Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Definition

The directional derivative of the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $P_{0}=\left(x_{0}, y_{0}\right) \in D$ in the direction of a unit vector $\mathbf{u}=\left\langle u_{x}, u_{y}\right\rangle$ is given by

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]
$$

if the limit exists.

Directional derivative of functions of two variables.

Remark: The directional derivative generalizes the partial derivatives to any direction.

Definition

The directional derivative of the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $P_{0}=\left(x_{0}, y_{0}\right) \in D$ in the direction of a unit vector $\mathbf{u}=\left\langle u_{x}, u_{y}\right\rangle$ is given by

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right],
$$

if the limit exists.
Notation: The directional derivative is also denoted as

$$
\left(\frac{d f}{d t}\right)_{\mathbf{u}, P_{0}}
$$

Directional derivatives generalize partial derivatives.

Example

The partial derivatives f_{x} and f_{y} are particular cases of directional derivatives $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]$:

Directional derivatives generalize partial derivatives.

Example

The partial derivatives f_{x} and f_{y} are particular cases of directional derivatives $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]$:

- $\mathbf{u}=\langle 1,0\rangle=\mathbf{i}$, then $\left(D_{\mathrm{i}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right)$.

Directional derivatives generalize partial derivatives.

Example

The partial derivatives f_{x} and f_{y} are particular cases of directional derivatives $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]$:

- $\mathbf{u}=\langle 1,0\rangle=\mathbf{i}$, then $\left(D_{\mathrm{i}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right)$.
- $\mathbf{u}=\langle 0,1\rangle=\mathbf{j}$, then $\left(D_{\mathbf{j}} f\right)_{P_{0}}=f_{y}\left(x_{0}, y_{0}\right)$.

Directional derivatives generalize partial derivatives.

Example

The partial derivatives f_{x} and f_{y} are particular cases of directional derivatives $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right]$:

- $\mathbf{u}=\langle 1,0\rangle=\mathbf{i}$, then $\left(D_{\mathrm{i}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right)$.
- $\mathbf{u}=\langle 0,1\rangle=\mathbf{j}$, then $\left(D_{\mathbf{j}} f\right)_{P_{0}}=f_{y}\left(x_{0}, y_{0}\right)$.

Directional derivative of functions of two variables.

Remark: The condition $|\mathbf{u}|=1$ implies that the parameter t in the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$ is the distance between the points $(x(t), y(t))=\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)$ and $\left(x_{0}, y_{0}\right)$.

Directional derivative of functions of two variables.

Remark: The condition $|\mathbf{u}|=1$ implies that the parameter t in the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$ is the distance between the points $(x(t), y(t))=\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)$ and $\left(x_{0}, y_{0}\right)$.

Proof.

$$
d=\left|\left\langle x-x_{0}, y-y_{0}\right\rangle\right|,=\left|\left\langle u_{x} t, u_{y} t\right\rangle\right|,=|t||\mathbf{u}|,
$$

that is, $d=|t|$.

Directional derivative of functions of two variables.

Remark: The condition $|\mathbf{u}|=1$ implies that the parameter t in the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$ is the distance between the points $(x(t), y(t))=\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)$ and $\left(x_{0}, y_{0}\right)$.

Proof.

$$
d=\left|\left\langle x-x_{0}, y-y_{0}\right\rangle\right|,=\left|\left\langle u_{x} t, u_{y} t\right\rangle\right|,=|t||\mathbf{u}|,
$$

that is, $d=|t|$.

Remark: The directional derivative of $f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$ along \mathbf{u}, denoted as $\left(D_{\mathbf{u}} f\right)_{P_{0}}$, is the pointwise rate of change of f with respect to the distance along the line parallel to \mathbf{u} passing through (x_{0}, y_{0}).

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative and partial derivatives.

Remark: The directional derivative $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ is the derivative of f along the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$.

Directional derivative and partial derivatives.

Remark: The directional derivative $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ is the derivative of f along the line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\mathbf{u} t$.

Theorem
If the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $P_{0}=\left(x_{0}, y_{0}\right)$ and $\mathbf{u}=\left\langle u_{x}, u_{y}\right\rangle$ is a unit vector, then

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y} .
$$

Directional derivative and partial derivatives.

Proof.

The line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\left\langle u_{x}, u_{y}\right\rangle t$ has parametric equations: $x(t)=x_{0}+u_{x} t$ and $y(t)=y_{0}+u_{y} t$;

Directional derivative and partial derivatives.

Proof.

The line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\left\langle u_{x}, u_{y}\right\rangle t$ has parametric equations: $x(t)=x_{0}+u_{x} t$ and $y(t)=y_{0}+u_{y} t$;
Denote f evaluated along the line as $\hat{f}(t)=f(x(t), y(t))$.

Directional derivative and partial derivatives.

Proof.

The line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\left\langle u_{x}, u_{y}\right\rangle t$ has parametric equations:
$x(t)=x_{0}+u_{x} t$ and $y(t)=y_{0}+u_{y} t$;
Denote f evaluated along the line as $\hat{f}(t)=f(x(t), y(t))$.
Now, on the one hand, $\hat{f}^{\prime}(0)=\left(D_{\mathbf{u}} f\right)_{P_{0}}$, since

$$
\begin{aligned}
\hat{f}^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{1}{t}[\hat{f}(t)-\hat{f}(0)], \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right] \\
& =D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

Directional derivative and partial derivatives.

Proof.

The line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\left\langle u_{x}, u_{y}\right\rangle t$ has parametric equations:
$x(t)=x_{0}+u_{x} t$ and $y(t)=y_{0}+u_{y} t ;$
Denote f evaluated along the line as $\hat{f}(t)=f(x(t), y(t))$.
Now, on the one hand, $\hat{f}^{\prime}(0)=\left(D_{\mathbf{u}} f\right)_{P_{0}}$, since

$$
\begin{aligned}
\hat{f}^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{1}{t}[\hat{f}(t)-\hat{f}(0)], \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right], \\
& =D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

On the other hand, the chain rule implies:

$$
\hat{f}^{\prime}(0)=f_{x}\left(x_{0}, y_{0}\right) x^{\prime}(0)+f_{y}\left(x_{0}, y_{0}\right) y^{\prime}(0) .
$$

Directional derivative and partial derivatives.

Proof.

The line $\mathbf{r}(t)=\left\langle x_{0}, y_{0}\right\rangle+\left\langle u_{x}, u_{y}\right\rangle t$ has parametric equations:
$x(t)=x_{0}+u_{x} t$ and $y(t)=y_{0}+u_{y} t ;$
Denote f evaluated along the line as $\hat{f}(t)=f(x(t), y(t))$.
Now, on the one hand, $\hat{f}^{\prime}(0)=\left(D_{\mathbf{u}} f\right)_{P_{0}}$, since

$$
\begin{aligned}
\hat{f}^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{1}{t}[\hat{f}(t)-\hat{f}(0)], \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t\right)-f\left(x_{0}, y_{0}\right)\right], \\
& =D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

On the other hand, the chain rule implies:

$$
\hat{f}^{\prime}(0)=f_{x}\left(x_{0}, y_{0}\right) x^{\prime}(0)+f_{y}\left(x_{0}, y_{0}\right) y^{\prime}(0) \text {. }
$$

Therefore, $\left(D_{u} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.
Such vector is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,2\rangle$.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.
Such vector is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,2\rangle$.
We now use the formula $\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.
Such vector is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,2\rangle$.
We now use the formula $\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.
That is, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\cos \left(x_{0}+3 y_{0}\right)(1 / \sqrt{5})+3 \cos \left(x_{0}+3 y_{0}\right)(2 / \sqrt{5})$.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.
Such vector is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,2\rangle$.
We now use the formula $\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.
That is, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\cos \left(x_{0}+3 y_{0}\right)(1 / \sqrt{5})+3 \cos \left(x_{0}+3 y_{0}\right)(2 / \sqrt{5})$.
Equivalently, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(7 / \sqrt{5}) \cos \left(x_{0}+3 y_{0}\right)$.

Directional derivative and partial derivatives.

Example

Compute the directional derivative of $f(x, y)=\sin (x+3 y)$ at the point $P_{0}=(4,3)$ in the direction of vector $\mathbf{v}=\langle 1,2\rangle$.

Solution: We need to find a unit vector in the direction of \mathbf{v}.
Such vector is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,2\rangle$.
We now use the formula $\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}\right) u_{y}$.
That is, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=\cos \left(x_{0}+3 y_{0}\right)(1 / \sqrt{5})+3 \cos \left(x_{0}+3 y_{0}\right)(2 / \sqrt{5})$.
Equivalently, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(7 / \sqrt{5}) \cos \left(x_{0}+3 y_{0}\right)$.
Then, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(7 / \sqrt{5}) \cos (10)$.

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Directional derivative of functions of three variables.

Definition

The directional derivative of the function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in D$ in the direction of a unit vector $\mathbf{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ is given by

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t, z_{0}+u_{z} t\right)-f\left(x_{0}, y_{0}, z_{0}\right)\right],
$$

if the limit exists.

Directional derivative of functions of three variables.

Definition

The directional derivative of the function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in D$ in the direction of a unit vector $\mathbf{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ is given by

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=\lim _{t \rightarrow 0} \frac{1}{t}\left[f\left(x_{0}+u_{x} t, y_{0}+u_{y} t, z_{0}+u_{z} t\right)-f\left(x_{0}, y_{0}, z_{0}\right)\right],
$$

if the limit exists.
Theorem
If the function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{u}=\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ is a unit vector, then

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=f_{x}\left(x_{0}, y_{0}, z_{0}\right) u_{x}+f_{y}\left(x_{0}, y_{0}, z_{0}\right) u_{y}+f_{z}\left(x_{0}, y_{0}, z_{0}\right) u_{z} .
$$

Directional derivative of functions of three variables.

Example

Find $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ for $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at the point
$P_{0}=(3,2,1)$ along the direction given by $\mathbf{v}=\langle 2,1,1\rangle$.

Directional derivative of functions of three variables.

Example

Find $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ for $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at the point
$P_{0}=(3,2,1)$ along the direction given by $\mathbf{v}=\langle 2,1,1\rangle$.
Solution: We first find a unit vector along \mathbf{v},

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{6}}\langle 2,1,1\rangle .
$$

Directional derivative of functions of three variables.

Example

Find $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ for $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at the point
$P_{0}=(3,2,1)$ along the direction given by $\mathbf{v}=\langle 2,1,1\rangle$.
Solution: We first find a unit vector along \mathbf{v},

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{6}}\langle 2,1,1\rangle .
$$

Then, $\left(D_{\mathbf{u}} f\right)$ is given by $\left(D_{\mathbf{u}} f\right)=(2 x) u_{x}+(4 y) u_{y}+(6 z) u_{z}$.

Directional derivative of functions of three variables.

Example

Find $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ for $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at the point
$P_{0}=(3,2,1)$ along the direction given by $\mathbf{v}=\langle 2,1,1\rangle$.
Solution: We first find a unit vector along \mathbf{v},

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{6}}\langle 2,1,1\rangle .
$$

Then, $\left(D_{\mathbf{u}} f\right)$ is given by $\left(D_{\mathbf{u}} f\right)=(2 x) u_{x}+(4 y) u_{y}+(6 z) u_{z}$.
We conclude, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(6) \frac{2}{\sqrt{6}}+(8) \frac{1}{\sqrt{6}}+(6) \frac{1}{\sqrt{6}}$,

Directional derivative of functions of three variables.

Example

Find $\left(D_{\mathbf{u}} f\right)_{P_{0}}$ for $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at the point
$P_{0}=(3,2,1)$ along the direction given by $\mathbf{v}=\langle 2,1,1\rangle$.
Solution: We first find a unit vector along \mathbf{v},

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{6}}\langle 2,1,1\rangle .
$$

Then, $\left(D_{\mathbf{u}} f\right)$ is given by $\left(D_{\mathbf{u}} f\right)=(2 x) u_{x}+(4 y) u_{y}+(6 z) u_{z}$.
We conclude, $\left(D_{\mathbf{u}} f\right)_{P_{0}}=(6) \frac{2}{\sqrt{6}}+(8) \frac{1}{\sqrt{6}}+(6) \frac{1}{\sqrt{6}}$,
that is, $\left(D_{\mathrm{u}} f\right)_{P_{0}}=\frac{26}{\sqrt{6}}$.

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

The gradient vector and directional derivatives.

Remark: The directional derivative of a function can be written in terms of a dot product.

The gradient vector and directional derivatives.

Remark: The directional derivative of a function can be written in terms of a dot product.

- In the case of 2 variable functions: $D_{\mathbf{u}} f=f_{x} u_{x}+f_{y} u_{y}$

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u}, \quad \text { with } \quad \nabla f=\left\langle f_{x}, f_{y}\right\rangle .
$$

The gradient vector and directional derivatives.

Remark: The directional derivative of a function can be written in terms of a dot product.

- In the case of 2 variable functions: $D_{\mathbf{u}} f=f_{x} u_{x}+f_{y} u_{y}$

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u}, \quad \text { with } \quad \nabla f=\left\langle f_{x}, f_{y}\right\rangle .
$$

- In the case of 3 variable functions: $D_{\mathbf{u}} f=f_{x} u_{x}+f_{y} u_{y}+f_{z} u_{z}$,

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u}, \quad \text { with } \quad \nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle .
$$

The gradient vector and directional derivatives.

Definition

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$.

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$.

The gradient vector and directional derivatives.

Definition

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$.

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$.

Notation:

- For two variable functions: $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}$.
- For two variable functions: $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}$.

The gradient vector and directional derivatives.

Definition

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at any point $(x, y) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$.

The gradient vector of a differentiable function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ at any point $(x, y, z) \in D$ is the vector $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$.

Notation:

- For two variable functions: $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}$.
- For two variable functions: $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}$.

Theorem
If $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3$, is a differentiable function and \mathbf{u} is a unit vector, then,

$$
D_{\mathbf{u}} f=(\nabla f) \cdot \mathbf{u}
$$

The gradient vector and directional derivatives.

Example

Find the gradient vector at any point in the domain of the function $f(x, y)=x^{2}+y^{2}$.

The gradient vector and directional derivatives.

Example

Find the gradient vector at any point in the domain of the function $f(x, y)=x^{2}+y^{2}$.

Solution: The gradient is $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$,

The gradient vector and directional derivatives.

Example

Find the gradient vector at any point in the domain of the function $f(x, y)=x^{2}+y^{2}$.

Solution: The gradient is $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$, that is, $\nabla f=\langle 2 x, 2 y\rangle . \triangleleft$

The gradient vector and directional derivatives.

Example

Find the gradient vector at any point in the domain of the function $f(x, y)=x^{2}+y^{2}$.

Solution: The gradient is $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$, that is, $\nabla f=\langle 2 x, 2 y\rangle . \triangleleft$

Remark:

$\nabla f=2 \mathbf{r}$, with
$\mathbf{r}=\langle x, y\rangle$.

Directional derivatives and gradient vectors (Sect. 14.5).

- Directional derivative of functions of two variables.
- Partial derivatives and directional derivatives.
- Directional derivative of functions of three variables.
- The gradient vector and directional derivatives.
- Properties of the the gradient vector.

Properties of the the gradient vector.

Remark: If θ is the angle between ∇f and \mathbf{u}, then holds

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f| \cos (\theta) .
$$

Properties of the the gradient vector.

Remark: If θ is the angle between ∇f and \mathbf{u}, then holds

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f| \cos (\theta) .
$$

The formula above implies:

- The function f increases the most rapidly when \mathbf{u} is in the direction of ∇f, that is, $\theta=0$. The maximum increase rate of f is $|\nabla f|$.

Properties of the the gradient vector.

Remark: If θ is the angle between ∇f and \mathbf{u}, then holds

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f| \cos (\theta)
$$

The formula above implies:

- The function f increases the most rapidly when \mathbf{u} is in the direction of ∇f, that is, $\theta=0$. The maximum increase rate of f is $|\nabla f|$.
- The function f decreases the most rapidly when \mathbf{u} is in the direction of $-\nabla f$, that is, $\theta=\pi$. The maximum decrease rate of f is $-|\nabla f|$.

Properties of the the gradient vector.

Remark: If θ is the angle between ∇f and \mathbf{u}, then holds

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f| \cos (\theta)
$$

The formula above implies:

- The function f increases the most rapidly when \mathbf{u} is in the direction of ∇f, that is, $\theta=0$. The maximum increase rate of f is $|\nabla f|$.
- The function f decreases the most rapidly when \mathbf{u} is in the direction of $-\nabla f$, that is, $\theta=\pi$. The maximum decrease rate of f is $-|\nabla f|$.
- The function f does not change along level curve or surfaces, that is, $D_{\mathbf{u}} f=0$. Therefore, ∇f is perpendicular to the level curves or level surfaces.

Properties of the the gradient vector.

Example

Find the direction of maximum increase of the function
$f(x, y)=x^{2} / 4+y^{2} / 9$ at an arbitrary point (x, y), and also at the points $(1,0)$ and (0,1).

Properties of the the gradient vector.

Example

Find the direction of maximum increase of the function
$f(x, y)=x^{2} / 4+y^{2} / 9$ at an arbitrary point (x, y), and also at the points $(1,0)$ and $(0,1)$.

Solution: The direction of maximum increase of f is the direction of its gradient vector:

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle
$$

Properties of the the gradient vector.

Example

Find the direction of maximum increase of the function
$f(x, y)=x^{2} / 4+y^{2} / 9$ at an arbitrary point (x, y), and also at the points $(1,0)$ and $(0,1)$.

Solution: The direction of maximum increase of f is the direction of its gradient vector:

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle
$$

At the points $(1,0)$ and $(0,1)$ we obtain, respectively,

$$
\nabla f=\left\langle\frac{1}{2}, 0\right\rangle . \quad \nabla f=\left\langle 0, \frac{2}{9}\right\rangle
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: We first verify that P_{0} belongs to the level curve $f(x, y)=1$.

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: We first verify that P_{0} belongs to the level curve $f(x, y)=1$. This is the case, since

$$
\frac{1}{4}+\frac{(9)(3)}{4} \frac{1}{9}=1
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: We first verify that P_{0} belongs to the level curve $f(x, y)=1$. This is the case, since

$$
\frac{1}{4}+\frac{(9)(3)}{4} \frac{1}{9}=1
$$

The equation of the line we look for is

$$
\mathbf{r}(t)=\left\langle 1,-\frac{3 \sqrt{3}}{2}\right\rangle+t\left\langle v_{x}, v_{y}\right\rangle
$$

where $\mathbf{v}=\left\langle v_{x}, v_{y}\right\rangle$ is tangent to the level curve $f(x, y)=1$ at P_{0}.

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}.

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}. Since,

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle \quad \Rightarrow \quad(\nabla f)_{P_{0}}=\left\langle\frac{1}{2},-\frac{2}{9} \frac{3 \sqrt{3}}{2}\right\rangle=\left\langle\frac{1}{2},-\frac{1}{\sqrt{3}}\right\rangle .
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}. Since,

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle \quad \Rightarrow \quad(\nabla f)_{P_{0}}=\left\langle\frac{1}{2},-\frac{2}{9} \frac{3 \sqrt{3}}{2}\right\rangle=\left\langle\frac{1}{2},-\frac{1}{\sqrt{3}}\right\rangle .
$$

Therefore,

$$
0=\mathbf{v} \cdot(\nabla f)_{P_{0}}
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}. Since,

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle \quad \Rightarrow \quad(\nabla f)_{P_{0}}=\left\langle\frac{1}{2},-\frac{2}{9} \frac{3 \sqrt{3}}{2}\right\rangle=\left\langle\frac{1}{2},-\frac{1}{\sqrt{3}}\right\rangle .
$$

Therefore,

$$
0=\mathbf{v} \cdot(\nabla f)_{P_{0}} \quad \Rightarrow \quad \frac{1}{2} v_{x}=\frac{1}{\sqrt{3}} v_{y}
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}. Since,

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle \quad \Rightarrow \quad(\nabla f)_{P_{0}}=\left\langle\frac{1}{2},-\frac{2}{9} \frac{3 \sqrt{3}}{2}\right\rangle=\left\langle\frac{1}{2},-\frac{1}{\sqrt{3}}\right\rangle .
$$

Therefore,

$$
0=\mathbf{v} \cdot(\nabla f)_{P_{0}} \quad \Rightarrow \quad \frac{1}{2} v_{x}=\frac{1}{\sqrt{3}} v_{y} \quad \Rightarrow \quad \mathbf{v}=\langle 2, \sqrt{3}\rangle .
$$

Properties of the the gradient vector.

Example

Given the function $f(x, y)=x^{2} / 4+y^{2} / 9$, find the equation of a line tangent to a level curve $f(x, y)=1$ at the point $P_{0}=(1,-3 \sqrt{3} / 2)$.

Solution: Therefore, $\mathbf{v} \perp \nabla f$ at P_{0}. Since,

$$
\nabla f=\left\langle\frac{x}{2}, \frac{2 y}{9}\right\rangle \quad \Rightarrow \quad(\nabla f)_{P_{0}}=\left\langle\frac{1}{2},-\frac{2}{9} \frac{3 \sqrt{3}}{2}\right\rangle=\left\langle\frac{1}{2},-\frac{1}{\sqrt{3}}\right\rangle .
$$

Therefore,

$$
0=\mathbf{v} \cdot(\nabla f)_{P_{0}} \Rightarrow \frac{1}{2} v_{x}=\frac{1}{\sqrt{3}} v_{y} \quad \Rightarrow \quad \mathbf{v}=\langle 2, \sqrt{3}\rangle .
$$

The line is $\mathbf{r}(t)=\left\langle 1,-\frac{3 \sqrt{3}}{2}\right\rangle+t\langle 2, \sqrt{3}\rangle$.

Properties of the the gradient vector.

$$
\nabla f=\left\langle\frac{1}{2}, 0\right\rangle, \quad \nabla f=\left\langle 0, \frac{2}{9}\right\rangle, \quad \mathbf{r}(t)=\left\langle 1,-\frac{3 \sqrt{3}}{2}\right\rangle+t\langle 2, \sqrt{3}\rangle .
$$

Further properties of the the gradient vector.

Theorem
If f, g are differentiable scalar valued vector functions, $g \neq 0$, and $k \in R$ any constant, then holds,

1. $\nabla(k f)=k(\nabla f)$;
2. $\nabla(f \pm g)=\nabla f \pm \nabla g$;
3. $\nabla(f g)=(\nabla f) g+f(\nabla g)$;
4. $\nabla\left(\frac{f}{g}\right)=\frac{(\nabla f) g-f(\nabla g)}{g^{2}}$.

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

Review: Differentiable functions of two variables.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an interior point $\left(x_{0}, y_{0}\right) \in D$, let L be the linear function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

The function f is called differentiable at $\left(x_{0}, y_{0}\right)$ iff the function f is approximated by the linear function L near $\left(x_{0}, y_{0}\right)$, that is,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

where the functions ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.

Review: Differentiable functions of two variables.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an interior point $\left(x_{0}, y_{0}\right) \in D$, let L be the linear function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

The function f is called differentiable at $\left(x_{0}, y_{0}\right)$ iff the function f is approximated by the linear function L near $\left(x_{0}, y_{0}\right)$, that is,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

where the functions ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.
Theorem
If the partial derivatives f_{x} and f_{y} of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous in an open region $R \subset D$, then f is differentiable in R.

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.
Solution: The partial derivatives of f are given by $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$, which are continuous functions. Therefore, the function f is differentiable.

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.
Solution: The partial derivatives of f are given by $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at $(1,2)$ is

$$
L(x, y)=f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)+f(1,2) .
$$

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.
Solution: The partial derivatives of f are given by $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at $(1,2)$ is

$$
L(x, y)=f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)+f(1,2) .
$$

That is, we need three numbers to find the linear function L : $f_{x}(1,2), f_{y}(1,2)$, and $f(1,2)$.

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.
Solution: The partial derivatives of f are given by $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at $(1,2)$ is

$$
L(x, y)=f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)+f(1,2) .
$$

That is, we need three numbers to find the linear function L : $f_{x}(1,2), f_{y}(1,2)$, and $f(1,2)$. These numbers are:

$$
f_{x}(1,2)=2, \quad f_{y}(1,2)=4, \quad f(1,2)=5 .
$$

Review: Differentiable functions of two variables.

Example

Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable for all $(x, y) \in \mathbb{R}^{2}$. Furthermore, find the linear function L, mentioned in the definition of a differentiable function, at the point $(1,2)$.
Solution: The partial derivatives of f are given by $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=2 y$, which are continuous functions. Therefore, the function f is differentiable. The linear function L at $(1,2)$ is

$$
L(x, y)=f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)+f(1,2) .
$$

That is, we need three numbers to find the linear function L : $f_{x}(1,2), f_{y}(1,2)$, and $f(1,2)$. These numbers are:

$$
f_{x}(1,2)=2, \quad f_{y}(1,2)=4, \quad f(1,2)=5 .
$$

Therefore, $L(x, y)=2(x-1)+4(y-2)+5$.

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

The tangent plane to the graph of a function.
Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}.

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$,

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$,

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$, or equivalently

$$
2(x-1)+4(y-2)-(z-5)=0 .
$$

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$, or equivalently

$$
2(x-1)+4(y-2)-(z-5)=0 .
$$

This is a plane passing through $\tilde{P}_{0}=(1,2,5)$ with normal vector $\mathbf{n}=\langle 2,4,-1\rangle$.

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$, or equivalently

$$
2(x-1)+4(y-2)-(z-5)=0 .
$$

This is a plane passing through $\tilde{P}_{0}=(1,2,5)$ with normal vector $\mathbf{n}=\langle 2,4,-1\rangle$. Analogously, the function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is a plane in \mathbb{R}^{3}.

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}. We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$, or equivalently

$$
2(x-1)+4(y-2)-(z-5)=0 .
$$

This is a plane passing through $\tilde{P}_{0}=(1,2,5)$ with normal vector $\mathbf{n}=\langle 2,4,-1\rangle$. Analogously, the function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is a plane in \mathbb{R}^{3}. Using the notation $z=L(x, y)$ we obtain

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0 .
$$

The tangent plane to the graph of a function.

Remark:
The function $L(x, y)=2(x-1)+4(y-2)+5$ is a plane in \mathbb{R}^{3}.
We usually write down the equation of a plane using the notation $z=L(x, y)$, that is, $z=2(x-1)+4(y-2)+5$, or equivalently

$$
2(x-1)+4(y-2)-(z-5)=0 .
$$

This is a plane passing through $\tilde{P}_{0}=(1,2,5)$ with normal vector $\mathbf{n}=\langle 2,4,-1\rangle$. Analogously, the function

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is a plane in \mathbb{R}^{3}. Using the notation $z=L(x, y)$ we obtain

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0
$$

This is a plane passing through $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ with normal vector $\mathbf{n}=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$.

The tangent plane to the graph of a function.

Theorem
The plane tangent to the graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right)$ is given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

The tangent plane to the graph of a function.

Theorem

The plane tangent to the graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right)$ is given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Proof

The plane contains the point $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. We only need to find its normal vector \mathbf{n}.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F. That is, $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F. That is, $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle f_{x}, f_{y},-1\right\rangle$.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F. That is, $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle f_{x}, f_{y},-1\right\rangle$.

Therefore, the normal to the tangent plane $L(x, y)$ at the point P_{0} is $\mathbf{n}=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F. That is, $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle f_{x}, f_{y},-1\right\rangle$.

Therefore, the normal to the tangent plane $L(x, y)$ at the point P_{0} is $\mathbf{n}=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$. Recall that the plane contains the point $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

The tangent plane to the graph of a function.

The vector \mathbf{n} normal to the plane $L(x, y)$ is a vector perpendicular to the surface $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$.

This surface is the level surface $F(x, y, z)=0$ of the function $F(x, y, z)=f(x, y)-z$. A vector normal to this level surface is its gradient ∇F. That is, $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle f_{x}, f_{y},-1\right\rangle$.

Therefore, the normal to the tangent plane $L(x, y)$ at the point P_{0} is $\mathbf{n}=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle$. Recall that the plane contains the point $\tilde{P}_{0}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. The equation for the plane is

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0
$$

The tangent plane to the graph of a function.

Summary: We have shown that the linear L given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is the plane tangent to the graph of f at $\left(x_{0}, y_{0}\right)$.

The tangent plane to the graph of a function.

Summary: We have shown that the linear L given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is the plane tangent to the graph of f at $\left(x_{0}, y_{0}\right)$.

The tangent plane to the graph of a function.

Summary: We have shown that the linear L given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is the plane tangent to the graph of f at $\left(x_{0}, y_{0}\right)$.

Remark: The graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by the tangent plane L at every point in D.

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

Solution: The partial derivatives of f are given by

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}} .
$$

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

Solution: The partial derivatives of f are given by

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}} .
$$

These functions are continuous in \mathbb{R}^{2}, so $f(x, y)$ is differentiable at every point in \mathbb{R}^{2}.

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

Solution: The partial derivatives of f are given by

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}} .
$$

These functions are continuous in \mathbb{R}^{2}, so $f(x, y)$ is differentiable at every point in \mathbb{R}^{2}. The plane $L(x, y)$ at $(1,0)$ is given by

$$
L(x, y)=f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)+f(1,0)
$$

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

Solution: The partial derivatives of f are given by

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}} .
$$

These functions are continuous in \mathbb{R}^{2}, so $f(x, y)$ is differentiable at every point in \mathbb{R}^{2}. The plane $L(x, y)$ at $(1,0)$ is given by

$$
L(x, y)=f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)+f(1,0),
$$

where $f(1,0)=\arctan (1)=\pi / 4, f_{x}(1,0)=1 / 2, f_{y}(1,0)=1$.

The tangent plane to the graph of a function.

Example

Show that $f(x, y)=\arctan (x+2 y)$ is differentiable and find the plane tangent to $f(x, y)$ at $(1,0)$.

Solution: The partial derivatives of f are given by

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}} .
$$

These functions are continuous in \mathbb{R}^{2}, so $f(x, y)$ is differentiable at every point in \mathbb{R}^{2}. The plane $L(x, y)$ at $(1,0)$ is given by

$$
L(x, y)=f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)+f(1,0),
$$

where $f(1,0)=\arctan (1)=\pi / 4, f_{x}(1,0)=1 / 2, f_{y}(1,0)=1$.
Then, $L(x, y)=\frac{1}{2}(x-1)+y+\frac{\pi}{4}$.

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

The linear approximation of a differentiable function.

Definition
The linear approximation of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

The linear approximation of a differentiable function.

Definition

The linear approximation of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Example
Find the linear approximation of $f=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.

The linear approximation of a differentiable function.

Definition

The linear approximation of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Example
Find the linear approximation of $f=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.
Solution: $L(x, y)=f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)+f(2,1)$.

The linear approximation of a differentiable function.

Definition

The linear approximation of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Example

Find the linear approximation of $f=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.
Solution: $L(x, y)=f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)+f(2,1)$.
We need three numbers: $f(2,1), f_{x}(2,1)$, and $f_{y}(2,1)$.

The linear approximation of a differentiable function.

Definition

The linear approximation of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Example
Find the linear approximation of $f=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.
Solution: $L(x, y)=f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)+f(2,1)$.
We need three numbers: $f(2,1), f_{x}(2,1)$, and $f_{y}(2,1)$.
These are: $f(2,1)=3, f_{x}(2,1)=-2 / 3$, and $f_{y}(2,1)=-4 / 3$.

The linear approximation of a differentiable function.

Definition

The linear approximation of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}\right) \in D$ is the plane

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Example
Find the linear approximation of $f=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.
Solution: $L(x, y)=f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)+f(2,1)$.
We need three numbers: $f(2,1), f_{x}(2,1)$, and $f_{y}(2,1)$.
These are: $f(2,1)=3, f_{x}(2,1)=-2 / 3$, and $f_{y}(2,1)=-4 / 3$.
Then the plane is given by $L(x, y)=-\frac{2}{3}(x-2)-\frac{4}{3}(y-1)+3 . \triangleleft$

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

Bounds for the error of a linear approximation.

Theorem
Assume that the function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has first and second partial derivatives continuous on an open set containing a rectangular region $R \subset D$ centered at the point $\left(x_{0}, y_{0}\right)$. If $M \in \mathbb{R}$ is the upper bound for $\left|f_{x x}\right|,\left|f_{y y}\right|$, and $\left|f_{x y}\right|$ in R, then the error $E(x, y)=f(x, y)-L(x, y)$ satisfies the inequality

$$
|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}
$$

where $L(x, y)$ is the linearization of f at $\left(x_{0}, y_{0}\right)$, that is,

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Solution: The second derivatives of f are $f_{x x}=2, f_{y y}=2, f_{x y}=0$.

Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Solution: The second derivatives of f are $f_{x x}=2, f_{y y}=2, f_{x y}=0$.
Therefore, we can take $M=2$.

Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Solution: The second derivatives of f are $f_{x x}=2, f_{y y}=2, f_{x y}=0$.
Therefore, we can take $M=2$.
Then the formula $|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}$, implies

Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Solution: The second derivatives of f are $f_{x x}=2, f_{y y}=2, f_{x y}=0$.
Therefore, we can take $M=2$.
Then the formula $|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}$, implies

$$
|E(x, y)| \leqslant(|x-1|+|y-2|)^{2}<(0.1+0.1)^{2}=0.04,
$$

that is $|E(x, y)|<0.04$.

Bounds for the error of a linear approximation.

Example

Find an upper bound for the error in the linear approximation of $f(x, y)=x^{2}+y^{2}$ at the point $(1,2)$ over the rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}:|x-1|<0.1, \quad|y-2|<0.1\right\}
$$

Solution: The second derivatives of f are $f_{x x}=2, f_{y y}=2, f_{x y}=0$.
Therefore, we can take $M=2$.
Then the formula $|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}$, implies

$$
|E(x, y)| \leqslant(|x-1|+|y-2|)^{2}<(0.1+0.1)^{2}=0.04,
$$

that is $|E(x, y)|<0.04$. Since $f(1,2)=5$, the percentage relative error $100 E(x, y) / f(1,2)$ is bounded by 0.8%

Tangent planes and linear approximations (Sect. 14.6).

- Review: Differentiable functions of two variables.
- The tangent plane to the graph of a function.
- The linear approximation of a differentiable function.
- Bounds for the error of a linear approximation.
- The differential of a function.
- Review: Scalar functions of one variable.
- Scalar functions of more than one variable.

Review: Differential of functions of one variable.

Definition
The differential at $x_{0} \in D$ of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x)=L(x)-f\left(x_{0}\right)
$$

Review: Differential of functions of one variable.

Definition
The differential at $x_{0} \in D$ of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x)=L(x)-f\left(x_{0}\right)
$$

Remark: The linear approximation of $f(x)$ at x_{0} is the line given by $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Review: Differential of functions of one variable.

Definition
The differential at $x_{0} \in D$ of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x)=L(x)-f\left(x_{0}\right)
$$

Remark: The linear approximation of $f(x)$ at x_{0} is the line given by $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Therefore

$$
d f(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Review: Differential of functions of one variable.

Definition
The differential at $x_{0} \in D$ of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x)=L(x)-f\left(x_{0}\right)
$$

Remark: The linear approximation of $f(x)$ at x_{0} is the line given by $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Therefore

$$
d f(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Denoting $d x=x-x_{0}$,

$$
d f=f^{\prime}\left(x_{0}\right) d x
$$

Review: Differential of functions of one variable.

Definition

The differential at $x_{0} \in D$ of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x)=L(x)-f\left(x_{0}\right)
$$

Remark: The linear approximation of $f(x)$ at x_{0} is the line given by $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.

Therefore

$$
d f(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Denoting $d x=x-x_{0}$,

$$
d f=f^{\prime}\left(x_{0}\right) d x
$$

Differential of functions of more than one variable.

Definition
The differential at $\left(x_{0}, y_{0}\right) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x, y)=L(x, y)-f\left(x_{0}, y_{0}\right)
$$

Differential of functions of more than one variable.

Definition
The differential at $\left(x_{0}, y_{0}\right) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x, y)=L(x, y)-f\left(x_{0}, y_{0}\right)
$$

Remark: The linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is the plane $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)$.

Differential of functions of more than one variable.

Definition

The differential at $\left(x_{0}, y_{0}\right) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x, y)=L(x, y)-f\left(x_{0}, y_{0}\right)
$$

Remark: The linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is the plane $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)$.

Therefore $d f(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.

Differential of functions of more than one variable.

Definition

The differential at $\left(x_{0}, y_{0}\right) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x, y)=L(x, y)-f\left(x_{0}, y_{0}\right)
$$

Remark: The linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is the plane $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)$.

Therefore $d f(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
Denoting $d x=x-x_{0}$ and $d y=\left(y-y_{0}\right)$ we obtain the usual expression

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

Differential of functions of more than one variable.

Definition

The differential at $\left(x_{0}, y_{0}\right) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the linear function

$$
d f(x, y)=L(x, y)-f\left(x_{0}, y_{0}\right)
$$

Remark: The linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is the plane $L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)$.

Therefore $d f(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
Denoting $d x=x-x_{0}$ and $d y=\left(y-y_{0}\right)$ we obtain the usual expression

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

Therefore, $d f$ and L are similar concepts: The linear approximation of a differentiable function f.

Differential of functions of more than one variable.

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.

Differential of functions of more than one variable.

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.
Solution: The differential of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y .
$$

Differential of functions of more than one variable.

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.
Solution: The differential of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y .
$$

The partial derivatives f_{x} and f_{y} are given by

$$
f_{x}(x, y)=\frac{2 x}{1+x^{2}+y^{2}}, \quad f_{y}(x, y)=\frac{2 y}{1+x^{2}+y^{2}} .
$$

Differential of functions of more than one variable.

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.
Solution: The differential of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y .
$$

The partial derivatives f_{x} and f_{y} are given by

$$
f_{x}(x, y)=\frac{2 x}{1+x^{2}+y^{2}}, \quad f_{y}(x, y)=\frac{2 y}{1+x^{2}+y^{2}} .
$$

Therefore, $f_{x}(1,1)=2 / 3=f_{y}(1,1)$.

Differential of functions of more than one variable.

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.
Solution: The differential of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

The partial derivatives f_{x} and f_{y} are given by

$$
f_{x}(x, y)=\frac{2 x}{1+x^{2}+y^{2}}, \quad f_{y}(x, y)=\frac{2 y}{1+x^{2}+y^{2}} .
$$

Therefore, $f_{x}(1,1)=2 / 3=f_{y}(1,1)$. Then $d f=\frac{2}{3} d x+\frac{2}{3} d y$.

Differential of functions of more than one variable.

Example

Compute the $d f$ of the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at the point $(1,1)$. Evaluate this $d f$ for $d x=0.1, d y=0.2$.
Solution: The differential of f at $\left(x_{0}, y_{0}\right)$ is given by

$$
d f=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

The partial derivatives f_{x} and f_{y} are given by

$$
f_{x}(x, y)=\frac{2 x}{1+x^{2}+y^{2}}, \quad f_{y}(x, y)=\frac{2 y}{1+x^{2}+y^{2}} .
$$

Therefore, $f_{x}(1,1)=2 / 3=f_{y}(1,1)$. Then $d f=\frac{2}{3} d x+\frac{2}{3} d y$. Evaluating this differential at $d x=0.1$ and $d y=0.2$ we obtain

$$
d f=\frac{2}{3} \frac{1}{10}+\frac{2}{3} \frac{2}{10}=\frac{2}{3} \frac{3}{10} \Rightarrow d f=\frac{1}{5} .
$$

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution:

The data of the problem is: $h_{0}=12 \mathrm{~cm}$, $r_{0}=4 \mathrm{~cm}, d r=0.04 \mathrm{~cm}$ and $d h=0.08 \mathrm{~cm}$.
The function to consider is the mass of the cylinder, $M=\rho V$, where $\rho=2.7 \mathrm{gr} / \mathrm{cm}^{3}$ is the aluminum density and V is the volume of the cylinder,

$$
V(r, h)=\pi r^{2} h
$$

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution:

The data of the problem is: $h_{0}=12 \mathrm{~cm}$, $r_{0}=4 \mathrm{~cm}, d r=0.04 \mathrm{~cm}$ and $d h=0.08 \mathrm{~cm}$.
The function to consider is the mass of the cylinder, $M=\rho V$, where $\rho=2.7 \mathrm{gr} / \mathrm{cm}^{3}$ is the aluminum density and V is the volume of the cylinder,

$$
V(r, h)=\pi r^{2} h
$$

The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)], \quad(\text { recall } d h=2 d r .)
$$

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)]
$$

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)]
$$

A linear approximation to $\Delta V=V(r+d r, h+d h)-V(r, h)$ is $d V=V_{r} d r+V_{h} d h$,

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)]
$$

A linear approximation to $\Delta V=V(r+d r, h+d h)-V(r, h)$ is $d V=V_{r} d r+V_{h} d h$, that is,

$$
d V=V_{r}\left(r_{0}, h_{0}\right) d r+V_{h}\left(r_{0}, h_{0}\right) d h .
$$

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)]
$$

A linear approximation to $\Delta V=V(r+d r, h+d h)-V(r, h)$ is $d V=V_{r} d r+V_{h} d h$, that is,

$$
d V=V_{r}\left(r_{0}, h_{0}\right) d r+V_{h}\left(r_{0}, h_{0}\right) d h
$$

Since $V(r, h)=\pi r^{2} h$, we obtain $d V=2 \pi r_{0} h_{0} d r+\pi r_{0}^{2} d h$.

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)]
$$

A linear approximation to $\Delta V=V(r+d r, h+d h)-V(r, h)$ is $d V=V_{r} d r+V_{h} d h$, that is,

$$
d V=V_{r}\left(r_{0}, h_{0}\right) d r+V_{h}\left(r_{0}, h_{0}\right) d h
$$

Since $V(r, h)=\pi r^{2} h$, we obtain $d V=2 \pi r_{0} h_{0} d r+\pi r_{0}^{2} d h$.
Therefore, $d V=16.1 \mathrm{~cm}^{3}$.

Differential of functions of more than one variable.

Example

Use differentials to estimate the amount of aluminum needed to build a closed cylindrical can with internal diameter of 8 cm and height of 12 cm if the aluminum is 0.04 cm thick.

Solution: The metal to build the can is given by

$$
\Delta M=\rho[V(r+d r, h+d h)-V(r, h)]
$$

A linear approximation to $\Delta V=V(r+d r, h+d h)-V(r, h)$ is $d V=V_{r} d r+V_{h} d h$, that is,

$$
d V=V_{r}\left(r_{0}, h_{0}\right) d r+V_{h}\left(r_{0}, h_{0}\right) d h .
$$

Since $V(r, h)=\pi r^{2} h$, we obtain $d V=2 \pi r_{0} h_{0} d r+\pi r_{0}^{2} d h$.
Therefore, $d V=16.1 \mathrm{~cm}^{3}$. Since $d M=\rho d V$, a linear estimate for the aluminum needed to build the can is $d M=43.47 \mathrm{gr}$.

Local and absolute extrema, saddle points (Sect. 14.7).

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Review: Local extrema for functions of one variable.
Recall: Main results on local extrema for $f(x)$:

at	f	f^{\prime}	$f^{\prime \prime}$
a	max.	0	<0
b	infl.	$\neq 0$	$\pm 0 \mp$
c	min.	0	>0
d	infl.	$=0$	$\pm 0 \mp$

Review: Local extrema for functions of one variable.

Recall: Main results on local extrema for $f(x)$:

at	f	f^{\prime}	$f^{\prime \prime}$
a	max.	0	<0
b	infl.	$\neq 0$	$\pm 0 \mp$
c	min.	0	>0
d	infl.	$=0$	$\pm 0 \mp$

Remarks: Assume that f is twice continuously differentiable.

- If x_{0} is local maximum or minimum of f, then $f^{\prime}\left(x_{0}\right)=0$.

Review: Local extrema for functions of one variable.

Recall: Main results on local extrema for $f(x)$:

at	f	f^{\prime}	$f^{\prime \prime}$
a	max.	0	<0
b	infl.	$\neq 0$	$\pm 0 \mp$
c	min.	0	>0
d	infl.	$=0$	$\pm 0 \mp$

Remarks: Assume that f is twice continuously differentiable.

- If x_{0} is local maximum or minimum of f, then $f^{\prime}\left(x_{0}\right)=0$.
- If $f^{\prime}\left(x_{0}\right)=0$ then x_{0} is a critical point of f, that is, x_{0} is a maximum or a minimum or an inflection point.

Review: Local extrema for functions of one variable.

Recall: Main results on local extrema for $f(x)$:

at	f	f^{\prime}	$f^{\prime \prime}$
a	max.	0	<0
b	infl.	$\neq 0$	$\pm 0 \mp$
c	min.	0	>0
d	infl.	$=0$	$\pm 0 \mp$

Remarks: Assume that f is twice continuously differentiable.

- If x_{0} is local maximum or minimum of f, then $f^{\prime}\left(x_{0}\right)=0$.
- If $f^{\prime}\left(x_{0}\right)=0$ then x_{0} is a critical point of f, that is, x_{0} is a maximum or a minimum or an inflection point.
- The second derivative test determines whether a critical point is a maximum, minimum of or an inflection point.

Local and absolute extrema, saddle points (Sect. 14.7).

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Definition of local extrema for functions of two variables.

Definition
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a local maximum at the point $(a, b) \in D$ iff holds that $f(x, y) \leqslant f(a, b)$ for every point (x, y) in a neighborhood of (a, b).
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a local minimum at the point $(a, b) \in D$ iff holds that $f(x, y) \geqslant f(a, b)$ for every point (x, y) in a neighborhood of (a, b).

Definition of local extrema for functions of two variables.

Definition

A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a local maximum at the point $(a, b) \in D$ iff holds that $f(x, y) \leqslant f(a, b)$ for every point (x, y) in a neighborhood of (a, b).
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a local minimum at the point $(a, b) \in D$ iff holds that $f(x, y) \geqslant f(a, b)$ for every point (x, y) in a neighborhood of (a, b).

Definition of local extrema for functions of two variables.

Definition
A differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a saddle point at an interior point $(a, b) \in D$ iff in every open disk in D centered at (a, b) there always exist points (x, y) where $f(x, y)>f(a, b)$ and other points (x, y) where $f(x, y)<f(a, b)$.

Local and absolute extrema, saddle points (Sect. 14.7).

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Characterization of local extrema.

First derivative test.
Theorem
If a differentiable function f has a local maximum or minimum at (a, b) then holds $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Characterization of local extrema.

First derivative test.
Theorem
If a differentiable function f has a local maximum or minimum at (a, b) then holds $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n}=\left\langle f_{x}, f_{y},-1\right\rangle=\langle 0,0,-1\rangle$.

Characterization of local extrema.

First derivative test.
Theorem
If a differentiable function f has a local maximum or minimum at (a, b) then holds $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n}=\left\langle f_{x}, f_{y},-1\right\rangle=\langle 0,0,-1\rangle$.

Definition
The interior point $(a, b) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a critical point of f iff $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Characterization of local extrema.

First derivative test.

Theorem

If a differentiable function f has a local maximum or minimum at (a, b) then holds $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Remark: The tangent plane at a local extremum is horizontal, since its normal vector is $\mathbf{n}=\left\langle f_{x}, f_{y},-1\right\rangle=\langle 0,0,-1\rangle$.

Definition
The interior point $(a, b) \in D$ of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a critical point of f iff $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$.

Remark:

Critical points include local maxima, local minima, and saddle points.

Characterization of local extrema.

First derivative test.

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$

Characterization of local extrema.

First derivative test.

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$
Solution: The critical points are the points where ∇f vanishes.

Characterization of local extrema.

First derivative test.

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$
Solution: The critical points are the points where ∇f vanishes.
Since $\nabla f=\langle-2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0$, $y=0$. That is, $(a, b)=(0,0)$.

Characterization of local extrema.

First derivative test.

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$
Solution: The critical points are the points where ∇f vanishes. Since $\nabla f=\langle-2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0$, $y=0$. That is, $(a, b)=(0,0)$.

Remark: Since $f(x, y) \leqslant 0$ for all $(x, y) \in \mathbb{R}^{2}$ and $f(0,0)=0$, then the point $(0,0)$ must be a local maximum of f.

Characterization of local extrema.

First derivative test.

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$
Solution: The critical points are the points where ∇f vanishes.
Since $\nabla f=\langle-2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0$, $y=0$. That is, $(a, b)=(0,0)$.

Remark: Since $f(x, y) \leqslant 0$ for all $(x, y) \in \mathbb{R}^{2}$ and $f(0,0)=0$, then the point $(0,0)$ must be a local maximum of f.

Example

Find the critical points of the function $f(x, y)=x^{2}-y^{2}$

Characterization of local extrema.

Example

Find the critical points of the function $f(x, y)=-x^{2}-y^{2}$
Solution: The critical points are the points where ∇f vanishes.
Since $\nabla f=\langle-2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0$, $y=0$. That is, $(a, b)=(0,0)$.

Remark: Since $f(x, y) \leqslant 0$ for all $(x, y) \in \mathbb{R}^{2}$ and $f(0,0)=0$, then the point $(0,0)$ must be a local maximum of f.

Example
Find the critical points of the function $f(x, y)=x^{2}-y^{2}$
Solution: Since $\nabla f=\langle 2 x,-2 y\rangle$, the only solution to $\nabla f=\langle 0,0\rangle$ is $x=0, y=0$. That is, we again obtain $(a, b)=(0,0)$.

Characterization of local extrema.

Second derivative test.

Theorem
Let (a, b) be a critical point of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, that is, $\left.(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle$. Assume that f has continuous second derivatives in an open disk in D with center in (a, b) and denote

$$
D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

Then, the following statements hold:

- If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
- If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
- If $D<0$, then $f(a, b)$ is a saddle point.
- If $D=0$ the test is inconclusive.

Notation: The number D is called the discriminant of f at (a, b).

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\langle-2 x, 2 y\rangle
$$

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0) .
$$

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0)
$$

The only critical point is $(a, b)=(0,0)$.

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0)
$$

The only critical point is $(a, b)=(0,0)$.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0)
$$

The only critical point is $(a, b)=(0,0)$.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(0,0)=-2, f_{y y}(0,0)=2$, and $f_{x y}(0,0)=0$,

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0)
$$

The only critical point is $(a, b)=(0,0)$.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(0,0)=-2, f_{y y}(0,0)=2$, and $f_{x y}(0,0)=0$, we get

$$
D=(-2)(2)=-4<0
$$

Characterization of local extrema.

Second derivative test.

Example

Find the local extrema of $f(x, y)=y^{2}-x^{2}$ and determine whether they are local maximum, minimum, or saddle points.

Solution: We first find the critical points:

$$
\nabla f=\left.\langle-2 x, 2 y\rangle \quad \Rightarrow \quad(\nabla f)\right|_{(a, b)}=\langle 0,0\rangle \text { iff } \quad(a, b)=(0,0)
$$

The only critical point is $(a, b)=(0,0)$.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(0,0)=-2, f_{y y}(0,0)=2$, and $f_{x y}(0,0)=0$, we get

$$
D=(-2)(2)=-4<0 \Rightarrow \text { saddle point at }(0,0)
$$

Characterization of local extrema.

Second derivative test.
Example
Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?

Characterization of local extrema.

Second derivative test.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.

Characterization of local extrema.

Second derivative test.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.
Remark: The whole axes $x=0$ and $y=0$ are critical points of f.

Characterization of local extrema.

Second derivative test.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.
Remark: The whole axes $x=0$ and $y=0$ are critical points of f.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

Characterization of local extrema.

Second derivative test.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.
Remark: The whole axes $x=0$ and $y=0$ are critical points of f.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(x, y)=2 y^{2}, f_{y y}(x, y)=2 x^{2}$, and $f_{x y}(x, y)=4 x y$,

Characterization of local extrema.

Second derivative test.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.
Remark: The whole axes $x=0$ and $y=0$ are critical points of f.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(x, y)=2 y^{2}, f_{y y}(x, y)=2 x^{2}$, and $f_{x y}(x, y)=4 x y$,
we obtain $f_{x x}(0,0)=0, f_{y y}(0,0)=0$, and $f_{x y}(0,0)=0$,

Characterization of local extrema.

Second derivative test.

Example

Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: We first verify that $(0,0)$ is a critical point of f :

$$
\nabla f(x, y)=\left\langle 2 x y^{2}, 2 y x^{2}\right\rangle,\left.\quad \Rightarrow \quad(\nabla f)\right|_{(0,0)}=\langle 0,0\rangle
$$

therefore, $(0,0)$ is a critical point.
Remark: The whole axes $x=0$ and $y=0$ are critical points of f.
We need to compute $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
Since $f_{x x}(x, y)=2 y^{2}, f_{y y}(x, y)=2 x^{2}$, and $f_{x y}(x, y)=4 x y$,
we obtain $f_{x x}(0,0)=0, f_{y y}(0,0)=0$, and $f_{x y}(0,0)=0$, hence $D=0$ and the test is inconclusive.

Characterization of local extrema.

Second derivative test.

Example
Is the point $(a, b)=(0,0)$ a local extrema of $f(x, y)=y^{2} x^{2}$?
Solution: From the graph of $f=x^{2} y^{2}$ is simple to see that $(0,0)$ is a local minimum: (also a global minimum.)

Local and absolute extrema, saddle points (Sect. 14.7).

- Review: Local extrema for functions of one variable.
- Definition of local extrema.
- Characterization of local extrema.
- First derivative test.
- Second derivative test.
- Absolute extrema of a function in a domain.

Absolute extrema of a function in a domain.

Definition
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(x, y) \leqslant f(a, b)$ for all $(x, y) \in D$.
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(x, y) \geqslant f(a, b)$ for all $(x, y) \in D$.

Absolute extrema of a function in a domain.

Definition

A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(x, y) \leqslant f(a, b)$ for all $(x, y) \in D$.
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(x, y) \geqslant f(a, b)$ for all $(x, y) \in D$.

Remark: Local extrema need not be the absolute extrema.

Absolute extrema of a function in a domain.

Definition
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute maximum at the point $(a, b) \in D$ iff $f(x, y) \leqslant f(a, b)$ for all $(x, y) \in D$.
A function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ has an absolute minimum at the point $(a, b) \in D$ iff $f(x, y) \geqslant f(a, b)$ for all $(x, y) \in D$.

Remark: Local extrema need not be the absolute extrema.

Review: Functions of one variable.

Theorem
Every continuous functions $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$, with $a<b \in \mathbb{R}$ always has absolute extrema.

Review: Functions of one variable.

Theorem

Every continuous functions $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$, with $a<b \in \mathbb{R}$ always has absolute extrema.

Recall:

- Intervals $[a, b]$ are bounded and closed sets in \mathbb{R}.

Review: Functions of one variable.

Theorem
Every continuous functions $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$, with $a<b \in \mathbb{R}$ always has absolute extrema.

Recall:

- Intervals $[a, b]$ are bounded and closed sets in \mathbb{R}.
- The set $[a, b]$ is closed, since the boundary points belong to the set, and it is bounded, since it does not extend to infinity.

Recall: On open and closed sets in \mathbb{R}^{n}.

Definition

A set $S \in \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called open iff every point in S is an interior point. The set S is called closed iff S contains its boundary. A set S is called bounded iff S is contained in ball, otherwise S is called unbounded.

Recall: On open and closed sets in \mathbb{R}^{n}.

Definition

A set $S \in \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called open iff every point in S is an interior point. The set S is called closed iff S contains its boundary. A set S is called bounded iff S is contained in ball, otherwise S is called unbounded.

Theorem
If $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous in a closed and bounded set D, then f has an absolute maximum and an absolute minimum in D.

Absolute extrema on closed and bounded sets.

Problem:
Find the absolute extrema of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ in a closed and bounded set D.

Absolute extrema on closed and bounded sets.

Problem:
Find the absolute extrema of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ in a closed and bounded set D.

Solution:
(1) Find every critical point of f in the interior of D and evaluate f at these points.

Absolute extrema on closed and bounded sets.

Problem:
Find the absolute extrema of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ in a closed and bounded set D.

Solution:
(1) Find every critical point of f in the interior of D and evaluate f at these points.
(2) Find the boundary points of D where f has local extrema, and evaluate f at these points.

Absolute extrema on closed and bounded sets.

Problem:
Find the absolute extrema of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ in a closed and bounded set D.

Solution:

(1) Find every critical point of f in the interior of D and evaluate f at these points.
(2) Find the boundary points of D where f has local extrema, and evaluate f at these points.
(3) Look at the list of values for f found in the previous two steps. If $f\left(x_{0}, y_{0}\right)$ is the biggest (smallest) value of f in the list above, then $\left(x_{0}, y_{0}\right)$ is the absolute maximum (minimum) of f in D.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(1) We find all critical points in the interior of the domain:

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1) .
$$

Since $(-2,1)$ does not belong to the domain, we discard it.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1) .
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Boundary I: The segment $y=0, x \in[1,5]$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Boundary I: The segment $y=0, x \in[1,5]$. We select the end points $(1,0),(5,0)$, and we record: $f(1,0)=2$ and $f(5,0)=-2$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:

(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Boundary I: The segment $y=0, x \in[1,5]$. We select the end points $(1,0),(5,0)$, and we record: $f(1,0)=2$ and $f(5,0)=-2$. We look for critical point on the interior of Boundary I:

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:

(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Boundary I: The segment $y=0, x \in[1,5]$. We select the end points $(1,0),(5,0)$, and we record: $f(1,0)=2$ and $f(5,0)=-2$. We look for critical point on the interior of Boundary I: Since $g(x)=f(x, 0)=3-x$, so $g^{\prime}=-1 \neq 0$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:

(1) We find all critical points in the interior of the domain:

$$
\nabla f=\langle(y-1),(x+2)\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left(x_{0}, y_{0}\right)=(-2,1)
$$

Since $(-2,1)$ does not belong to the domain, we discard it.
(2) Three segments form the boundary of D :

Boundary I: The segment $y=0, x \in[1,5]$. We select the end points $(1,0),(5,0)$, and we record: $f(1,0)=2$ and $f(5,0)=-2$. We look for critical point on the interior of Boundary I: Since $g(x)=f(x, 0)=3-x$, so $g^{\prime}=-1 \neq 0$. No critical points in the interior of Boundary I.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II:

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since

$$
g(y)=f(1, y)=3+y-1+2 y=2+3 y, \text { so } g^{\prime}=3 \neq 0 .
$$

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III:

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since

$$
g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5) .
$$

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$. We obtain $g(x)=-x^{2}+2 x+13$,

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$. We obtain $g(x)=-x^{2}+2 x+13$, hence $g^{\prime}(x)=-2 x+2$

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$. We obtain $g(x)=-x^{2}+2 x+13$, hence $g^{\prime}(x)=-2 x+2=0$ implies $x=1$.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$. We obtain $g(x)=-x^{2}+2 x+13$, hence $g^{\prime}(x)=-2 x+2=0$ implies $x=1$. So, $y=4$, and we selected the point $(1,4)$,

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$. We obtain $g(x)=-x^{2}+2 x+13$, hence $g^{\prime}(x)=-2 x+2=0$ implies $x=1$. So, $y=4$, and we selected the point $(1,4)$, which was already in our list.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution: Boundary II: The segment $x=1, y \in[0,4]$. We select the end point $(1,4)$ and we record: $f(1,4)=14$.
We look for critical point on the interior of Boundary II: Since $g(y)=f(1, y)=3+y-1+2 y=2+3 y$, so $g^{\prime}=3 \neq 0$. No critical points in the interior of Boundary II.

Boundary III: The segment $y=-x+5, x \in[1,5]$.
We look for critical point on the interior of Boundary III: Since $g(x)=f(x,-x+5)=3+x(-x+5)-x+2(-x+5)$. We obtain $g(x)=-x^{2}+2 x+13$, hence $g^{\prime}(x)=-2 x+2=0$ implies $x=1$. So, $y=4$, and we selected the point $(1,4)$, which was already in our list. No critical points in the interior of Boundary III.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(3) Our list of values is:

$$
f(1,0)=2 \quad f(1,4)=14 \quad f(5,0)=-2 .
$$

Absolute extrema on closed and bounded sets.

Example

Find the absolute extrema of the function $f(x, y)=3+x y-x+2 y$ on the closed domain given in the Figure.

Solution:
(3) Our list of values is:

$$
f(1,0)=2 \quad f(1,4)=14 \quad f(5,0)=-2
$$

We conclude:

- Absolute maximum at $(1,4)$,
- Absolute minimum at $(5,0)$.

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution: This problem can be solved by finding the local maximum of an appropriate function f.

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution: This problem can be solved by finding the local maximum of an appropriate function f.
The function f is obtained as follows: Recall the functions volume and area of a rectangular box with vertex at $(0,0,0)$ and sides x, y and z :

$$
V(x, y, z)=x y z, \quad A(x, y, z)=2 x y+2 x z+2 y z
$$

Since $A(x, y, z)=A_{0}$, we obtain $z=\frac{A_{0}-2 x y}{2(x+y)}$, that is

$$
f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}
$$

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution:
We must find the critical points of $f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}$.

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution:
We must find the critical points of $f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}$.

$$
f_{x}=\frac{2 A_{0} y^{2}-4 x^{2} y^{2}-8 x y^{3}}{4(x+y)^{2}}, \quad f_{y}=\frac{2 A_{0} x^{2}-4 x^{2} y^{2}-8 y x^{3}}{4(x+y)^{2}} .
$$

The conditions $f_{x}=0$ and $f_{y}=0$ and $x \neq 0, y \neq 0$ imply

$$
\left.\begin{array}{l}
A_{0}=2 x^{2}+4 x y, \\
A_{0}=2 y^{2}+4 x y,
\end{array}\right\} \quad \Rightarrow \quad x=y .
$$

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution:
We must find the critical points of $f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}$.

$$
f_{x}=\frac{2 A_{0} y^{2}-4 x^{2} y^{2}-8 x y^{3}}{4(x+y)^{2}}, \quad f_{y}=\frac{2 A_{0} x^{2}-4 x^{2} y^{2}-8 y x^{3}}{4(x+y)^{2}} .
$$

The conditions $f_{x}=0$ and $f_{y}=0$ and $x \neq 0, y \neq 0$ imply

$$
\left.\begin{array}{l}
A_{0}=2 x^{2}+4 x y, \\
A_{0}=2 y^{2}+4 x y,
\end{array}\right\} \Rightarrow x=y . \quad \text { Recall } \quad z=\frac{A_{0}-2 x y}{2(x+y)},
$$

A maximization problem with a constraint.

Example

Find the maximum volume of a closed rectangular box with a given surface area A_{0}.

Solution:
We must find the critical points of $f(x, y)=\frac{A_{0} x y-2 x^{2} y^{2}}{2(x+y)}$.

$$
f_{x}=\frac{2 A_{0} y^{2}-4 x^{2} y^{2}-8 x y^{3}}{4(x+y)^{2}}, \quad f_{y}=\frac{2 A_{0} x^{2}-4 x^{2} y^{2}-8 y x^{3}}{4(x+y)^{2}} .
$$

The conditions $f_{x}=0$ and $f_{y}=0$ and $x \neq 0, y \neq 0$ imply

$$
\left.\begin{array}{l}
A_{0}=2 x^{2}+4 x y, \\
A_{0}=2 y^{2}+4 x y,
\end{array}\right\} \Rightarrow x=y . \quad \text { Recall } \quad z=\frac{A_{0}-2 x y}{2(x+y)},
$$

so, $z=\frac{A_{0}-2 x^{2}}{4 x}=y$. Therefore, $x_{0}=y_{0}=z_{0}=\sqrt{A_{0} / 6}$.

