
Directional derivatives and gradient vectors (Sect. 14.5).

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial
derivatives to any direction.

Definition
The directional derivative of the function f : D ⊂ R2 → R at the
point P0 = (x0, y0) ∈ D in the direction of a unit vector
u = 〈ux , uy 〉 is given by

(
Duf

)
P0

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
,

if the limit exists.

Notation: The directional derivative is also denoted as(df

dt

)
u,P0

.



Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial
derivatives to any direction.

Definition
The directional derivative of the function f : D ⊂ R2 → R at the
point P0 = (x0, y0) ∈ D in the direction of a unit vector
u = 〈ux , uy 〉 is given by

(
Duf

)
P0

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
,

if the limit exists.

Notation: The directional derivative is also denoted as(df

dt

)
u,P0

.



Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial
derivatives to any direction.

Definition
The directional derivative of the function f : D ⊂ R2 → R at the
point P0 = (x0, y0) ∈ D in the direction of a unit vector
u = 〈ux , uy 〉 is given by

(
Duf

)
P0

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
,

if the limit exists.

Notation: The directional derivative is also denoted as(df

dt

)
u,P0

.



Directional derivatives generalize partial derivatives.

Example

The partial derivatives fx and fy are particular cases of directional
derivatives

(
Duf

)
P0

= limt→0
1
t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
:

I u = 〈1, 0〉 = i, then
(
Dif

)
P0

= fx(x0, y0).

I u = 〈0, 1〉 = j , then
(
Dj f

)
P0

= fy (x0, y0).
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Directional derivative of functions of two variables.

Remark: The condition |u| = 1 implies that the parameter t in the
line r(t) = 〈x0, y0〉+ u t is the distance between the points
(x(t), y(t)) = (x0 + ux t, y0 + uy t) and (x0, y0).

Proof.

d = |〈x − x0, y − y0〉|,= |〈ux t, uy t〉|,= |t| |u|,

that is, d = |t|.

Remark: The directional derivative of f (x , y) at P0 = (x0, y0)
along u, denoted as

(
Duf

)
P0

, is the pointwise rate of change of f
with respect to the distance along the line parallel to u passing
through (x0, y0).
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Directional derivatives and gradient vectors (Sect. 14.5).

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



Directional derivative and partial derivatives.

Remark: The directional
derivative

(
Duf

)
P0

is the
derivative of f along the
line r(t) = 〈x0, y0〉+ u t.
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Theorem
If the function f : D ⊂ R2 → R is differentiable at P0 = (x0, y0)
and u = 〈ux , uy 〉 is a unit vector, then(

Duf
)

P0
= fx(x0, y0) ux + fy (x0, y0) uy .
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Directional derivative and partial derivatives.

Proof.
The line r(t) = 〈x0, y0〉+ 〈ux , uy 〉 t has parametric equations:
x(t) = x0 + ux t and y(t) = y0 + uy t;

Denote f evaluated along the line as f̂ (t) = f (x(t), y(t)).
Now, on the one hand, f̂ ′(0) =

(
Duf

)
P0

, since

f̂ ′(0) = lim
t→0

1

t

[
f̂ (t)− f̂ (0)

]
,

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
,

= Duf (x0, y0).

On the other hand, the chain rule implies:

f̂ ′(0) = fx(x0, y0) x ′(0) + fy (x0, y0) y ′(0).

Therefore,
(
Duf

)
P0

= fx(x0, y0) ux + fy (x0, y0) uy .
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f (x0 + ux t, y0 + uy t)− f (x0, y0)
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f̂ ′(0) = fx(x0, y0) x ′(0) + fy (x0, y0) y ′(0).
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= fx(x0, y0) ux + fy (x0, y0) uy .



Directional derivative and partial derivatives.

Proof.
The line r(t) = 〈x0, y0〉+ 〈ux , uy 〉 t has parametric equations:
x(t) = x0 + ux t and y(t) = y0 + uy t;
Denote f evaluated along the line as f̂ (t) = f (x(t), y(t)).
Now, on the one hand, f̂ ′(0) =

(
Duf

)
P0

, since

f̂ ′(0) = lim
t→0

1

t

[
f̂ (t)− f̂ (0)

]
,

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
,

= Duf (x0, y0).

On the other hand, the chain rule implies:

f̂ ′(0) = fx(x0, y0) x ′(0) + fy (x0, y0) y ′(0).

Therefore,
(
Duf

)
P0

= fx(x0, y0) ux + fy (x0, y0) uy .



Directional derivative and partial derivatives.

Proof.
The line r(t) = 〈x0, y0〉+ 〈ux , uy 〉 t has parametric equations:
x(t) = x0 + ux t and y(t) = y0 + uy t;
Denote f evaluated along the line as f̂ (t) = f (x(t), y(t)).
Now, on the one hand, f̂ ′(0) =

(
Duf

)
P0

, since

f̂ ′(0) = lim
t→0

1

t

[
f̂ (t)− f̂ (0)

]
,

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t)− f (x0, y0)

]
,

= Duf (x0, y0).

On the other hand, the chain rule implies:

f̂ ′(0) = fx(x0, y0) x ′(0) + fy (x0, y0) y ′(0).

Therefore,
(
Duf

)
P0

= fx(x0, y0) ux + fy (x0, y0) uy .



Directional derivative and partial derivatives.

Example

Compute the directional derivative of f (x , y) = sin(x + 3y) at the
point P0 = (4, 3) in the direction of vector v = 〈1, 2〉.

Solution: We need to find a unit vector in the direction of v.

Such vector is u =
v

|v|
⇒ u =

1√
5
〈1, 2〉.

We now use the formula
(
Duf

)
P0

= fx(x0, y0) ux + fy (x0, y0) uy .

That is,
(
Duf

)
P0

= cos(x0 + 3y0)(1/
√

5) + 3 cos(x0 + 3y0)(2/
√

5).

Equivalently,
(
Duf

)
P0

= (7/
√

5) cos(x0 + 3y0).

Then ,
(
Duf

)
P0

= (7/
√

5) cos(10). C
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Directional derivatives and gradient vectors (Sect. 14.5).

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



Directional derivative of functions of three variables.

Definition
The directional derivative of the function f : D ⊂ R3 → R at the
point P0 = (x0, y0, z0) ∈ D in the direction of a unit vector
u = 〈ux , uy , uz〉 is given by

(
Duf

)
P0

= lim
t→0

1

t

[
f (x0 + ux t, y0 + uy t, z0 + uz t)− f (x0, y0, z0)

]
,

if the limit exists.

Theorem
If the function f : D ⊂ R3 → R is differentiable at P0 = (x0, y0, z0)
and u = 〈ux , uy , uz〉 is a unit vector, then(

Duf
)

P0
= fx(x0, y0, z0) ux + fy (x0, y0, z0) uy + fz(x0, y0, z0) uz .
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Directional derivative of functions of three variables.

Example

Find
(
Duf

)
P0

for f (x , y , z) = x2 + 2y2 + 3z2 at the point

P0 = (3, 2, 1) along the direction given by v = 〈2, 1, 1〉.

Solution: We first find a unit vector along v,

u =
v

|v|
⇒ u =

1√
6
〈2, 1, 1〉.

Then,
(
Duf

)
is given by

(
Duf

)
= (2x)ux + (4y)uy + (6z)uz .

We conclude,
(
Duf

)
P0

= (6)
2√
6

+ (8)
1√
6

+ (6)
1√
6
,

that is,
(
Duf

)
P0

=
26√

6
. C
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Directional derivatives and gradient vectors (Sect. 14.5).

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



The gradient vector and directional derivatives.

Remark: The directional derivative of a function can be written in
terms of a dot product.

I In the case of 2 variable functions: Duf = fxux + fyuy

Duf = (∇f ) · u, with ∇f = 〈fx , fy 〉.

I In the case of 3 variable functions: Duf = fxux + fyuy + fzuz ,

Duf = (∇f ) · u, with ∇f = 〈fx , fy , fz〉.
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The gradient vector and directional derivatives.

Definition
The gradient vector of a differentiable function f : D ⊂ R2 → R at
any point (x , y) ∈ D is the vector ∇f = 〈fx , fy 〉.

The gradient vector of a differentiable function f : D ⊂ R3 → R at
any point (x , y , z) ∈ D is the vector ∇f = 〈fx , fy , fz〉.

Notation:
I For two variable functions: ∇f = fx i + fy j .

I For two variable functions: ∇f = fx i + fy j + fz k.

Theorem
If f : D ⊂ Rn → R, with n = 2, 3, is a differentiable function and u
is a unit vector, then,

Duf = (∇f ) · u.
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The gradient vector and directional derivatives.

Example

Find the gradient vector at any point in the domain of the function
f (x , y) = x2 + y2.

Solution: The gradient is ∇f = 〈fx , fy 〉, that is, ∇f = 〈2x , 2y〉. C

Remark:
∇f = 2r,
with
r = 〈x , y〉.

z f(x,y) = x  + y

x
y

2 2

D fu

x

y

  f
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Directional derivatives and gradient vectors (Sect. 14.5).

I Directional derivative of functions of two variables.

I Partial derivatives and directional derivatives.

I Directional derivative of functions of three variables.

I The gradient vector and directional derivatives.

I Properties of the the gradient vector.



Properties of the the gradient vector.

Remark: If θ is the angle between ∇f and u, then holds

Duf = ∇f · u = |∇f | cos(θ).

The formula above implies:

I The function f increases the most rapidly when u is in the
direction of ∇f , that is, θ = 0. The maximum increase rate of
f is |∇f |.

I The function f decreases the most rapidly when u is in the
direction of −∇f , that is, θ = π. The maximum decrease rate
of f is −|∇f |.

I The function f does not change along level curve or surfaces,
that is, Duf = 0. Therefore, ∇f is perpendicular to the level
curves or level surfaces.
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Properties of the the gradient vector.

Example

Find the direction of maximum increase of the function
f (x , y) = x2/4 + y2/9 at an arbitrary point (x , y), and also at the
points (1, 0) and (0, 1).

Solution: The direction of maximum increase of f is the direction
of its gradient vector:

∇f =
〈x

2
,
2y

9

〉
.

At the points (1, 0) and (0, 1) we obtain, respectively,

∇f =
〈1

2
, 0

〉
. ∇f =

〈
0,

2

9

〉
.

C
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Properties of the the gradient vector.

Example

Given the function f (x , y) = x2/4 + y2/9, find the equation of a
line tangent to a level curve f (x , y) = 1 at the point
P0 = (1,−3

√
3/2).

Solution: We first verify that P0 belongs to the level curve
f (x , y) = 1. This is the case, since

1

4
+

(9)(3)

4

1

9
= 1.
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Properties of the the gradient vector.

f

2
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Further properties of the the gradient vector.

Theorem
If f , g are differentiable scalar valued vector functions, g 6= 0, and
k ∈ R any constant, then holds,

1. ∇(kf ) = k (∇f );

2. ∇(f ± g) = ∇f ±∇g;

3. ∇(fg) = (∇f ) g + f (∇g);

4. ∇
( f

g

)
=

(∇f ) g − f (∇g)

g2
.



Tangent planes and linear approximations (Sect. 14.6).

I Review: Differentiable functions of two variables.

I The tangent plane to the graph of a function.

I The linear approximation of a differentiable function.

I Bounds for the error of a linear approximation.
I The differential of a function.

I Review: Scalar functions of one variable.
I Scalar functions of more than one variable.



Review: Differentiable functions of two variables.

Definition
Given a function f : D ⊂ R2 → R and an interior point
(x0, y0) ∈ D, let L be the linear function

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

The function f is called differentiable at (x0, y0) iff the function f
is approximated by the linear function L near (x0, y0), that is,

f (x , y) = L(x , y) + ε1 (x − x0) + ε2 (y − y0)

where the functions ε1 and ε2 → 0 as (x , y) → (x0, y0).

Theorem
If the partial derivatives fx and fy of a function f : D ⊂ R2 → R are
continuous in an open region R ⊂ D, then f is differentiable in R.
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Review: Differentiable functions of two variables.

Example

Show that the function f (x , y) = x2 + y2 is differentiable for all
(x , y) ∈ R2. Furthermore, find the linear function L, mentioned in
the definition of a differentiable function, at the point (1, 2).

Solution: The partial derivatives of f are given by fx(x , y) = 2x
and fy (x , y) = 2y , which are continuous functions. Therefore, the
function f is differentiable. The linear function L at (1, 2) is

L(x , y) = fx(1, 2) (x − 1) + fy (1, 2) (y − 2) + f (1, 2).

That is, we need three numbers to find the linear function L:
fx(1, 2), fy (1, 2), and f (1, 2). These numbers are:

fx(1, 2) = 2, fy (1, 2) = 4, f (1, 2) = 5.

Therefore, L(x , y) = 2(x − 1) + 4(y − 2) + 5. C
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The tangent plane to the graph of a function.

Remark:
The function L(x , y) = 2(x − 1) + 4(y − 2) + 5 is a plane in R3.

We usually write down the equation of a plane using the notation
z = L(x , y), that is, z = 2(x − 1) + 4(y − 2) + 5, or equivalently

2(x − 1) + 4(y − 2)− (z − 5) = 0.

This is a plane passing through P̃0 = (1, 2, 5) with normal vector
n = 〈2, 4,−1〉. Analogously, the function

L(x , y) = fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0) + f (x0, y0)

is a plane in R3. Using the notation z = L(x , y) we obtain

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)− (z − f (x0, y0)) = 0.

This is a plane passing through P̃0 = (x0, y0, f (x0, y0)) with normal
vector n = 〈fx(x0, y0), fy (x0, y0),−1〉.
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The tangent plane to the graph of a function.

Theorem
The plane tangent to the graph of a differentiable function
f : D ⊂ R2 → R at the point (x0, y0) is given by

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Proof

The plane contains the point
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This surface is the level surface F (x , y , z) = 0 of the function
F (x , y , z) = f (x , y)− z . A vector normal to this level surface is its
gradient ∇F . That is, ∇F = 〈Fx ,Fy ,Fz〉 = 〈fx , fy ,−1〉.

Therefore, the normal to the tangent plane L(x , y) at the point P0

is n = 〈fx(x0, y0), fy (x0, y0),−1〉. Recall that the plane contains
the point P̃0 = (x0, y0, f (x0, y0)). The equation for the plane is
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Summary: We have shown that the linear L given by
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Remark: The graph of a differentiable function f : D ⊂ R2 → R is
approximated by the tangent plane L at every point in D.
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The tangent plane to the graph of a function.

Example

Show that f (x , y) = arctan(x + 2y) is differentiable and find the
plane tangent to f (x , y) at (1, 0).

Solution: The partial derivatives of f are given by

fx(x , y) =
1

1 + (x + 2y)2
, fy (x , y) =

2

1 + (x + 2y)2
.

These functions are continuous in R2, so f (x , y) is differentiable at
every point in R2. The plane L(x , y) at (1, 0) is given by

L(x , y) = fx(1, 0)(x − 1) + fy (1, 0)(y − 0) + f (1, 0),

where f (1, 0) = arctan(1) = π/4, fx(1, 0) = 1/2, fy (1, 0) = 1.

Then, L(x , y) =
1

2
(x − 1) + y +

π

4
. C
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Tangent planes and linear approximations (Sect. 14.6).

I Review: Differentiable functions of two variables.

I The tangent plane to the graph of a function.

I The linear approximation of a differentiable function.

I Bounds for the error of a linear approximation.
I The differential of a function.

I Review: Scalar functions of one variable.
I Scalar functions of more than one variable.



The linear approximation of a differentiable function.

Definition
The linear approximation of a differentiable function
f : D ⊂ R2 → R at the point (x0, y0) ∈ D is the plane

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Example

Find the linear approximation of f =
√

17− x2 − 4y2 at (2, 1).

Solution: L(x , y) = fx(2, 1)(x − 2) + fy (2, 1)(y − 1) + f (2, 1).

We need three numbers: f (2, 1), fx(2, 1), and fy (2, 1).

These are: f (2, 1) = 3, fx(2, 1) = −2/3, and fy (2, 1) = −4/3.

Then the plane is given by L(x , y) = −2

3
(x − 2)− 4

3
(y − 1) + 3.C
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Bounds for the error of a linear approximation.

Theorem
Assume that the function f : D ⊂ R2 → R has first and second
partial derivatives continuous on an open set containing a
rectangular region R ⊂ D centered at the point (x0, y0).
If M ∈ R is the upper bound for |fxx |, |fyy |, and |fxy | in R, then the
error E (x , y) = f (x , y)− L(x , y) satisfies the inequality

|E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
,

where L(x , y) is the linearization of f at (x0, y0), that is,

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).



Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.

Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04. Since f (1, 2) = 5, the percentage relative
error 100 E (x , y)/f (1, 2) is bounded by 0.8% C



Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.

Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04. Since f (1, 2) = 5, the percentage relative
error 100 E (x , y)/f (1, 2) is bounded by 0.8% C



Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.

Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04. Since f (1, 2) = 5, the percentage relative
error 100 E (x , y)/f (1, 2) is bounded by 0.8% C



Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.

Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04. Since f (1, 2) = 5, the percentage relative
error 100 E (x , y)/f (1, 2) is bounded by 0.8% C



Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.

Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04.

Since f (1, 2) = 5, the percentage relative
error 100 E (x , y)/f (1, 2) is bounded by 0.8% C



Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of
f (x , y) = x2 + y2 at the point (1, 2) over the rectangle

R = {(x , y) ∈ R2 : |x − 1| < 0.1, |y − 2| < 0.1}

Solution: The second derivatives of f are fxx = 2, fyy = 2, fxy = 0.

Therefore, we can take M = 2.

Then the formula |E (x , y)| 6 1

2
M

(
|x − x0|+ |y − y0|

)2
, implies

|E (x , y)| 6
(
|x − 1|+ |y − 2|

)2
< (0.1 + 0.1)2 = 0.04,

that is |E (x , y)| < 0.04. Since f (1, 2) = 5, the percentage relative
error 100 E (x , y)/f (1, 2) is bounded by 0.8% C



Tangent planes and linear approximations (Sect. 14.6).

I Review: Differentiable functions of two variables.

I The tangent plane to the graph of a function.

I The linear approximation of a differentiable function.

I Bounds for the error of a linear approximation.
I The differential of a function.

I Review: Scalar functions of one variable.
I Scalar functions of more than one variable.



Review: Differential of functions of one variable.

Definition
The differential at x0 ∈ D of a differentiable function
f : D ⊂ R → R is the linear function

df (x) = L(x)− f (x0).

Remark: The linear approximation of f (x) at x0 is the line given
by L(x) = f ′(x0) (x − x0) + f (x0).

Therefore

df (x) = f ′(x0) (x − x0).

Denoting dx = x − x0,

df = f ′(x0) dx .
x0

L(x)

f(x)y

xx

df

dx = x

f

f(x )0
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Differential of functions of more than one variable.

Definition
The differential at (x0, y0) ∈ D of a differentiable function
f : D ⊂ R2 → R is the linear function

df (x , y) = L(x , y)− f (x0, y0).

Remark: The linear approximation of f (x , y) at (x0, y0) is the
plane L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

Therefore df (x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0).

Denoting dx = x − x0 and dy = (y − y0) we obtain the usual
expression

df = fx(x0, y0) dx + fy (x0, y0) dy .

Therefore, df and L are similar concepts: The linear approximation
of a differentiable function f .
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Differential of functions of more than one variable.

Example

Compute the df of the function f (x , y) = ln(1 + x2 + y2) at the
point (1, 1). Evaluate this df for dx = 0.1, dy = 0.2.

Solution: The differential of f at (x0, y0) is given by

df = fx(x0, y0)dx + fy (x0, y0)dy .

The partial derivatives fx and fy are given by

fx(x , y) =
2x

1 + x2 + y2
, fy (x , y) =

2y

1 + x2 + y2
.

Therefore, fx(1, 1) = 2/3 = fy (1, 1). Then df = 2
3 dx + 2

3 dy .
Evaluating this differential at dx = 0.1 and dy = 0.2 we obtain

df =
2

3

1

10
+

2

3

2

10
=

2

3

3

10
⇒ df =

1

5
.
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Differential of functions of more than one variable.
Example

Use differentials to estimate the amount of aluminum needed to
build a closed cylindrical can with internal diameter of 8cm and
height of 12cm if the aluminum is 0.04cm thick.

Solution:

The data of the problem is: h0 = 12cm,
r0 = 4cm, dr = 0.04cm and dh = 0.08cm.
The function to consider is the mass of the
cylinder, M = ρV , where ρ = 2.7gr/cm3 is the
aluminum density and V is the volume of the
cylinder,

V (r , h) = πr2h.

dr = 0.04

0

0
h  = 12

r  = 4

The metal to build the can is given by

∆M = ρ
[
V (r + dr , h + dh)− V (r , h)

]
,

(
recall dh = 2dr .

)
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Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to
build a closed cylindrical can with internal diameter of 8cm and
height of 12cm if the aluminum is 0.04cm thick.

Solution: The metal to build the can is given by

∆M = ρ
[
V (r + dr , h + dh)− V (r , h)

]
,

A linear approximation to ∆V = V (r + dr , h + dh)− V (r , h) is
dV = Vr dr + Vh dh, that is,

dV = Vr (r0, h0)dr + Vh(r0, h0)dh.

Since V (r , h) = πr2h, we obtain dV = 2πr0h0dr + πr2
0 dh.

Therefore, dV = 16.1 cm3. Since dM = ρ dV , a linear estimate for
the aluminum needed to build the can is dM = 43.47 gr . C
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Local and absolute extrema, saddle points (Sect. 14.7).

I Review: Local extrema for functions of one variable.

I Definition of local extrema.
I Characterization of local extrema.

I First derivative test.
I Second derivative test.

I Absolute extrema of a function in a domain.



Review: Local extrema for functions of one variable.

Recall: Main results on local extrema for f (x):

xa b c d

f(x) at f f ′ f ′′

a max. 0 < 0

b infl. 6= 0 ± 0 ∓
c min. 0 > 0

d infl. = 0 ± 0 ∓

Remarks: Assume that f is twice continuously differentiable.

I If x0 is local maximum or minimum of f , then f ′(x0) = 0.

I If f ′(x0) = 0 then x0 is a critical point of f , that is, x0 is a
maximum or a minimum or an inflection point.

I The second derivative test determines whether a critical point
is a maximum, minimum of or an inflection point.
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Local and absolute extrema, saddle points (Sect. 14.7).

I Review: Local extrema for functions of one variable.

I Definition of local extrema.
I Characterization of local extrema.

I First derivative test.
I Second derivative test.

I Absolute extrema of a function in a domain.



Definition of local extrema for functions of two variables.

Definition
A function f : D ⊂ R2 → R has a local maximum at the point
(a, b) ∈ D iff holds that f (x , y) 6 f (a, b) for every point (x , y) in
a neighborhood of (a, b).
A function f : D ⊂ R2 → R has a local minimum at the point
(a, b) ∈ D iff holds that f (x , y) > f (a, b) for every point (x , y) in
a neighborhood of (a, b).
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Definition of local extrema for functions of two variables.

Definition
A differentiable function f : D ⊂ R2 → R has a saddle point at an
interior point (a, b) ∈ D iff in every open disk in D centered at
(a, b) there always exist points (x , y) where f (x , y) > f (a, b) and
other points (x , y) where f (x , y) < f (a, b).
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Local and absolute extrema, saddle points (Sect. 14.7).

I Review: Local extrema for functions of one variable.

I Definition of local extrema.
I Characterization of local extrema.

I First derivative test.
I Second derivative test.

I Absolute extrema of a function in a domain.



Characterization of local extrema.
First derivative test.

Theorem
If a differentiable function f has a local maximum or minimum at
(a, b) then holds

(
∇f

)∣∣
(a,b)

= 〈0, 0〉.

Remark: The tangent plane at a local extremum is horizontal,
since its normal vector is n = 〈fx , fy ,−1〉 = 〈0, 0,−1〉.

Definition
The interior point (a, b) ∈ D of a differentiable function
f : D ⊂ R2 → R is a critical point of f iff

(
∇f

)∣∣
(a,b)

= 〈0, 0〉.

Remark:
Critical points include local
maxima, local minima, and
saddle points.
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Characterization of local extrema.
First derivative test.

Example

Find the critical points of the function f (x , y) = −x2 − y2

Solution: The critical points are the points where ∇f vanishes.
Since ∇f = 〈−2x ,−2y〉, the only solution to ∇f = 〈0, 0〉 is x = 0,
y = 0. That is, (a, b) = (0, 0). C

Remark: Since f (x , y) 6 0 for all (x , y) ∈ R2 and f (0, 0) = 0,
then the point (0, 0) must be a local maximum of f .

Example

Find the critical points of the function f (x , y) = x2 − y2

Solution: Since ∇f = 〈2x ,−2y〉, the only solution to ∇f = 〈0, 0〉
is x = 0, y = 0. That is, we again obtain (a, b) = (0, 0). C
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Characterization of local extrema.
Second derivative test.

Theorem
Let (a, b) be a critical point of f : D ⊂ R2 → R, that is,(
∇f

)∣∣
(a,b)

= 〈0, 0〉. Assume that f has continuous second

derivatives in an open disk in D with center in (a, b) and denote

D = fxx(a, b) fyy (a, b)−
[
fxy (a, b)

]2
.

Then, the following statements hold:

I If D > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

I If D > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

I If D < 0, then f (a, b) is a saddle point.

I If D = 0 the test is inconclusive.

Notation: The number D is called the discriminant of f at (a, b).



Characterization of local extrema.
Second derivative test.

Example

Find the local extrema of f (x , y) = y2 − x2 and determine whether
they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

∇f = 〈−2x , 2y〉 ⇒
(
∇f

)∣∣
(a,b)

= 〈0, 0〉 iff (a, b) = (0, 0).

The only critical point is (a, b) = (0, 0).

We need to compute D = fxx(a, b) fyy (a, b)−
[
fxy (a, b)

]2
.

Since fxx(0, 0) = −2, fyy (0, 0) = 2, and fxy (0, 0) = 0, we get

D = (−2)(2) = −4 < 0 ⇒ saddle point at (0, 0).

C
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Characterization of local extrema.
Second derivative test.

Example

Is the point (a, b) = (0, 0) a local extrema of f (x , y) = y2x2?

Solution: We first verify that (0, 0) is a critical point of f :

∇f (x , y) = 〈2xy2, 2yx2〉, ⇒
(
∇f

)∣∣
(0,0)

= 〈0, 0〉,

therefore, (0, 0) is a critical point.

Remark: The whole axes x = 0 and y = 0 are critical points of f .

We need to compute D = fxx(a, b) fyy (a, b)−
[
fxy (a, b)

]2
.

Since fxx(x , y) = 2y2, fyy (x , y) = 2x2, and fxy (x , y) = 4xy ,

we obtain fxx(0, 0) = 0, fyy (0, 0) = 0, and fxy (0, 0) = 0,

hence D = 0 and the test is inconclusive. C
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]2
.
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Characterization of local extrema.
Second derivative test.

Example

Is the point (a, b) = (0, 0) a local extrema of f (x , y) = y2x2?

Solution: From the graph of f = x2y2 is simple to see that (0, 0) is
a local minimum: (also a global minimum.) C
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Local and absolute extrema, saddle points (Sect. 14.7).

I Review: Local extrema for functions of one variable.

I Definition of local extrema.
I Characterization of local extrema.

I First derivative test.
I Second derivative test.

I Absolute extrema of a function in a domain.



Absolute extrema of a function in a domain.

Definition
A function f : D ⊂ R2 → R has an absolute maximum at the point
(a, b) ∈ D iff f (x , y) 6 f (a, b) for all (x , y) ∈ D.
A function f : D ⊂ R2 → R has an absolute minimum at the point
(a, b) ∈ D iff f (x , y) > f (a, b) for all (x , y) ∈ D.

Remark: Local extrema need not
be the absolute extrema.

Local and absolute
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Local maximum

Remark: Absolute extrema may
not be defined on open intervals.

Local maximum
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xa c d

No absolute extrema

Local minimum
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Review: Functions of one variable.

Theorem
Every continuous functions f : [a, b] ⊂ R → R, with a < b ∈ R
always has absolute extrema.

Local and absolute

b
xa c d

f(x)

minimum

Absolute maximum

Local maximum

Recall:

I Intervals [a, b] are bounded and closed sets in R.

I The set [a, b] is closed, since the boundary points belong to
the set, and it is bounded, since it does not extend to infinity.
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Recall: On open and closed sets in Rn.

Definition
A set S ∈ Rn, with n ∈ N, is called open iff every point in S is an
interior point. The set S is called closed iff S contains its
boundary. A set S is called bounded iff S is contained in ball,
otherwise S is called unbounded.

closed and bounded
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Theorem
If f : D ⊂ R2 → R is continuous in a closed and bounded set D,
then f has an absolute maximum and an absolute minimum in D.
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Theorem
If f : D ⊂ R2 → R is continuous in a closed and bounded set D,
then f has an absolute maximum and an absolute minimum in D.



Absolute extrema on closed and bounded sets.

Problem:
Find the absolute extrema of a function f : D ⊂ R2 → R in a
closed and bounded set D.

Solution:

(1) Find every critical point of f in the interior of D and evaluate
f at these points.

(2) Find the boundary points of D where f has local extrema, and
evaluate f at these points.

(3) Look at the list of values for f found in the previous two steps.

If f (x0, y0) is the biggest (smallest) value of f in the list above,
then (x0, y0) is the absolute maximum (minimum) of f in D.
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Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function
f (x , y) = 3 + xy − x + 2y on the closed
domain given in the Figure.

4

I

II III

y

x51

Solution:
(1) We find all critical points in the interior of the domain:

∇f = 〈(y − 1), (x + 2)〉 = 〈0, 0〉 ⇒ (x0, y0) = (−2, 1).

Since (−2, 1) does not belong to the domain, we discard it.

(2) Three segments form the boundary of D:
Boundary I: The segment y = 0, x ∈ [1, 5]. We select the end
points (1, 0), (5, 0), and we record: f (1, 0) = 2 and f (5, 0) = −2.
We look for critical point on the interior of Boundary I: Since
g(x) = f (x , 0) = 3− x , so g ′ = −1 6= 0. No critical points in the
interior of Boundary I.
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Solution: Boundary II: The segment x = 1, y ∈ [0, 4]. We select
the end point (1, 4) and we record: f (1, 4) = 14.
We look for critical point on the interior of Boundary II: Since
g(y) = f (1, y) = 3 + y − 1 + 2y = 2 + 3y , so g ′ = 3 6= 0. No
critical points in the interior of Boundary II.

Boundary III: The segment y = −x + 5, x ∈ [1, 5].
We look for critical point on the interior of Boundary III: Since
g(x) = f (x ,−x + 5) = 3 + x(−x + 5)− x + 2(−x + 5). We obtain
g(x) = −x2 + 2x + 13, hence g ′(x) = −2x + 2 = 0 implies x = 1.
So, y = 4, and we selected the point (1, 4), which was already in
our list. No critical points in the interior of Boundary III.
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Solution:
(3) Our list of values is:

f (1, 0) = 2 f (1, 4) = 14 f (5, 0) = −2.

We conclude:

I Absolute maximum at (1, 4),

I Absolute minimum at (5, 0).
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A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given
surface area A0.

Solution: This problem can be solved by finding the local
maximum of an appropriate function f .
The function f is obtained as follows: Recall the functions volume
and area of a rectangular box with vertex at (0, 0, 0) and sides x , y
and z :

V (x , y , z) = xyz , A(x , y , z) = 2xy + 2xz + 2yz .

Since A(x , y , z) = A0, we obtain z =
A0 − 2xy

2(x + y)
, that is

f (x , y) =
A0xy − 2x2y2

2(x + y)
.
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.
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The conditions fx = 0 and fy = 0 and x 6= 0, y 6= 0 imply

A0 = 2x2 + 4xy ,

A0 = 2y2 + 4xy ,

}
⇒ x = y . Recall z =

A0 − 2xy
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so, z =
A0 − 2x2

4x
= y . Therefore, x0 = y0 = z0 =

√
A0/6.
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