
Partial derivatives and differentiability (Sect. 14.3).

I Partial derivatives and continuity.

I Differentiable functions f : D ⊂ R2 → R.

I Differentiability and continuity.

I A primer on differential equations.



Partial derivatives and continuity.

Recall: The following result holds for single variable functions.

Theorem
If the function f : R → R is differentiable, then f is continuous.

Proof.

lim
h→0

[f (x + h)− f (x)] = lim
h→0

[ f (x + h)− f (x)

h

]
h,

= f ′(x) lim
h→0

h

= 0.

That is, limh→0 f (x + h) = f (x), so f is continuous.

However, the claim “If fx(x , y) and fy(x , y) exist, then f (x , y)
is continuous” is false.
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Partial derivatives and continuity.

Theorem
If the function f : R → R is differentiable, then f is continuous.

Remark:

I This Theorem is not true for
the partial derivatives of a
function f : R2 → R.

I There exist functions
f : R2 → R such that
fx(x0, y0) and fy (x0, y0) exist
but f is not continuous at
(x0, y0).
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f  (0,0) = f  (0,0)  = 0yx

Remark: This is a bad property for a differentiable function.
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Partial derivatives and continuity.

Remark: Here is a discontinuous function at (0, 0) having partial
derivatives at (0, 0).

Example

(a) Show that f is not continuous at (0, 0), where

f (x , y) =


2xy

x2 + y2
(x , y) 6= (0, 0),

0 (x , y) = (0, 0).

(b) Find fx(0, 0) and fy (0, 0).

Solution:
(a) Choosing the path x = 0 we see that f (0, y) = 0, so
limy→0 f (0, y) = 0. Choosing the path x = y we see that
f (x , x) = 2x2/2x2 = 1, so limx→0 f (x , x) = 1. The Two-Path
Theorem implies that lim(x ,y)→(0,0) f (x , y) does not exist.
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Partial derivatives and differentiability (Sect. 14.3).

I Partial derivatives and continuity.

I Differentiable functions f : D ⊂ R2 → R.

I Differentiability and continuity.

I A primer on differential equations.



Differentiable functions f : D ⊂ R2 → R.

Recall: A differentiable
function f : R → R at x0

must be approximated by
a line L(x) containing x0

with slope f ′(x0).

f ( x ) = z

x0 x

f ( x  ) 

L ( x )

0

Line that 
approximates
f ( x ) at x  .0

The equation of the tangent line is

L(x) = f ′(x0) (x − x0) + f (x0).

The function f is approximated by the line L near x0 means

f (x) = L(x) + ε1 (x − x0)

with ε1(x) → 0 as x → x0.

The graph of a differentiable function f : D ⊂ R → R is
approximated by a line at every point in D.
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Differentiable functions f : D ⊂ R2 → R.

Remark: The idea to define differentiable functions:
The graph of a differentiable function f : D ⊂ R2 → R is
approximated by a plane at every point in D.

0

L(x,y)

( x  , y  )
00 

Plane that 

f ( x, y ) at ( x  , y  )
approximates 

f ( x, y ) = z

x

y

Function f is differentiable at (x  , y  ). 0 

00
near ( 0 , 0 ).

x

y

z

1

f(x,y)

Plane that does not L ( x , y )

approximate f (x,y)

Function f is not differentiable at  ( 0 , 0 ).

We will show next week that the equation of the plane L is

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).
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Differentiable functions f : D ⊂ R2 → R.

Definition
Given a function f : D ⊂ R2 → R and an interior point (x0, y0) in
D, let L be the plane given by

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0).

The function f is called differentiable at (x0, y0) iff the function f
is approximated by the plane L near (x0, y0), that is,

f (x , y) = L(x , y) + ε1 (x − x0) + ε2 (y − y0)

where the functions ε1 and ε2 → 0 as (x , y) → (x0, y0).
The function f is differentiable iff f is differentiable at every
interior point of D.



Differentiable functions f : D ⊂ R2 → R.

Remark: Recalling that the equation for the plane L is

L(x , y) = fx(x0, y0) (x − x0) + fy (x0, y0) (y − y0) + f (x0, y0),

an equivalent expression for f being differentiable,

f (x , y) = L(x , y) + ε1 (x − x0) + ε2 (y − y0),

is the following: Denote z = f (x , y) and z0 = f (x0, y0), and
introduce the increments

∆z = (z − z0), ∆y = (y − y0), ∆x = (x − x0);

then, the equation above is

∆z = fx(x0, y0) ∆x + fy (x0, y0) ∆y + ε1 ∆x + ε2 ∆y .

(Equation used in the textbook to define a differentiable function.)
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I A primer on differential equations.



Differentiability and continuity.

Recall: The graph of a
differentiable function
f : D ⊂ R2 → R is approximated
by a plane at every point in D.
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Plane that 
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f ( x, y ) = z

x
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Function f is differentiable at (x  , y  ). 0 

00

Remark: A simple sufficient condition on a function
f : D ⊂ R2 → R guarantees that f is differentiable:

Theorem
If the partial derivatives fx and fy of a function f : D ⊂ R2 → R are
continuous in an open region R ⊂ D, then f is differentiable in R.

Theorem
If a function f : D ⊂ R2 → R is differentiable, then f is continuous.
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continuous in an open region R ⊂ D, then f is differentiable in R.

Theorem
If a function f : D ⊂ R2 → R is differentiable, then f is continuous.
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Partial derivatives and differentiability (Sect. 14.3).

I Partial derivatives and continuity.

I Differentiable functions f : D ⊂ R2 → R.

I Differentiability and continuity.

I A primer on differential equations.



A primer on differential equations.

Remark: A differential equation is an equation where the unknown
is a function and the function together with its derivatives appear
in the equation.

Example

Given a constant k ∈ R, find all solutions f : R → R to the
differential equation

f ′(x) = k f (x).

Solution: Multiply the equation above f ′(x)− kf (x) = 0 by e−kx ,
that is, f ′(x) e−kx − f (x) ke−kx = 0.

The left-hand side is a total derivative,
[
f (x) e−kx

]′
= 0.

The solution of the equation above is f (x)e−kx = c , with c ∈ R.

Therefore, f (x) = c ekx . C
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A primer on differential equations.

There are three differential equations for functions
f : D ⊂ Rn → R, with n = 2, 3, 4, that appear in several physical
applications.

I The Laplace equation: (Gravitation, electrostatics.)

∂2
x f + ∂2

y f + ∂2
z f = 0.

I The Heat equation: (Heat propagation, diffusion.)

∂t f = k
(
∂2

x f + ∂2
y f + ∂2

z f
)
.

I The Wave equation: (Light, sound, gravitation.)

∂2
t f = v

(
∂2

x f + ∂2
y f + ∂2

z f
)
.
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A primer on differential equations.

Example

Verify that f (x , y , z) =
1√

x2 + y2 + z2
satisfies the Laplace

equation : fxx + fyy + fzz = 0.

Solution: Recall: fx = −x/
(
x2 + y2 + z2)3/2. Then,

fxx = − 1(
x2 + y2 + z2)3/2

+
3

2

2x2(
x2 + y2 + z2)5/2

.

Denote r =
√

x2 + y2 + z2, then fxx = − 1
r3 + 3x2

r5 .

Analogously, fyy = − 1
r3 + 3y2

r5 , and fzz = − 1
r3 + 3z2

r5 . Then,

fxx + fyy + fzz = − 3

r3
+

3(x2 + y2 + z2)

r5
= − 3

r3
+

3r2

r5
= 0.

We conclude that fxx + fyy + fzz = 0. C
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A primer on differential equations.

Example

Verify that the function T (t, x) = e−4t sin(2x) satisfies the
one-space dimensional heat equation Tt = Txx .

Solution: We first compute Tt ,

Tt = −4e−t sin(2x).

Now compute Txx ,

Tx = 2e−t cos(2x) ⇒ Txx = −4e−t sin(2x)

Therefore Tt = Txx . C
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A primer on differential equations.

Example

Verify that the function f (t, x) = (vt − x)3, with v ∈ R, satisfies
the one-space dimensional wave equation ftt = v2fxx .

Solution: We first compute ftt ,

ft = 3v(vt − x)2 ⇒ ftt = 6v2(vt − x).

Now compute fxx ,

fx = −3(vt − x)2 ⇒ fxx = 6(vt − x).

Therefore ftt = v2fxx . C
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The chain rule for functions of 2, 3 variables (Sect. 14.4)

I Review: The chain rule for f : D ⊂ R → R.
I The chain rule for change of coordinates in a line.

I Functions of two variables, f : D ⊂ R2 → R.
I The chain rule for functions defined on a curve in a plane.
I The chain rule for change of coordinates in a plane.

I Functions of three variables, f : D ⊂ R3 → R.
I The chain rule for functions defined on a curve in space.
I The chain rule for functions defined on surfaces in space.
I The chain rule for change of coordinates in space.

I A formula for implicit differentiation.



Review: The chain rule for f : D ⊂ R → R.

The chain rule for change of coordinates in a line.

Theorem
If the functions f : [x0, x1] → R and x : [t0, t1] → [x0, x1] are
differentiable, then the function f̂ : [t0, t1] → R given by the
composition f̂ (t) = f

(
x(t)

)
is differentiable and

df̂

dt
(t) =

df

dx

(
x(t)

) dx

dt
(t).

Notation:

The equation above is usually written as
df̂

dt
=

df

dx

dx

dt
.

Alternative notations are f̂ ′(t) = f ′
(
x(t)

)
x ′(t) and f̂ ′ = f ′ x ′.
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=

df

dx

dx

dt
.

Alternative notations are f̂ ′(t) = f ′
(
x(t)

)
x ′(t) and f̂ ′ = f ′ x ′.



Review: The chain rule for f : D ⊂ R → R.

Example

The volume V of a gas in a balloon depends on the temperature F
in Fahrenheit as follows: V (F ) = k F 2. Let F (C ) = (9/5)C + 32
be the temperature in Fahrenheit corresponding to C in Celsius.
Find V̂ (C ) = V

(
F (C )

)
and V̂ ′(C ).

Solution:

The function V̂ is the composition V̂ (C ) = k
(9

5
C + 32

)2
.

Which could also be written as

V̂ (C ) = k
81

25
C 2 + 64k

9

5
C + k(32)2.

The formula
dV̂

dC
=

dV

dF

dF

dC
implies V̂ ′(C ) = 2k

(9

5
C + 32

) 9

5
. C
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The chain rule for functions of 2, 3 variables (Sect. 14.4)

I Review: The chain rule for f : D ⊂ R → R.
I The chain rule for change of coordinates in a line.

I Functions of two variables, f : D ⊂ R2 → R.
I The chain rule for functions defined on a curve in a plane.
I The chain rule for change of coordinates in a plane.

I Functions of three variables, f : D ⊂ R3 → R.
I The chain rule for functions defined on a curve in space.
I The chain rule for functions defined on surfaces in space.
I The chain rule for change of coordinates in space.

I A formula for implicit differentiation.



Functions of two variables, f : D ⊂ R2 → R.

The chain rule for functions defined on a curve in a plane.

Theorem
If the functions f : D ⊂ R2 → R and r : R → D ⊂ R2 are
differentiable, with r(t) = 〈x(t), y(t)〉, then the function
f̂ : R → R given by the composition f̂ (t) = f

(
r(t)

)
is

differentiable and holds

d f̂

dt
(t) =

∂f

∂x

(
r(t)

) dx

dt
(t) +

∂f

∂y

(
r(t)

) dy

dt
(t).

Notation:

The equation above is usually written as
df̂

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

An alternative notation is f̂ ′ =
(
∂x f

)
x ′ +

(
∂y f

)
y ′.
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Functions of two variables, f : D ⊂ R2 → R.

The chain rule for functions defined on a curve in a plane.
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Functions of two variables, f : D ⊂ R2 → R.
The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function f (x , y) = x2 + 2y3, along the curve
r(t) = 〈x(t), y(t)〉 = 〈sin(t), cos(2t)〉. Furthermore, compute the
derivative of f along that curve.

Solution: The function f along the curve r(t) is denoted as
f̂ (t) = f (x(t), y(t)). The result is f̂ (t) = sin2(t) + 2 cos3(2t).

The derivative of f along the curve r is f̂ ′. The result is

f̂ ′(t) = 2x(t) x ′(t) + 6
(
y(t)

)2
y ′(t),

= 2x(t) cos(t)− 12
(
y(t)

)2
sin(2t)

We conclude: f̂ ′(t) = 2 sin(t) cos(t)− 12 cos2(2t) sin(2t). C
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Functions of two variables, f : D ⊂ R2 → R.

The chain rule for change of coordinates in a plane.

Theorem
If the functions f : R2 → R and the change of coordinate functions
x , y : R2 → R are differentiable, with x(t, s) and y(t, s), then the
function f̂ : R2 → R given by the composition
f̂ (t, s) = f

(
x(t, s), y(t, s)

)
is differentiable and holds

f̂t = fx xt + fy yt

f̂s = fx xs + fy ys .

Remark:
We denote by f (x , y) are the function values in the coordinates
(x , y), while we denote by f̂ (t, s) are the function values in the
coordinates (t, s).
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Theorem
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Functions of two variables, f : D ⊂ R2 → R.
The chain rule for change of coordinates in a plane.

Example

Given the function f (x , y) = x2 + 3y2, in Cartesian coordinates
(x , y), find f̂ (r , θ) in polar coordinates (r , θ). Furthermore,
compute f̂r and f̂θ.

Solution: The polar coordinates (r , θ) are related to Cartesian
coordinates (x , y) by the formula

x(r , θ) = r cos(θ), y(r , θ) = r sin(θ).

The function f̂ (r , θ) = f (x(r , θ), y(r , θ)) is simple to compute,

f̂ (r , θ) = r2 cos2(θ) + 3r2 sin2(θ).
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The chain rule for functions of 2, 3 variables (Sect. 14.4)

I Review: The chain rule for f : D ⊂ R → R.
I The chain rule for change of coordinates in a line.

I Functions of two variables, f : D ⊂ R2 → R.
I The chain rule for functions defined on a curve in a plane.
I The chain rule for change of coordinates in a plane.

I Functions of three variables, f : D ⊂ R3 → R.
I The chain rule for functions defined on a curve in space.
I The chain rule for functions defined on surfaces in space.
I The chain rule for change of coordinates in space.

I A formula for implicit differentiation.



Functions of three variables, f : D ⊂ R3 → R.

The chain rule for functions defined on a curve in space.

Theorem
If the functions f : D ⊂ R3 → R and r : R → D ⊂ R3 are
differentiable, with r(t) = 〈x(t), y(t), z(t)〉, then the function
f̂ : R → R given by the composition f̂ (t) = f

(
r(t)

)
is

differentiable and holds

d f̂

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
.

Notation:
The equation above is usually written as

f̂ ′ = fx x ′ + fy y ′ + fz z ′.



Functions of three variables, f : D ⊂ R3 → R.

The chain rule for functions defined on a curve in space.

Theorem
If the functions f : D ⊂ R3 → R and r : R → D ⊂ R3 are
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dt
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dx
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dy

dt
+

∂f

∂z

dz
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.

Notation:
The equation above is usually written as

f̂ ′ = fx x ′ + fy y ′ + fz z ′.



Functions of three variables, f : D ⊂ R3 → R.

The chain rule for functions defined on a curve in space.

Example

Find the derivative of f = x2 + y3 + z4 along the curve
r(t) = 〈cos(t), sin(t), 3t〉.

Solution: We first compute f̂ (t) = f
(
x(t), y(t), z(t)

)
, that is,

f̂ (t) = cos2(t) + sin3(t) + 81 t4.

The derivative of f along the curve r is the derivative of f̂ , that is,

f̂ ′ = fx x ′ + fy y ′ + fz z ′ = −2x sin(t) + 3y2 cos(t) + 4z3(3).

We obtain f̂ ′ = −2 cos(t) sin(t) + 3 sin2(t) cos(t) + 4(3)(33)t3. C
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(
x(t), y(t), z(t)

)
, that is,

f̂ (t) = cos2(t) + sin3(t) + 81 t4.

The derivative of f along the curve r is the derivative of f̂ , that is,

f̂ ′ = fx x ′ + fy y ′ + fz z ′ = −2x sin(t) + 3y2 cos(t) + 4z3(3).

We obtain f̂ ′ = −2 cos(t) sin(t) + 3 sin2(t) cos(t) + 4(3)(33)t3. C
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Functions of three variables, f : D ⊂ R3 → R.

The chain rule for functions defined on surfaces in space.

Theorem
If the functions f : R3 → R and the surface given by functions
x , y , z : R2 → R are differentiable, with x(t, s) and y(t, s), and
z(t, s), then the function f̂ : R2 → R given by the composition
f̂ (t, s) = f

(
x(t, s), y(t, s), z(t, s)

)
is differentiable and holds

f̂t = fx xt + fy yt + fz zt ,

f̂s = fx xs + fy ys + fz zs .

Remark:
We denote by f (x , y , z) the function values in the coordinates
(x , y , z), while we denote by f̂ (t, s) the function values at the
surface point with coordinates (t, s).
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Functions of three variables, f : D ⊂ R3 → R.
The chain rule for functions defined on surfaces in space.

Example

Given the function f (x , y) = x2 + 3y2 + 2z2, in Cartesian
coordinates (x , y), find f̂ (t, s), the values of f and its derivatives
on the surface given by x(t, s) = t + s, y(t, s) = t2 − s2,
z(t, s) = t − s.

Solution: The function f̂ (t, s) = f (x(t, s), y(t, s), z(t, s)) is simple
to compute: f̂ (t, s) = (t + s)2 + 3(t2 − s2)2 + 2(t − s)2.
The derivatives of f along the surface x(t, s), y(t, s) and z(t, s)
are given by f̂t and f̂s ; which are given by

f̂t = fx xt + fy yt + fz zt f̂S = fx xs + fy ys + fz zs .

We obtain f̂t = 2(t + s) + 6(t2 − s2)(2t) + 4(t − s),
and f̂s = 2(t + s) + 6(t2 − s2)(−2s)− 4(t − s). C
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Functions of three variables, f : D ⊂ R3 → R.

The chain rule for change of coordinates in space.

Theorem
If the functions f : R3 → R and the change of coordinate functions
x , y , z : R3 → R are differentiable, with x(t, s, r), y(t, s, r), and
z(t, s, r), then the function f̂ : R3 → R given by the composition
f̂ (t, s, r) = f

(
x(t, s, r), y(t, s, r), z(t, s, r)

)
is differentiable and

f̂t = fx xt + fy yt + fz zt

f̂s = fx xs + fy ys + fz zs

f̂r = fx xr + fy yr + fz zr .

Remark:
We denote by f (x , y , z) the function values in the coordinates
(x , y , z), while we denote by f̂ (t, s, r) the function values in the
coordinates (t, s, r).
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Functions of three variables, f : D ⊂ R3 → R.
The chain rule for change of coordinates in space.

Example

Given the function f (x , y , z) = x2 + 3y2 + z2, in Cartesian
coordinates (x , y , z), find f̂ (r , θ, φ) and its derivatives in spherical
coordinates (r , θ, φ), where

x = r cos(φ) sin(θ), y = r sin(φ) sin(θ), z = r cos(θ).

Solution: We first compute the function
f̂ (r , θ, φ) = f

(
x(r , θ, φ), y(r , θ, φ), z(r , θ, φ)

)
,

f̂ = r2 cos2(φ) sin2(θ) + 3r2 sin2(φ) sin2(θ) + r2 cos2(θ)

= r2 sin2(θ) + 2r2 sin2(φ) sin2(θ) + r2 cos2(θ)

so we obtain
f̂ = r2 + 2r2 sin2(φ) sin2(θ).
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The chain rule for change of coordinates in space.

Example

Given the function f (x , y , z) = x2 + 3y2 + z2, in Cartesian
coordinates (x , y , z), find f̂ (r , θ, φ) and its r -derivative in spherical
coordinates (r , θ, φ), where

x = r cos(φ) sin(θ), y = r sin(φ) sin(θ), z = r cos(θ).

Solution: The r -derivative of f̂ is given by
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We conclude that f̂r = 2r + 4r sin2(φ) sin2(θ). C
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The chain rule for functions of 2, 3 variables (Sect. 14.4)

I Review: The chain rule for f : D ⊂ R → R.
I The chain rule for change of coordinates in a line.

I Functions of two variables, f : D ⊂ R2 → R.
I The chain rule for functions defined on a curve in a plane.
I The chain rule for change of coordinates in a plane.

I Functions of three variables, f : D ⊂ R3 → R.
I The chain rule for functions defined on a curve in space.
I The chain rule for functions defined on surfaces in space.
I The chain rule for change of coordinates in space.

I A formula for implicit differentiation.



A formula for implicit differentiation.

Theorem
Assume that the differentiable function with values F (x , y) defines
implicitly a function with values y(x) by the equation F (x , y) = 0.
If the function Fy 6= 0, then y is differentiable and

dy

dx
= −Fx

Fy
.

Proof.

Since F̂ (x) = F (x , y(x)) = 0, then 0 =
dF̂

dx
= Fx + Fy y ′.

We conclude that y ′ = −Fx

Fy
.
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A formula for implicit differentiation.

Example

Find the derivative of function y : R → R defined implicitly by the
equation F (x , y) = 0, where F (x , y) = x ey + cos(x − y).

Solution:
The partial derivatives of function F are

Fx = ey − sin(x − y), Fy = x ey + sin(x − y).

Therefore,

y ′(x) =

[
sin(x − y)− ey

][
x ey + sin(x − y)

] .

C
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A formula for implicit differentiation.

Example

Find the derivative of function y : R → R defined implicitly by the
equation F (x , y) = 0, where F (x , y) = x ey + cos(x − y).

Solution: (Old method.)
Since F (x , y(x)) = x ey + cos(x − y) = 0, then

ey + x y ′ ey − sin(x − y)− sin(x − y)(−y ′) = 0.

Reordering terms,
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