langle f_x, f_y, f_z \rangle$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation:

- For two variable functions: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j}$.
- For two variable functions: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$.

Definition

The gradient vector of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f = \langle f_x, f_y \rangle$.

The gradient vector of a differentiable function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f = \langle f_x, f_y, f_z \rangle$.

Notation:

- For two variable functions: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j}$.
- For two variable functions: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$.

Theorem

If $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with n = 2, 3, is a differentiable function and **u** is a unit vector, then,

$$D_{\mathbf{u}}f=(\nabla f)\cdot\mathbf{u}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the gradient vector at any point in the domain of the function $f(x, y) = x^2 + y^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the gradient vector at any point in the domain of the function $f(x, y) = x^2 + y^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: The gradient is $\nabla f = \langle f_x, f_y \rangle$,

Example

Find the gradient vector at any point in the domain of the function $f(x, y) = x^2 + y^2$.

Solution: The gradient is $\nabla f = \langle f_x, f_y \rangle$, that is, $\nabla f = \langle 2x, 2y \rangle$.

Example

Find the gradient vector at any point in the domain of the function $f(x, y) = x^2 + y^2$.

Solution: The gradient is $\nabla f = \langle f_x, f_y \rangle$, that is, $\nabla f = \langle 2x, 2y \rangle$.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Remark: If θ is the angle between ∇f and \mathbf{u} , then holds

 $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos(\theta).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark: If θ is the angle between ∇f and **u**, then holds

 $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos(\theta).$

The formula above implies:

The function f increases the most rapidly when u is in the direction of ∇f, that is, θ = 0. The maximum increase rate of f is |∇f|.

Remark: If θ is the angle between ∇f and \mathbf{u} , then holds

 $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos(\theta).$

The formula above implies:

- The function f increases the most rapidly when u is in the direction of ∇f, that is, θ = 0. The maximum increase rate of f is |∇f|.
- The function f decreases the most rapidly when u is in the direction of −∇f, that is, θ = π. The maximum decrease rate of f is −|∇f|.

Remark: If θ is the angle between ∇f and \mathbf{u} , then holds

 $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos(\theta).$

The formula above implies:

- The function f increases the most rapidly when u is in the direction of ∇f, that is, θ = 0. The maximum increase rate of f is |∇f|.
- The function f decreases the most rapidly when u is in the direction of −∇f, that is, θ = π. The maximum decrease rate of f is −|∇f|.
- The function f does not change along level curve or surfaces, that is, D_uf = 0. Therefore, ∇f is perpendicular to the level curves or level surfaces.

Example

Find the direction of maximum increase of the function $f(x, y) = x^2/4 + y^2/9$ at an arbitrary point (x, y), and also at the points (1, 0) and (0, 1).

Example

Find the direction of maximum increase of the function $f(x, y) = x^2/4 + y^2/9$ at an arbitrary point (x, y), and also at the points (1, 0) and (0, 1).

Solution: The direction of maximum increase of f is the direction of its gradient vector:

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the direction of maximum increase of the function $f(x, y) = x^2/4 + y^2/9$ at an arbitrary point (x, y), and also at the points (1, 0) and (0, 1).

Solution: The direction of maximum increase of f is the direction of its gradient vector:

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle.$$

At the points (1,0) and (0,1) we obtain, respectively,

$$abla f = \left\langle \frac{1}{2}, 0 \right\rangle. \qquad
abla f = \left\langle 0, \frac{2}{9} \right\rangle.$$

<1

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: We first verify that P_0 belongs to the level curve f(x, y) = 1.

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: We first verify that P_0 belongs to the level curve f(x, y) = 1. This is the case, since

$$\frac{1}{4} + \frac{(9)(3)}{4} \frac{1}{9} = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: We first verify that P_0 belongs to the level curve f(x, y) = 1. This is the case, since

$$\frac{1}{4} + \frac{(9)(3)}{4} \frac{1}{9} = 1.$$

The equation of the line we look for is

$$\mathsf{r}(t) = \left\langle 1, -\frac{3\sqrt{3}}{2} \right\rangle + t \left\langle v_x, v_y \right\rangle,$$

where $\mathbf{v} = \langle v_x, v_y \rangle$ is tangent to the level curve f(x, y) = 1 at P_0 .

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 .

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 . Since,

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle \quad \Rightarrow \quad \left(\nabla f \right)_{P_0} = \left\langle \frac{1}{2}, -\frac{2}{9} \frac{3\sqrt{3}}{2} \right\rangle = \left\langle \frac{1}{2}, -\frac{1}{\sqrt{3}} \right\rangle.$$

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 . Since,

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle \quad \Rightarrow \quad \left(\nabla f \right)_{\rho_0} = \left\langle \frac{1}{2}, -\frac{2}{9} \frac{3\sqrt{3}}{2} \right\rangle = \left\langle \frac{1}{2}, -\frac{1}{\sqrt{3}} \right\rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore,

$$0 = \mathbf{v} \cdot \left(\nabla f \right)_{P_0}$$

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 . Since,

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle \quad \Rightarrow \quad \left(\nabla f \right)_{\rho_0} = \left\langle \frac{1}{2}, -\frac{2}{9} \frac{3\sqrt{3}}{2} \right\rangle = \left\langle \frac{1}{2}, -\frac{1}{\sqrt{3}} \right\rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore,

$$0 = \mathbf{v} \cdot \left(\nabla f\right)_{P_0} \quad \Rightarrow \quad \frac{1}{2} v_x = \frac{1}{\sqrt{3}} v_y$$

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 . Since,

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle \quad \Rightarrow \quad \left(\nabla f \right)_{P_0} = \left\langle \frac{1}{2}, -\frac{2}{9} \frac{3\sqrt{3}}{2} \right\rangle = \left\langle \frac{1}{2}, -\frac{1}{\sqrt{3}} \right\rangle.$$

Therefore,

$$0 = \mathbf{v} \cdot \left(\nabla f\right)_{P_0} \quad \Rightarrow \quad \frac{1}{2} v_x = \frac{1}{\sqrt{3}} v_y \quad \Rightarrow \quad \mathbf{v} = \langle 2, \sqrt{3} \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Given the function $f(x, y) = x^2/4 + y^2/9$, find the equation of a line tangent to a level curve f(x, y) = 1 at the point $P_0 = (1, -3\sqrt{3}/2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_0 . Since,

$$\nabla f = \left\langle \frac{x}{2}, \frac{2y}{9} \right\rangle \quad \Rightarrow \quad \left(\nabla f \right)_{P_0} = \left\langle \frac{1}{2}, -\frac{2}{9} \frac{3\sqrt{3}}{2} \right\rangle = \left\langle \frac{1}{2}, -\frac{1}{\sqrt{3}} \right\rangle.$$

Therefore,

$$0 = \mathbf{v} \cdot \left(\nabla f\right)_{P_0} \quad \Rightarrow \quad \frac{1}{2} v_x = \frac{1}{\sqrt{3}} v_y \quad \Rightarrow \quad \mathbf{v} = \langle 2, \sqrt{3} \rangle.$$

The line is $\mathbf{r}(t) = \left\langle 1, -\frac{3\sqrt{3}}{2} \right\rangle + t \left\langle 2, \sqrt{3} \right\rangle.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Further properties of the the gradient vector.

Theorem

If f, g are differentiable scalar valued vector functions, $g \neq 0$, and $k \in R$ any constant, then holds,

1.
$$\nabla(kf) = k (\nabla f);$$

2. $\nabla(f \pm g) = \nabla f \pm \nabla g;$
3. $\nabla(fg) = (\nabla f)g + f (\nabla g);$
4. $\nabla\left(\frac{f}{g}\right) = \frac{(\nabla f)g - f (\nabla g)}{g^2}$

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- ► The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
 - Review: Scalar functions of one variable.
 - Scalar functions of more than one variable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Given a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ and an interior point $(x_0, y_0) \in D$, let *L* be the linear function

$$L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$$

The function f is called *differentiable at* (x_0, y_0) iff the function f is approximated by the linear function L near (x_0, y_0) , that is,

$$f(x, y) = L(x, y) + \epsilon_1 (x - x_0) + \epsilon_2 (y - y_0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the functions ϵ_1 and $\epsilon_2 \rightarrow 0$ as $(x, y) \rightarrow (x_0, y_0)$.

Definition

Given a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ and an interior point $(x_0, y_0) \in D$, let *L* be the linear function

$$L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$$

The function f is called *differentiable at* (x_0, y_0) iff the function f is approximated by the linear function L near (x_0, y_0) , that is,

$$f(x, y) = L(x, y) + \epsilon_1 (x - x_0) + \epsilon_2 (y - y_0)$$

where the functions ϵ_1 and $\epsilon_2 \rightarrow 0$ as $(x, y) \rightarrow (x_0, y_0)$.

Theorem

If the partial derivatives f_x and f_y of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ are continuous in an open region $R \subset D$, then f is differentiable in R.

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Solution: The partial derivatives of f are given by $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$, which are continuous functions. Therefore, the function f is differentiable.

(日) (同) (三) (三) (三) (○) (○)

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Solution: The partial derivatives of f are given by $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at (1, 2) is

$$L(x, y) = f_x(1, 2) (x - 1) + f_y(1, 2) (y - 2) + f(1, 2).$$

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Solution: The partial derivatives of f are given by $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at (1, 2) is

$$L(x, y) = f_x(1, 2) (x - 1) + f_y(1, 2) (y - 2) + f(1, 2).$$

That is, we need three numbers to find the linear function L: $f_x(1,2)$, $f_y(1,2)$, and f(1,2).

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Solution: The partial derivatives of f are given by $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at (1, 2) is

$$L(x,y) = f_x(1,2)(x-1) + f_y(1,2)(y-2) + f(1,2).$$

That is, we need three numbers to find the linear function L: $f_x(1,2)$, $f_y(1,2)$, and f(1,2). These numbers are:

$$f_x(1,2) = 2$$
, $f_y(1,2) = 4$, $f(1,2) = 5$.

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y) = x^2 + y^2$ is differentiable for all $(x, y) \in \mathbb{R}^2$. Furthermore, find the linear function *L*, mentioned in the definition of a differentiable function, at the point (1, 2).

Solution: The partial derivatives of f are given by $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at (1, 2) is

$$L(x, y) = f_x(1, 2) (x - 1) + f_y(1, 2) (y - 2) + f(1, 2).$$

That is, we need three numbers to find the linear function L: $f_x(1,2)$, $f_y(1,2)$, and f(1,2). These numbers are:

$$f_x(1,2) = 2, \quad f_y(1,2) = 4, \quad f(1,2) = 5.$$

 \triangleleft

(日) (同) (三) (三) (三) (○) (○)

Therefore, L(x, y) = 2(x - 1) + 4(y - 2) + 5.

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
 - Review: Scalar functions of one variable.
 - Scalar functions of more than one variable.

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 .

(ロ)、(型)、(E)、(E)、 E、 の(の)

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y),

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5,

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5, or equivalently

$$2(x-1) + 4(y-2) - (z-5) = 0.$$

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5, or equivalently

$$2(x-1) + 4(y-2) - (z-5) = 0.$$

This is a plane passing through $\tilde{P}_0 = (1, 2, 5)$ with normal vector $\mathbf{n} = \langle 2, 4, -1 \rangle$.

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5, or equivalently

$$2(x-1) + 4(y-2) - (z-5) = 0.$$

This is a plane passing through $\tilde{P}_0 = (1, 2, 5)$ with normal vector $\mathbf{n} = \langle 2, 4, -1 \rangle$. Analogously, the function

$$L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a plane in \mathbb{R}^3 .

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5, or equivalently

$$2(x-1) + 4(y-2) - (z-5) = 0.$$

This is a plane passing through $\tilde{P}_0 = (1, 2, 5)$ with normal vector $\mathbf{n} = \langle 2, 4, -1 \rangle$. Analogously, the function

$$L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$$

is a plane in \mathbb{R}^3 . Using the notation z = L(x, y) we obtain

 $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0.$

Remark:

The function L(x, y) = 2(x - 1) + 4(y - 2) + 5 is a plane in \mathbb{R}^3 . We usually write down the equation of a plane using the notation z = L(x, y), that is, z = 2(x - 1) + 4(y - 2) + 5, or equivalently

$$2(x-1) + 4(y-2) - (z-5) = 0.$$

This is a plane passing through $\tilde{P}_0 = (1, 2, 5)$ with normal vector $\mathbf{n} = \langle 2, 4, -1 \rangle$. Analogously, the function

$$L(x,y) = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + f(x_0,y_0)$$

is a plane in \mathbb{R}^3 . Using the notation z = L(x, y) we obtain

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0.$$

This is a plane passing through $\tilde{P}_0 = (x_0, y_0, f(x_0, y_0))$ with normal vector $\mathbf{n} = \langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$.

Theorem

The plane tangent to the graph of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point (x_0, y_0) is given by

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Theorem

The plane tangent to the graph of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point (x_0, y_0) is given by

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

Proof

The plane contains the point $\tilde{P}_0 = (x_0, y_0, f(x_0, y_0))$. We only need to find its normal vector **n**.

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z.

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. A vector normal to this level surface is its gradient ∇F .

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. A vector normal to this level surface is its gradient ∇F . That is, $\nabla F = \langle F_x, F_y, F_z \rangle$

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. A vector normal to this level surface is its gradient ∇F . That is, $\nabla F = \langle F_x, F_y, F_z \rangle = \langle f_x, f_y, -1 \rangle$.

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. A vector normal to this level surface is its gradient ∇F . That is, $\nabla F = \langle F_x, F_y, F_z \rangle = \langle f_x, f_y, -1 \rangle$.

Therefore, the normal to the tangent plane L(x, y) at the point P_0 is $\mathbf{n} = \langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$.

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. A vector normal to this level surface is its gradient ∇F . That is, $\nabla F = \langle F_x, F_y, F_z \rangle = \langle f_x, f_y, -1 \rangle$.

Therefore, the normal to the tangent plane L(x, y) at the point P_0 is $\mathbf{n} = \langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$. Recall that the plane contains the point $\tilde{P}_0 = (x_0, y_0, f(x_0, y_0))$.

The vector **n** normal to the plane L(x, y) is a vector perpendicular to the surface z = f(x, y) at $P_0 = (x_0, y_0)$.

This surface is the level surface F(x, y, z) = 0 of the function F(x, y, z) = f(x, y) - z. A vector normal to this level surface is its gradient ∇F . That is, $\nabla F = \langle F_x, F_y, F_z \rangle = \langle f_x, f_y, -1 \rangle$.

Therefore, the normal to the tangent plane L(x, y) at the point P_0 is $\mathbf{n} = \langle f_x(x_0, y_0), f_y(x_0, y_0), -1 \rangle$. Recall that the plane contains the point $\tilde{P}_0 = (x_0, y_0, f(x_0, y_0))$. The equation for the plane is

 $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0.$

Summary: We have shown that the linear L given by

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

is the plane tangent to the graph of f at (x_0, y_0) .

Summary: We have shown that the linear *L* given by

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0)$

is the plane tangent to the graph of f at (x_0, y_0) .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary: We have shown that the linear *L* given by

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0)$

is the plane tangent to the graph of f at (x_0, y_0) .

Remark: The graph of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is approximated by the tangent plane *L* at every point in *D*.

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

Solution: The partial derivatives of f are given by

$$f_x(x,y) = \frac{1}{1+(x+2y)^2}, \quad f_y(x,y) = \frac{2}{1+(x+2y)^2}.$$

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

Solution: The partial derivatives of f are given by

$$f_x(x,y) = \frac{1}{1+(x+2y)^2}, \quad f_y(x,y) = \frac{2}{1+(x+2y)^2}.$$

These functions are continuous in \mathbb{R}^2 , so f(x, y) is differentiable at every point in \mathbb{R}^2 .

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

Solution: The partial derivatives of f are given by

$$f_x(x,y) = \frac{1}{1+(x+2y)^2}, \quad f_y(x,y) = \frac{2}{1+(x+2y)^2},$$

These functions are continuous in \mathbb{R}^2 , so f(x, y) is differentiable at every point in \mathbb{R}^2 . The plane L(x, y) at (1, 0) is given by

$$L(x,y) = f_x(1,0)(x-1) + f_y(1,0)(y-0) + f(1,0),$$

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

Solution: The partial derivatives of f are given by

$$f_x(x,y) = \frac{1}{1+(x+2y)^2}, \quad f_y(x,y) = \frac{2}{1+(x+2y)^2},$$

These functions are continuous in \mathbb{R}^2 , so f(x, y) is differentiable at every point in \mathbb{R}^2 . The plane L(x, y) at (1, 0) is given by

$$L(x,y) = f_x(1,0)(x-1) + f_y(1,0)(y-0) + f(1,0),$$

(日) (同) (三) (三) (三) (○) (○)

where $f(1,0) = \arctan(1) = \pi/4$, $f_x(1,0) = 1/2$, $f_y(1,0) = 1$.

Example

Show that $f(x, y) = \arctan(x + 2y)$ is differentiable and find the plane tangent to f(x, y) at (1, 0).

Solution: The partial derivatives of f are given by

$$f_x(x,y) = \frac{1}{1+(x+2y)^2}, \quad f_y(x,y) = \frac{2}{1+(x+2y)^2}.$$

These functions are continuous in \mathbb{R}^2 , so f(x, y) is differentiable at every point in \mathbb{R}^2 . The plane L(x, y) at (1, 0) is given by

$$L(x,y) = f_x(1,0)(x-1) + f_y(1,0)(y-0) + f(1,0),$$

where $f(1,0) = \arctan(1) = \pi/4$, $f_x(1,0) = 1/2$, $f_y(1,0) = 1$. Then, $L(x,y) = \frac{1}{2}(x-1) + y + \frac{\pi}{4}$.

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- ► The linear approximation of a differentiable function.

- Bounds for the error of a linear approximation.
- The differential of a function.
 - Review: Scalar functions of one variable.
 - Scalar functions of more than one variable.

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

Example

Find the linear approximation of $f = \sqrt{17 - x^2 - 4y^2}$ at (2,1).

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

Example

Find the linear approximation of $f = \sqrt{17 - x^2 - 4y^2}$ at (2, 1). Solution: $L(x, y) = f_x(2, 1)(x - 2) + f_y(2, 1)(y - 1) + f(2, 1)$.

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

Example

Find the linear approximation of $f = \sqrt{17 - x^2 - 4y^2}$ at (2, 1). Solution: $L(x, y) = f_x(2, 1)(x - 2) + f_y(2, 1)(y - 1) + f(2, 1)$. We need three numbers: f(2, 1), $f_x(2, 1)$, and $f_y(2, 1)$.

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

Example

Find the linear approximation of $f = \sqrt{17 - x^2 - 4y^2}$ at (2, 1). Solution: $L(x, y) = f_x(2, 1)(x - 2) + f_y(2, 1)(y - 1) + f(2, 1)$. We need three numbers: f(2, 1), $f_x(2, 1)$, and $f_y(2, 1)$. These are: f(2, 1) = 3, $f_x(2, 1) = -2/3$, and $f_y(2, 1) = -4/3$.

The linear approximation of a differentiable function.

Definition

The *linear approximation* of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point $(x_0, y_0) \in D$ is the plane

 $L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$

Example

Find the linear approximation of $f = \sqrt{17 - x^2 - 4y^2}$ at (2, 1). Solution: $L(x, y) = f_x(2, 1)(x - 2) + f_y(2, 1)(y - 1) + f(2, 1)$. We need three numbers: f(2, 1), $f_x(2, 1)$, and $f_y(2, 1)$. These are: f(2, 1) = 3, $f_x(2, 1) = -2/3$, and $f_y(2, 1) = -4/3$. Then the plane is given by $L(x, y) = -\frac{2}{3}(x - 2) - \frac{4}{3}(y - 1) + 3$. Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- ► The linear approximation of a differentiable function.
- **•** Bounds for the error of a linear approximation.
- The differential of a function.
 - Review: Scalar functions of one variable.
 - Scalar functions of more than one variable.

Theorem

Assume that the function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has first and second partial derivatives continuous on an open set containing a rectangular region $R \subset D$ centered at the point (x_0, y_0) . If $M \in \mathbb{R}$ is the upper bound for $|f_{xx}|$, $|f_{yy}|$, and $|f_{xy}|$ in R, then the error E(x, y) = f(x, y) - L(x, y) satisfies the inequality

$$|E(x,y)| \leq \frac{1}{2} M (|x-x_0|+|y-y_0|)^2,$$

where L(x, y) is the linearization of f at (x_0, y_0) , that is,

$$L(x, y) = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + f(x_0, y_0).$$

(日) (同) (三) (三) (三) (○) (○)

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x, y) \in \mathbb{R}^2 : |x - 1| < 0.1, |y - 2| < 0.1\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x,y) \in \mathbb{R}^2 : |x-1| < 0.1, |y-2| < 0.1\}$$

Solution: The second derivatives of f are $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$.

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x,y) \in \mathbb{R}^2 : |x-1| < 0.1, |y-2| < 0.1\}$$

Solution: The second derivatives of f are $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$. Therefore, we can take M = 2.

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x,y) \in \mathbb{R}^2 : |x-1| < 0.1, |y-2| < 0.1\}$$

Solution: The second derivatives of f are $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$. Therefore, we can take M = 2.

Then the formula
$$|E(x,y)| \leqslant rac{1}{2} M \left(|x-x_0|+|y-y_0|
ight)^2$$
, implies

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x,y) \in \mathbb{R}^2 : |x-1| < 0.1, |y-2| < 0.1\}$$

Solution: The second derivatives of f are $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$. Therefore, we can take M = 2.

Then the formula
$$|E(x,y)| \leq \frac{1}{2} M (|x-x_0|+|y-y_0|)^2$$
, implies

$$|E(x,y)| \leq (|x-1|+|y-2|)^2 < (0.1+0.1)^2 = 0.04,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

that is |E(x, y)| < 0.04.

Example

Find an upper bound for the error in the linear approximation of $f(x, y) = x^2 + y^2$ at the point (1, 2) over the rectangle

$$R = \{(x,y) \in \mathbb{R}^2 \; : \; |x-1| < 0.1, \quad |y-2| < 0.1\}$$

Solution: The second derivatives of f are $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$. Therefore, we can take M = 2.

Then the formula
$$|E(x,y)| \leq \frac{1}{2} M (|x-x_0|+|y-y_0|)^2$$
, implies

$$|E(x,y)| \leq (|x-1|+|y-2|)^2 < (0.1+0.1)^2 = 0.04,$$

that is |E(x, y)| < 0.04. Since f(1, 2) = 5, the percentage relative error 100 E(x, y)/f(1, 2) is bounded by 0.8%

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- ► The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
 - Review: Scalar functions of one variable.
 - Scalar functions of more than one variable.

Definition

The *differential at* $x_0 \in D$ of a differentiable function $f: D \subset \mathbb{R} \to \mathbb{R}$ is the linear function

 $df(x) = L(x) - f(x_0).$

Definition

The *differential at* $x_0 \in D$ of a differentiable function $f: D \subset \mathbb{R} \to \mathbb{R}$ is the linear function

 $df(x) = L(x) - f(x_0).$

Remark: The linear approximation of f(x) at x_0 is the line given by $L(x) = f'(x_0)(x - x_0) + f(x_0)$.

Definition

The *differential at* $x_0 \in D$ of a differentiable function $f: D \subset \mathbb{R} \to \mathbb{R}$ is the linear function

 $df(x) = L(x) - f(x_0).$

Remark: The linear approximation of f(x) at x_0 is the line given by $L(x) = f'(x_0)(x - x_0) + f(x_0)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore

 $df(x) = f'(x_0)(x - x_0).$

Definition

The *differential at* $x_0 \in D$ of a differentiable function $f: D \subset \mathbb{R} \to \mathbb{R}$ is the linear function

 $df(x) = L(x) - f(x_0).$

Remark: The linear approximation of f(x) at x_0 is the line given by $L(x) = f'(x_0)(x - x_0) + f(x_0)$.

Therefore

 $df(x) = f'(x_0)(x - x_0).$

Denoting $dx = x - x_0$,

 $df = f'(x_0) \, dx.$

Definition

The *differential at* $x_0 \in D$ of a differentiable function $f: D \subset \mathbb{R} \to \mathbb{R}$ is the linear function

 $df(x) = L(x) - f(x_0).$

Remark: The linear approximation of f(x) at x_0 is the line given by $L(x) = f'(x_0)(x - x_0) + f(x_0)$.

Therefore

 $df(x) = f'(x_0)(x - x_0).$

Denoting $dx = x - x_0$,

 $df = f'(x_0) \, dx.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Definition

The *differential at* $(x_0, y_0) \in D$ of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the linear function

 $df(x, y) = L(x, y) - f(x_0, y_0).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Definition

The *differential at* $(x_0, y_0) \in D$ of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the linear function

 $df(x, y) = L(x, y) - f(x_0, y_0).$

Remark: The linear approximation of f(x, y) at (x_0, y_0) is the plane $L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$.

Definition

The *differential at* $(x_0, y_0) \in D$ of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the linear function

 $df(x, y) = L(x, y) - f(x_0, y_0).$

Remark: The linear approximation of f(x, y) at (x_0, y_0) is the plane $L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$. Therefore $df(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$.

Definition

The *differential at* $(x_0, y_0) \in D$ of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the linear function

 $df(x, y) = L(x, y) - f(x_0, y_0).$

Remark: The linear approximation of f(x, y) at (x_0, y_0) is the plane $L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$.

Therefore $df(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$

Denoting $dx = x - x_0$ and $dy = (y - y_0)$ we obtain the usual expression

 $df = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy.$

Definition

The *differential at* $(x_0, y_0) \in D$ of a differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the linear function

 $df(x, y) = L(x, y) - f(x_0, y_0).$

Remark: The linear approximation of f(x, y) at (x_0, y_0) is the plane $L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$.

Therefore $df(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$

Denoting $dx = x - x_0$ and $dy = (y - y_0)$ we obtain the usual expression

$$df = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy.$$

Therefore, df and L are similar concepts: The linear approximation of a differentiable function f.

Example

Compute the *df* of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this *df* for dx = 0.1, dy = 0.2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Compute the *df* of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this *df* for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x_0, y_0) is given by

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Compute the *df* of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this *df* for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x_0, y_0) is given by

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

The partial derivatives f_x and f_y are given by

$$f_x(x,y) = \frac{2x}{1+x^2+y^2}, \qquad f_y(x,y) = \frac{2y}{1+x^2+y^2}.$$

Example

Compute the *df* of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this *df* for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x_0, y_0) is given by

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

The partial derivatives f_x and f_y are given by

$$f_x(x,y) = \frac{2x}{1+x^2+y^2}, \qquad f_y(x,y) = \frac{2y}{1+x^2+y^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, $f_x(1,1) = 2/3 = f_y(1,1)$.

Example

Compute the *df* of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this *df* for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x_0, y_0) is given by

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

The partial derivatives f_x and f_y are given by

$$f_x(x,y) = rac{2x}{1+x^2+y^2}, \qquad f_y(x,y) = rac{2y}{1+x^2+y^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, $f_x(1,1) = 2/3 = f_y(1,1)$. Then $df = \frac{2}{3} dx + \frac{2}{3} dy$.

Example

Compute the *df* of the function $f(x, y) = \ln(1 + x^2 + y^2)$ at the point (1, 1). Evaluate this *df* for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x_0, y_0) is given by

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

The partial derivatives f_x and f_y are given by

$$f_x(x,y) = \frac{2x}{1+x^2+y^2}, \qquad f_y(x,y) = \frac{2y}{1+x^2+y^2}.$$

Therefore, $f_x(1,1) = 2/3 = f_y(1,1)$. Then $df = \frac{2}{3} dx + \frac{2}{3} dy$. Evaluating this differential at dx = 0.1 and dy = 0.2 we obtain

$$df = \frac{2}{3}\frac{1}{10} + \frac{2}{3}\frac{2}{10} = \frac{2}{3}\frac{3}{10} \implies df = \frac{1}{5}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution:

The data of the problem is: $h_0 = 12cm$, $r_0 = 4cm$, dr = 0.04cm and dh = 0.08cm. The function to consider is the mass of the cylinder, $M = \rho V$, where $\rho = 2.7gr/cm^3$ is the aluminum density and V is the volume of the cylinder,

$$V(r,h)=\pi r^2h.$$

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution:

The data of the problem is: $h_0 = 12cm$, $r_0 = 4cm$, dr = 0.04cm and dh = 0.08cm. The function to consider is the mass of the cylinder, $M = \rho V$, where $\rho = 2.7gr/cm^3$ is the aluminum density and V is the volume of the cylinder,

$$V(r,h)=\pi r^2h.$$

The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right], \quad (\text{recall } dh = 2dr.)$$

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right],$$

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right],$$

A linear approximation to $\Delta V = V(r + dr, h + dh) - V(r, h)$ is $dV = V_r dr + V_h dh$,

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right],$$

A linear approximation to $\Delta V = V(r + dr, h + dh) - V(r, h)$ is $dV = V_r dr + V_h dh$, that is,

$$dV = V_r(r_0, h_0)dr + V_h(r_0, h_0)dh.$$

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right],$$

A linear approximation to $\Delta V = V(r + dr, h + dh) - V(r, h)$ is $dV = V_r dr + V_h dh$, that is,

$$dV = V_r(r_0, h_0)dr + V_h(r_0, h_0)dh.$$

Since $V(r, h) = \pi r^2 h$, we obtain $dV = 2\pi r_0 h_0 dr + \pi r_0^2 dh$.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right],$$

A linear approximation to $\Delta V = V(r + dr, h + dh) - V(r, h)$ is $dV = V_r dr + V_h dh$, that is,

$$dV = V_r(r_0, h_0)dr + V_h(r_0, h_0)dh.$$

Since $V(r, h) = \pi r^2 h$, we obtain $dV = 2\pi r_0 h_0 dr + \pi r_0^2 dh$.

Therefore, $dV = 16.1 \, cm^3$.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8cm and height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

$$\Delta M = \rho \left[V(r + dr, h + dh) - V(r, h) \right],$$

A linear approximation to $\Delta V = V(r + dr, h + dh) - V(r, h)$ is $dV = V_r dr + V_h dh$, that is,

$$dV = V_r(r_0, h_0)dr + V_h(r_0, h_0)dh.$$

Since $V(r, h) = \pi r^2 h$, we obtain $dV = 2\pi r_0 h_0 dr + \pi r_0^2 dh$.

Therefore, $dV = 16.1 \text{ cm}^3$. Since $dM = \rho dV$, a linear estimate for the aluminum needed to build the can is dM = 43.47 gr.

Local and absolute extrema, saddle points (Sect. 14.7).

Review: Local extrema for functions of one variable.

- Definition of local extrema.
- Characterization of local extrema.
 - First derivative test.
 - Second derivative test.
- Absolute extrema of a function in a domain.

Review: Local extrema for functions of one variable. Recall: Main results on local extrema for f(x):

at	f	f′	f″
а	max.	0	< 0
b	infl.	\neq 0	\pm 0 \mp
С	min.	0	> 0
d	infl.	= 0	\pm 0 \mp

(日) (雪) (日) (日) (日)

Review: Local extrema for functions of one variable. Recall: Main results on local extrema for f(x):

at	f	f'	f″
а	max.	0	< 0
b	infl.	\neq 0	\pm 0 \mp
С	min.	0	> 0
d	infl.	= 0	\pm 0 \mp

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks: Assume that f is twice continuously differentiable.

• If x_0 is local maximum or minimum of f, then $f'(x_0) = 0$.

Review: Local extrema for functions of one variable.

at	f	f′	f″
а	max.	0	< 0
b	infl.	\neq 0	\pm 0 \mp
С	min.	0	> 0
d	infl.	= 0	\pm 0 \mp

Remarks: Assume that f is twice continuously differentiable.

- If x_0 is local maximum or minimum of f, then $f'(x_0) = 0$.
- If f'(x₀) = 0 then x₀ is a critical point of f, that is, x₀ is a maximum or a minimum or an inflection point.

Review: Local extrema for functions of one variable.

Recall: Main results on local extrema for f(x):

at	f	f'	f″
а	max.	0	< 0
b	infl.	\neq 0	\pm 0 \mp
С	min.	0	> 0
d	infl.	= 0	\pm 0 \mp

Remarks: Assume that f is twice continuously differentiable.

- If x_0 is local maximum or minimum of f, then $f'(x_0) = 0$.
- If f'(x₀) = 0 then x₀ is a critical point of f, that is, x₀ is a maximum or a minimum or an inflection point.
- The second derivative test determines whether a critical point is a maximum, minimum of or an inflection point.

Local and absolute extrema, saddle points (Sect. 14.7).

Review: Local extrema for functions of one variable.

- Definition of local extrema.
- Characterization of local extrema.
 - First derivative test.
 - Second derivative test.
- Absolute extrema of a function in a domain.

Definition of local extrema for functions of two variables.

Definition

A function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *local maximum* at the point $(a, b) \in D$ iff holds that $f(x, y) \leq f(a, b)$ for every point (x, y) in a neighborhood of (a, b). A function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *local minimum* at the point

 $(a, b) \in D$ iff holds that $f(x, y) \ge f(a, b)$ for every point (x, y) in a neighborhood of (a, b).

- ロ ト - 4 回 ト - 4 □ - 4

Definition of local extrema for functions of two variables.

Definition

A function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *local maximum* at the point $(a, b) \in D$ iff holds that $f(x, y) \leq f(a, b)$ for every point (x, y) in a neighborhood of (a, b).

A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *local minimum* at the point $(a, b) \in D$ iff holds that $f(x, y) \ge f(a, b)$ for every point (x, y) in a neighborhood of (a, b).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition of local extrema for functions of two variables.

Definition

A differentiable function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has a *saddle point* at an interior point $(a, b) \in D$ iff in every open disk in D centered at (a, b) there always exist points (x, y) where f(x, y) > f(a, b) and other points (x, y) where f(x, y) < f(a, b).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Local and absolute extrema, saddle points (Sect. 14.7).

Review: Local extrema for functions of one variable.

- Definition of local extrema.
- Characterization of local extrema.
 - First derivative test.
 - Second derivative test.
- Absolute extrema of a function in a domain.

First derivative test.

Theorem

If a differentiable function f has a local maximum or minimum at (a, b) then holds $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First derivative test.

Theorem

If a differentiable function f has a local maximum or minimum at (a, b) then holds $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n} = \langle f_x, f_y, -1 \rangle = \langle 0, 0, -1 \rangle$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

First derivative test.

Theorem

If a differentiable function f has a local maximum or minimum at (a, b) then holds $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n} = \langle f_x, f_y, -1 \rangle = \langle 0, 0, -1 \rangle$.

Definition

The interior point $(a, b) \in D$ of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ is a *critical point* of f iff $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

First derivative test.

Theorem

If a differentiable function f has a local maximum or minimum at (a, b) then holds $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n} = \langle f_x, f_y, -1 \rangle = \langle 0, 0, -1 \rangle$.

Definition

The interior point $(a, b) \in D$ of a differentiable function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ is a *critical point* of f iff $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$.

Remark:

Critical points include local maxima, local minima, and saddle points.

First derivative test.

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

First derivative test.

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$

Solution: The critical points are the points where ∇f vanishes.

-irst derivative test

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$

Solution: The critical points are the points where ∇f vanishes. Since $\nabla f = \langle -2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, (a, b) = (0, 0).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$

Solution: The critical points are the points where ∇f vanishes. Since $\nabla f = \langle -2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, (a, b) = (0, 0).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: Since $f(x, y) \leq 0$ for all $(x, y) \in \mathbb{R}^2$ and f(0, 0) = 0, then the point (0, 0) must be a local maximum of f.

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$

Solution: The critical points are the points where ∇f vanishes. Since $\nabla f = \langle -2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, (a, b) = (0, 0).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: Since $f(x, y) \leq 0$ for all $(x, y) \in \mathbb{R}^2$ and f(0, 0) = 0, then the point (0, 0) must be a local maximum of f.

Example

Find the critical points of the function $f(x, y) = x^2 - y^2$

Example

Find the critical points of the function $f(x, y) = -x^2 - y^2$

Solution: The critical points are the points where ∇f vanishes. Since $\nabla f = \langle -2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, (a, b) = (0, 0).

Remark: Since $f(x, y) \leq 0$ for all $(x, y) \in \mathbb{R}^2$ and f(0, 0) = 0, then the point (0, 0) must be a local maximum of f.

Example

Find the critical points of the function $f(x, y) = x^2 - y^2$

Solution: Since $\nabla f = \langle 2x, -2y \rangle$, the only solution to $\nabla f = \langle 0, 0 \rangle$ is x = 0, y = 0. That is, we again obtain (a, b) = (0, 0).

Second derivative test.

Theorem

Let (a, b) be a critical point of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$, that is, $(\nabla f)|_{(a,b)} = \langle 0, 0 \rangle$. Assume that f has continuous second derivatives in an open disk in D with center in (a, b) and denote

 $D = f_{xx}(a,b) f_{yy}(a,b) - \left[f_{xy}(a,b)\right]^2.$

Then, the following statements hold:

- If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- ▶ If *D* < 0, then *f*(*a*, *b*) is a saddle point.
- ▶ If *D* = 0 the test is inconclusive.

Notation: The number D is called the discriminant of f at (a, b).

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

 $\nabla f = \langle -2x, 2y \rangle$

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The only critical point is (a, b) = (0, 0).

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The only critical point is (a, b) = (0, 0).

We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$.

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The only critical point is (a, b) = (0, 0).

We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$. Since $f_{xx}(0, 0) = -2$, $f_{yy}(0, 0) = 2$, and $f_{xy}(0, 0) = 0$,

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

(日) (同) (三) (三) (三) (○) (○)

The only critical point is (a, b) = (0, 0).

We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$.

Since $f_{xx}(0,0) = -2$, $f_{yy}(0,0) = 2$, and $f_{xy}(0,0) = 0$, we get

$$D = (-2)(2) = -4 < 0$$

Second derivative test.

Example

Find the local extrema of $f(x, y) = y^2 - x^2$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$abla f = \langle -2x, 2y \rangle \quad \Rightarrow \quad (\nabla f) \big|_{(a,b)} = \langle 0, 0 \rangle \quad \text{iff} \quad (a,b) = (0,0).$$

The only critical point is (a, b) = (0, 0).

We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$.

Since $f_{xx}(0,0) = -2$, $f_{yy}(0,0) = 2$, and $f_{xy}(0,0) = 0$, we get

 $D = (-2)(2) = -4 < 0 \implies$ saddle point at (0, 0).

 \triangleleft

(日) (同) (三) (三) (三) (○) (○)

Second derivative test.

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$abla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point.

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$abla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f.

Characterization of local extrema. Second derivative test.

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$abla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$.

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$\nabla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f. We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$. Since $f_{xx}(x, y) = 2y^2$, $f_{yy}(x, y) = 2x^2$, and $f_{xy}(x, y) = 4xy$,

(日) (同) (三) (三) (三) (○) (○)

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$abla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f. We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$. Since $f_{xx}(x, y) = 2y^2$, $f_{yy}(x, y) = 2x^2$, and $f_{xy}(x, y) = 4xy$, we obtain $f_{xx}(0, 0) = 0$, $f_{yy}(0, 0) = 0$, and $f_{xy}(0, 0) = 0$,

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: We first verify that (0,0) is a critical point of f:

$$\nabla f(x,y) = \langle 2xy^2, 2yx^2 \rangle, \quad \Rightarrow \quad (\nabla f) \big|_{(0,0)} = \langle 0, 0 \rangle,$$

therefore, (0,0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f. We need to compute $D = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$. Since $f_{xx}(x, y) = 2y^2$, $f_{yy}(x, y) = 2x^2$, and $f_{xy}(x, y) = 4xy$, we obtain $f_{xx}(0, 0) = 0$, $f_{yy}(0, 0) = 0$, and $f_{xy}(0, 0) = 0$, hence D = 0 and the test is inconclusive.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Characterization of local extrema. Second derivative test.

Example

Is the point (a, b) = (0, 0) a local extrema of $f(x, y) = y^2 x^2$?

Solution: From the graph of $f = x^2y^2$ is simple to see that (0,0) is a local minimum: (also a global minimum.) \triangleleft

Local and absolute extrema, saddle points (Sect. 14.7).

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
 - First derivative test.
 - Second derivative test.
- Absolute extrema of a function in a domain.

Absolute extrema of a function in a domain.

Definition

A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(x, y) \leq f(a, b)$ for all $(x, y) \in D$. A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(x, y) \ge f(a, b)$ for all $(x, y) \in D$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Absolute extrema of a function in a domain.

Definition

A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(x, y) \leq f(a, b)$ for all $(x, y) \in D$. A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(x, y) \ge f(a, b)$ for all $(x, y) \in D$.

Remark: Local extrema need not be the absolute extrema.

Absolute extrema of a function in a domain.

Definition

A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(x, y) \leq f(a, b)$ for all $(x, y) \in D$. A function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(x, y) \ge f(a, b)$ for all $(x, y) \in D$.

Remark: Local extrema need not be the absolute extrema.

Remark: Absolute extrema may not be defined on open intervals.

Review: Functions of one variable.

Theorem

Every continuous functions $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$, with $a < b \in \mathbb{R}$ always has absolute extrema.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Review: Functions of one variable.

Theorem

Every continuous functions $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$, with $a < b \in \mathbb{R}$ always has absolute extrema.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Recall:

▶ Intervals [a, b] are bounded and closed sets in \mathbb{R} .

Review: Functions of one variable.

Theorem

Every continuous functions $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$, with $a < b \in \mathbb{R}$ always has absolute extrema.

Recall:

- ▶ Intervals [a, b] are bounded and closed sets in \mathbb{R} .
- The set [a, b] is closed, since the boundary points belong to the set, and it is bounded, since it does not extend to infinity.

Recall: On open and closed sets in \mathbb{R}^n .

Definition

A set $S \in \mathbb{R}^n$, with $n \in \mathbb{N}$, is called *open* iff every point in S is an interior point. The set S is called *closed* iff S contains its boundary. A set S is called *bounded* iff S is contained in ball, otherwise S is called *unbounded*.

Recall: On open and closed sets in \mathbb{R}^n .

Definition

A set $S \in \mathbb{R}^n$, with $n \in \mathbb{N}$, is called *open* iff every point in S is an interior point. The set S is called *closed* iff S contains its boundary. A set S is called *bounded* iff S is contained in ball, otherwise S is called *unbounded*.

Theorem

If $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is continuous in a closed and bounded set D, then f has an absolute maximum and an absolute minimum in D.

Problem:

Find the absolute extrema of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ in a closed and bounded set D.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Problem:

Find the absolute extrema of a function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ in a closed and bounded set D.

Solution:

(1) Find every critical point of f in the interior of D and evaluate f at these points.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Problem:

Find the absolute extrema of a function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ in a closed and bounded set D.

Solution:

- (1) Find every critical point of f in the interior of D and evaluate f at these points.
- (2) Find the boundary points of D where f has local extrema, and evaluate f at these points.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Problem:

Find the absolute extrema of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ in a closed and bounded set D.

Solution:

- (1) Find every critical point of f in the interior of D and evaluate f at these points.
- (2) Find the boundary points of D where f has local extrema, and evaluate f at these points.
- (3) Look at the list of values for f found in the previous two steps.
 If f(x₀, y₀) is the biggest (smallest) value of f in the list above, then (x₀, y₀) is the absolute maximum (minimum) of f in D.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution:

(1) We find all critical points in the interior of the domain:

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2)
angle = \langle 0, 0
angle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2,1) does not belong to the domain, we discard it.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2, 1) does not belong to the domain, we discard it. (2) Three segments form the boundary of *D*:

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2,1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of *D*: Boundary I: The segment $y = 0, x \in [1, 5]$.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2,1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of *D*: Boundary I: The segment y = 0, $x \in [1, 5]$. We select the end points (1, 0), (5, 0), and we record: f(1, 0) = 2 and f(5, 0) = -2.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2,1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of *D*: Boundary I: The segment y = 0, $x \in [1, 5]$. We select the end points (1, 0), (5, 0), and we record: f(1, 0) = 2 and f(5, 0) = -2. We look for critical point on the interior of Boundary I:

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2,1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of *D*: Boundary I: The segment $y = 0, x \in [1, 5]$. We select the end points (1, 0), (5, 0), and we record: f(1, 0) = 2 and f(5, 0) = -2. We look for critical point on the interior of Boundary I: Since g(x) = f(x, 0) = 3 - x, so $g' = -1 \neq 0$.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution:

(1) We find all critical points in the interior of the domain:

$$abla f = \langle (y-1), (x+2) \rangle = \langle 0, 0 \rangle \quad \Rightarrow \quad (x_0, y_0) = (-2, 1).$$

Since (-2,1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of *D*: Boundary I: The segment $y = 0, x \in [1, 5]$. We select the end points (1, 0), (5, 0), and we record: f(1, 0) = 2 and f(5, 0) = -2. We look for critical point on the interior of Boundary I: Since g(x) = f(x, 0) = 3 - x, so $g' = -1 \neq 0$. No critical points in the interior of Boundary I.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II:

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III:

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5).

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$,

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0,4]$. We select the end point (1,4) and we record: f(1,4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1,y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$, hence g'(x) = -2x + 2

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$, hence g'(x) = -2x + 2 = 0 implies x = 1.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$, hence g'(x) = -2x + 2 = 0 implies x = 1. So, y = 4, and we selected the point (1, 4),

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$, hence g'(x) = -2x + 2 = 0 implies x = 1. So, y = 4, and we selected the point (1, 4), which was already in our list.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: Boundary II: The segment x = 1, $y \in [0, 4]$. We select the end point (1, 4) and we record: f(1, 4) = 14. We look for critical point on the interior of Boundary II: Since g(y) = f(1, y) = 3 + y - 1 + 2y = 2 + 3y, so $g' = 3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment y = -x + 5, $x \in [1, 5]$. We look for critical point on the interior of Boundary III: Since g(x) = f(x, -x + 5) = 3 + x(-x + 5) - x + 2(-x + 5). We obtain $g(x) = -x^2 + 2x + 13$, hence g'(x) = -2x + 2 = 0 implies x = 1. So, y = 4, and we selected the point (1, 4), which was already in our list. No critical points in the interior of Boundary III.

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

Solution: (3) Our list of values is:

$$f(1,0) = 2$$
 $f(1,4) = 14$ $f(5,0) = -2$

Example

Find the absolute extrema of the function f(x, y) = 3 + xy - x + 2y on the closed domain given in the Figure.

<1

Solution: (3) Our list of values is:

$$f(1,0) = 2$$
 $f(1,4) = 14$ $f(5,0) = -2$.

We conclude:

- Absolute maximum at (1,4),
- Absolute minimum at (5,0).

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution: This problem can be solved by finding the local maximum of an appropriate function f.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution: This problem can be solved by finding the local maximum of an appropriate function f.

The function f is obtained as follows: Recall the functions volume and area of a rectangular box with vertex at (0, 0, 0) and sides x, y and z:

$$V(x, y, z) = xyz, \quad A(x, y, z) = 2xy + 2xz + 2yz.$$

Since $A(x, y, z) = A_0$, we obtain $z = \frac{A_0 - 2xy}{2(x + y)}$, that is

$$f(x,y) = \frac{A_0 xy - 2x^2 y^2}{2(x+y)}.$$

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution:

We must find the critical points of $f(x, y) = \frac{A_0 xy - 2x^2 y^2}{2(x + y)}$.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution:

We must find the critical points of $f(x, y) = \frac{A_0 xy - 2x^2 y^2}{2(x + y)}$.

$$f_{x} = \frac{2A_{0}y^{2} - 4x^{2}y^{2} - 8xy^{3}}{4(x+y)^{2}}, \quad f_{y} = \frac{2A_{0}x^{2} - 4x^{2}y^{2} - 8yx^{3}}{4(x+y)^{2}}.$$

The conditions $f_x = 0$ and $f_y = 0$ and $x \neq 0$, $y \neq 0$ imply

$$\begin{array}{l} A_0 = 2x^2 + 4xy, \\ A_0 = 2y^2 + 4xy, \end{array} \} \quad \Rightarrow \quad x = y.$$

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution:

We must find the critical points of $f(x, y) = \frac{A_0 xy - 2x^2 y^2}{2(x + y)}$.

$$f_x = \frac{2A_0y^2 - 4x^2y^2 - 8xy^3}{4(x+y)^2}, \quad f_y = \frac{2A_0x^2 - 4x^2y^2 - 8yx^3}{4(x+y)^2}.$$

The conditions $f_x = 0$ and $f_y = 0$ and $x \neq 0$, $y \neq 0$ imply

$$\begin{array}{l} \left. \begin{array}{l} A_0 = 2x^2 + 4xy, \\ A_0 = 2y^2 + 4xy, \end{array} \right\} \quad \Rightarrow \quad x = y. \quad {\sf Recall} \quad z = \frac{A_0 - 2xy}{2(x + y)}, \end{array}$$

Example

Find the maximum volume of a closed rectangular box with a given surface area A_0 .

Solution:

We must find the critical points of $f(x, y) = \frac{A_0 xy - 2x^2 y^2}{2(x + y)}$.

$$f_x = \frac{2A_0y^2 - 4x^2y^2 - 8xy^3}{4(x+y)^2}, \quad f_y = \frac{2A_0x^2 - 4x^2y^2 - 8yx^3}{4(x+y)^2}.$$

The conditions $f_x = 0$ and $f_y = 0$ and $x \neq 0$, $y \neq 0$ imply

$$\begin{array}{l} \left. \begin{array}{l} A_0 = 2x^2 + 4xy, \\ A_0 = 2y^2 + 4xy, \end{array} \right\} \quad \Rightarrow \quad x = y. \quad {\sf Recall} \quad z = \frac{A_0 - 2xy}{2(x + y)}, \end{array}$$

so, $z = \frac{A_0 - 2x^2}{4x} = y$. Therefore, $x_0 = y_0 = z_0 = \sqrt{A_0/6}$.