Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Partial derivatives and continuity.

Recall: The following result holds for single variable functions.
Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.

Partial derivatives and continuity.

Recall: The following result holds for single variable functions.
Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Proof.

$$
\begin{aligned}
\lim _{h \rightarrow 0}[f(x+h)-f(x)] & =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] h \\
& =f^{\prime}(x) \lim _{h \rightarrow 0} h \\
& =0
\end{aligned}
$$

Partial derivatives and continuity.

Recall: The following result holds for single variable functions.
Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Proof.

$$
\begin{aligned}
\lim _{h \rightarrow 0}[f(x+h)-f(x)] & =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] h, \\
& =f^{\prime}(x) \lim _{h \rightarrow 0} h \\
& =0
\end{aligned}
$$

That is, $\lim _{h \rightarrow 0} f(x+h)=f(x)$, so f is continuous.

Partial derivatives and continuity.

Recall: The following result holds for single variable functions.
Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Proof.

$$
\begin{aligned}
\lim _{h \rightarrow 0}[f(x+h)-f(x)] & =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right] h, \\
& =f^{\prime}(x) \lim _{h \rightarrow 0} h \\
& =0
\end{aligned}
$$

That is, $\lim _{h \rightarrow 0} f(x+h)=f(x)$, so f is continuous.

However, the claim "If $f_{x}(x, y)$ and $f_{y}(x, y)$ exist, then $f(x, y)$ is continuous" is false.

Partial derivatives and continuity.

Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.

Partial derivatives and continuity.

Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Remark:

- This Theorem is not true for the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Partial derivatives and continuity.

Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Remark:

- This Theorem is not true for the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- There exist functions
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that
$f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist
but f is not continuous at
$\left(x_{0}, y_{0}\right)$.

Partial derivatives and continuity.

Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Remark:

- This Theorem is not true for the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- There exist functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist but f is not continuous at
 $\left(x_{0}, y_{0}\right)$.

Partial derivatives and continuity.

Theorem
If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.
Remark:

- This Theorem is not true for the partial derivatives of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- There exist functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist but f is not continuous at
 $\left(x_{0}, y_{0}\right)$.

Remark: This is a bad property for a differentiable function.

Partial derivatives and continuity.

Remark: Here is a discontinuous function at $(0,0)$ having partial derivatives at $(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Partial derivatives and continuity.

Remark: Here is a discontinuous function at $(0,0)$ having partial derivatives at $(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(a) Choosing the path $x=0$ we see that $f(0, y)=0$, so $\lim _{y \rightarrow 0} f(0, y)=0$.

Partial derivatives and continuity.

Remark: Here is a discontinuous function at $(0,0)$ having partial derivatives at $(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(a) Choosing the path $x=0$ we see that $f(0, y)=0$, so $\lim _{y \rightarrow 0} f(0, y)=0$. Choosing the path $x=y$ we see that $f(x, x)=2 x^{2} / 2 x^{2}=1$, so $\lim _{x \rightarrow 0} f(x, x)=1$.

Partial derivatives and continuity.

Remark: Here is a discontinuous function at $(0,0)$ having partial derivatives at $(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(a) Choosing the path $x=0$ we see that $f(0, y)=0$, so $\lim _{y \rightarrow 0} f(0, y)=0$. Choosing the path $x=y$ we see that $f(x, x)=2 x^{2} / 2 x^{2}=1$, so $\lim _{x \rightarrow 0} f(x, x)=1$. The Two-Path Theorem implies that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(b) The partial derivatives are defined at $(0,0)$.

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(b) The partial derivatives are defined at $(0,0)$.

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0+h, 0)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 .
$$

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(b) The partial derivatives are defined at $(0,0)$.

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0+h, 0)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 . \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0,0+h)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 .
\end{aligned}
$$

Example

(a) Show that f is not continuous at $(0,0)$, where

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution:
(b) The partial derivatives are defined at $(0,0)$.

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0+h, 0)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 . \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}[f(0,0+h)-f(0,0)]=\lim _{h \rightarrow 0} \frac{1}{h}[0-0]=0 .
\end{aligned}
$$

Therefore, $f_{x}(0,0)=f_{y}(0,0)=0$.

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Recall: A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} must be approximated by a line $L(x)$ containing x_{0} with slope $f^{\prime}\left(x_{0}\right)$.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Recall: A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} must be approximated by a line $L(x)$ containing x_{0} with slope $f^{\prime}\left(x_{0}\right)$.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Recall: A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} must be approximated by a line $L(x)$ containing x_{0} with slope $f^{\prime}\left(x_{0}\right)$.

The equation of the tangent line is

$$
L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Recall: A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} must be approximated by a line $L(x)$ containing x_{0} with slope $f^{\prime}\left(x_{0}\right)$.

The equation of the tangent line is

$$
L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

The function f is approximated by the line L near x_{0} means

$$
f(x)=L(x)+\epsilon_{1}\left(x-x_{0}\right)
$$

with $\epsilon_{1}(x) \rightarrow 0$ as $x \rightarrow x_{0}$.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Recall: A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} must be approximated by a line $L(x)$ containing x_{0} with slope $f^{\prime}\left(x_{0}\right)$.

The equation of the tangent line is

$$
L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

The function f is approximated by the line L near x_{0} means

$$
f(x)=L(x)+\epsilon_{1}\left(x-x_{0}\right)
$$

with $\epsilon_{1}(x) \rightarrow 0$ as $x \rightarrow x_{0}$.
The graph of a differentiable function $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is approximated by a line at every point in D.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: The idea to define differentiable functions: The graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: The idea to define differentiable functions:
The graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: The idea to define differentiable functions:
The graph of a differentiable function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

We will show next week that the equation of the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) .
$$

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an interior point $\left(x_{0}, y_{0}\right)$ in D, let L be the plane given by

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

The function f is called differentiable at $\left(x_{0}, y_{0}\right)$ iff the function f is approximated by the plane L near $\left(x_{0}, y_{0}\right)$, that is,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

where the functions ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. The function f is differentiable iff f is differentiable at every interior point of D.

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: Recalling that the equation for the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right),
$$

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: Recalling that the equation for the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right),
$$

an equivalent expression for f being differentiable,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

is the following:

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: Recalling that the equation for the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

an equivalent expression for f being differentiable,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

is the following: Denote $z=f(x, y)$ and $z_{0}=f\left(x_{0}, y_{0}\right)$, and introduce the increments

$$
\Delta z=\left(z-z_{0}\right), \quad \Delta y=\left(y-y_{0}\right), \quad \Delta x=\left(x-x_{0}\right)
$$

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: Recalling that the equation for the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

an equivalent expression for f being differentiable,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

is the following: Denote $z=f(x, y)$ and $z_{0}=f\left(x_{0}, y_{0}\right)$, and introduce the increments

$$
\Delta z=\left(z-z_{0}\right), \quad \Delta y=\left(y-y_{0}\right), \quad \Delta x=\left(x-x_{0}\right)
$$

then, the equation above is

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Remark: Recalling that the equation for the plane L is

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

an equivalent expression for f being differentiable,

$$
f(x, y)=L(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

is the following: Denote $z=f(x, y)$ and $z_{0}=f\left(x_{0}, y_{0}\right)$, and introduce the increments

$$
\Delta z=\left(z-z_{0}\right), \quad \Delta y=\left(y-y_{0}\right), \quad \Delta x=\left(x-x_{0}\right)
$$

then, the equation above is

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

(Equation used in the textbook to define a differentiable function.)

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Differentiability and continuity.

Recall: The graph of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Differentiability and continuity.

Recall: The graph of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Remark: A simple sufficient condition on a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ guarantees that f is differentiable:

Differentiability and continuity.

Recall: The graph of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Remark: A simple sufficient condition on a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ guarantees that f is differentiable:

Theorem
If the partial derivatives f_{x} and f_{y} of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous in an open region $R \subset D$, then f is differentiable in R.

Differentiability and continuity.

Recall: The graph of a differentiable function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is approximated by a plane at every point in D.

Remark: A simple sufficient condition on a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ guarantees that f is differentiable:

Theorem
If the partial derivatives f_{x} and f_{y} of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous in an open region $R \subset D$, then f is differentiable in R.

Theorem
If a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable, then f is continuous.

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

A primer on differential equations.

Remark: A differential equation is an equation where the unknown is a function and the function together with its derivatives appear in the equation.

Example

Given a constant $k \in \mathbb{R}$, find all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation

$$
f^{\prime}(x)=k f(x)
$$

A primer on differential equations.

Remark: A differential equation is an equation where the unknown is a function and the function together with its derivatives appear in the equation.

Example

Given a constant $k \in \mathbb{R}$, find all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation

$$
f^{\prime}(x)=k f(x)
$$

Solution: Multiply the equation above $f^{\prime}(x)-k f(x)=0$ by $e^{-k x}$, that is, $f^{\prime}(x) e^{-k x}-f(x) k e^{-k x}=0$.

A primer on differential equations.

Remark: A differential equation is an equation where the unknown is a function and the function together with its derivatives appear in the equation.

Example

Given a constant $k \in \mathbb{R}$, find all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation

$$
f^{\prime}(x)=k f(x)
$$

Solution: Multiply the equation above $f^{\prime}(x)-k f(x)=0$ by $e^{-k x}$, that is, $f^{\prime}(x) e^{-k x}-f(x) k e^{-k x}=0$.
The left-hand side is a total derivative, $\left[f(x) e^{-k x}\right]^{\prime}=0$.

A primer on differential equations.

Remark: A differential equation is an equation where the unknown is a function and the function together with its derivatives appear in the equation.

Example

Given a constant $k \in \mathbb{R}$, find all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation

$$
f^{\prime}(x)=k f(x)
$$

Solution: Multiply the equation above $f^{\prime}(x)-k f(x)=0$ by $e^{-k x}$, that is, $f^{\prime}(x) e^{-k x}-f(x) k e^{-k x}=0$.
The left-hand side is a total derivative, $\left[f(x) e^{-k x}\right]^{\prime}=0$.
The solution of the equation above is $f(x) e^{-k x}=c$, with $c \in \mathbb{R}$.

A primer on differential equations.

Remark: A differential equation is an equation where the unknown is a function and the function together with its derivatives appear in the equation.

Example

Given a constant $k \in \mathbb{R}$, find all solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ to the differential equation

$$
f^{\prime}(x)=k f(x)
$$

Solution: Multiply the equation above $f^{\prime}(x)-k f(x)=0$ by $e^{-k x}$, that is, $f^{\prime}(x) e^{-k x}-f(x) k e^{-k x}=0$.
The left-hand side is a total derivative, $\left[f(x) e^{-k x}\right]^{\prime}=0$.
The solution of the equation above is $f(x) e^{-k x}=c$, with $c \in \mathbb{R}$.
Therefore, $f(x)=c e^{k x}$.

A primer on differential equations.

There are three differential equations for functions
$f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3,4$, that appear in several physical applications.

A primer on differential equations.

There are three differential equations for functions $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3,4$, that appear in several physical applications.

- The Laplace equation: (Gravitation, electrostatics.)

$$
\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f=0
$$

A primer on differential equations.

There are three differential equations for functions $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3,4$, that appear in several physical applications.

- The Laplace equation: (Gravitation, electrostatics.)

$$
\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f=0
$$

- The Heat equation: (Heat propagation, diffusion.)

$$
\partial_{t} f=k\left(\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f\right) .
$$

A primer on differential equations.

There are three differential equations for functions $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3,4$, that appear in several physical applications.

- The Laplace equation: (Gravitation, electrostatics.)

$$
\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f=0
$$

- The Heat equation: (Heat propagation, diffusion.)

$$
\partial_{t} f=k\left(\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f\right) .
$$

- The Wave equation: (Light, sound, gravitation.)

$$
\partial_{t}^{2} f=v\left(\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f\right)
$$

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$.

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then, $f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$,

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $f_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $f_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $f_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $f_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$.

A primer on differential equations.

Example

Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $f_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $f_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $f_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
f_{x x}+f_{y y}+f_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}
$$

A primer on differential equations.

Example
Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $f_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $f_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $f_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
f_{x x}+f_{y y}+f_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=-\frac{3}{r^{3}}+\frac{3 r^{2}}{r^{5}}=0 .
$$

A primer on differential equations.

Example
Verify that $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $f_{x x}+f_{y y}+f_{z z}=0$.

Solution: Recall: $f_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$f_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $f_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $f_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $f_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
f_{x x}+f_{y y}+f_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=-\frac{3}{r^{3}}+\frac{3 r^{2}}{r^{5}}=0 .
$$

We conclude that $f_{x x}+f_{y y}+f_{z z}=0$.

A primer on differential equations.

Example

Verify that the function $T(t, x)=e^{-4 t} \sin (2 x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.

A primer on differential equations.

Example

Verify that the function $T(t, x)=e^{-4 t} \sin (2 x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.

Solution: We first compute T_{t},

$$
T_{t}=-4 e^{-t} \sin (2 x)
$$

A primer on differential equations.

Example

Verify that the function $T(t, x)=e^{-4 t} \sin (2 x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.

Solution: We first compute T_{t},

$$
T_{t}=-4 e^{-t} \sin (2 x)
$$

Now compute $T_{x x}$,

$$
T_{x}=2 e^{-t} \cos (2 x)
$$

A primer on differential equations.

Example

Verify that the function $T(t, x)=e^{-4 t} \sin (2 x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.

Solution: We first compute T_{t},

$$
T_{t}=-4 e^{-t} \sin (2 x)
$$

Now compute $T_{x x}$,

$$
T_{x}=2 e^{-t} \cos (2 x) \quad \Rightarrow \quad T_{x x}=-4 e^{-t} \sin (2 x)
$$

A primer on differential equations.

Example

Verify that the function $T(t, x)=e^{-4 t} \sin (2 x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.

Solution: We first compute T_{t},

$$
T_{t}=-4 e^{-t} \sin (2 x)
$$

Now compute $T_{x x}$,

$$
T_{x}=2 e^{-t} \cos (2 x) \quad \Rightarrow \quad T_{x x}=-4 e^{-t} \sin (2 x)
$$

Therefore $T_{t}=T_{x x}$.

A primer on differential equations.

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

A primer on differential equations.

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=3 v(v t-x)^{2}
$$

A primer on differential equations.

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=3 v(v t-x)^{2} \Rightarrow f_{t t}=6 v^{2}(v t-x)
$$

A primer on differential equations.

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=3 v(v t-x)^{2} \Rightarrow f_{t t}=6 v^{2}(v t-x) .
$$

Now compute $f_{x x}$,

$$
f_{x}=-3(v t-x)^{2}
$$

A primer on differential equations.

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=3 v(v t-x)^{2} \Rightarrow f_{t t}=6 v^{2}(v t-x) .
$$

Now compute $f_{x x}$,

$$
f_{x}=-3(v t-x)^{2} \quad \Rightarrow \quad f_{x x}=6(v t-x)
$$

A primer on differential equations.

Example

Verify that the function $f(t, x)=(v t-x)^{3}$, with $v \in \mathbb{R}$, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=3 v(v t-x)^{2} \Rightarrow f_{t t}=6 v^{2}(v t-x) .
$$

Now compute $f_{x x}$,

$$
f_{x}=-3(v t-x)^{2} \quad \Rightarrow \quad f_{x x}=6(v t-x)
$$

Therefore $f_{t t}=v^{2} f_{x x}$.

A primer on differential equations.

Example

Verify that every function $f(t, x)=u(v t-x)$, with $v \in \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

A primer on differential equations.

Example

Verify that every function $f(t, x)=u(v t-x)$, with $v \in \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=v u^{\prime}(v t-x)
$$

A primer on differential equations.

Example

Verify that every function $f(t, x)=u(v t-x)$, with $v \in \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=v u^{\prime}(v t-x) \quad \Rightarrow \quad f_{t t}=v^{2} u^{\prime \prime}(v t-x) .
$$

A primer on differential equations.

Example

Verify that every function $f(t, x)=u(v t-x)$, with $v \in \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=v u^{\prime}(v t-x) \Rightarrow f_{t t}=v^{2} u^{\prime \prime}(v t-x)
$$

Now compute $f_{x x}$,

$$
f_{x}=-u^{\prime}(v t-x)^{2}
$$

A primer on differential equations.

Example

Verify that every function $f(t, x)=u(v t-x)$, with $v \in \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=v u^{\prime}(v t-x) \quad \Rightarrow \quad f_{t t}=v^{2} u^{\prime \prime}(v t-x)
$$

Now compute $f_{x x}$,

$$
f_{x}=-u^{\prime}(v t-x)^{2} \Rightarrow f_{x x}=u^{\prime \prime}(v t-x)
$$

A primer on differential equations.

Example

Verify that every function $f(t, x)=u(v t-x)$, with $v \in \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable, satisfies the one-space dimensional wave equation $f_{t t}=v^{2} f_{x x}$.

Solution: We first compute $f_{t t}$,

$$
f_{t}=v u^{\prime}(v t-x) \Rightarrow f_{t t}=v^{2} u^{\prime \prime}(v t-x) .
$$

Now compute $f_{x x}$,

$$
f_{x}=-u^{\prime}(v t-x)^{2} \Rightarrow f_{x x}=u^{\prime \prime}(v t-x) .
$$

Therefore $f_{t t}=v^{2} f_{x x}$.

The chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- The chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in a plane.
- The chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in space.
- The chain rule for functions defined on surfaces in space.
- The chain rule for change of coordinates in space.
- A formula for implicit differentiation.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a line.
Theorem
If the functions $f:\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ and $x:\left[t_{0}, t_{1}\right] \rightarrow\left[x_{0}, x_{1}\right]$ are differentiable, then the function $\hat{f}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(x(t))$ is differentiable and

$$
\frac{d \hat{f}}{d t}(t)=\frac{d f}{d x}(x(t)) \frac{d x}{d t}(t) .
$$

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a line.
Theorem
If the functions $f:\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ and $x:\left[t_{0}, t_{1}\right] \rightarrow\left[x_{0}, x_{1}\right]$ are differentiable, then the function $\hat{f}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(x(t))$ is differentiable and

$$
\frac{d \hat{f}}{d t}(t)=\frac{d f}{d x}(x(t)) \frac{d x}{d t}(t) .
$$

Notation:
The equation above is usually written as $\frac{d \hat{f}}{d t}=\frac{d f}{d x} \frac{d x}{d t}$.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a line.
Theorem
If the functions $f:\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ and $x:\left[t_{0}, t_{1}\right] \rightarrow\left[x_{0}, x_{1}\right]$ are differentiable, then the function $\hat{f}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(x(t))$ is differentiable and

$$
\frac{d \hat{f}}{d t}(t)=\frac{d f}{d x}(x(t)) \frac{d x}{d t}(t) .
$$

Notation:
The equation above is usually written as $\frac{d \hat{f}}{d t}=\frac{d f}{d x} \frac{d x}{d t}$.
Alternative notations are $\hat{f}^{\prime}(t)=f^{\prime}(x(t)) x^{\prime}(t)$ and $\hat{f}^{\prime}=f^{\prime} x^{\prime}$.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

Example

The volume V of a gas in a balloon depends on the temperature F in Fahrenheit as follows: $V(F)=k F^{2}$. Let $F(C)=(9 / 5) C+32$ be the temperature in Fahrenheit corresponding to C in Celsius. Find $\hat{V}(C)=V(F(C))$ and $\hat{V}^{\prime}(C)$.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

Example

The volume V of a gas in a balloon depends on the temperature F in Fahrenheit as follows: $V(F)=k F^{2}$. Let $F(C)=(9 / 5) C+32$ be the temperature in Fahrenheit corresponding to C in Celsius. Find $\hat{V}(C)=V(F(C))$ and $\hat{V}^{\prime}(C)$.

Solution:
The function \hat{V} is the composition $\hat{V}(C)=k\left(\frac{9}{5} C+32\right)^{2}$.

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

Example

The volume V of a gas in a balloon depends on the temperature F in Fahrenheit as follows: $V(F)=k F^{2}$. Let $F(C)=(9 / 5) C+32$ be the temperature in Fahrenheit corresponding to C in Celsius. Find $\hat{V}(C)=V(F(C))$ and $\hat{V}^{\prime}(C)$.

Solution:
The function \hat{V} is the composition $\hat{V}(C)=k\left(\frac{9}{5} C+32\right)^{2}$.
Which could also be written as

$$
\hat{V}(C)=k \frac{81}{25} C^{2}+64 k \frac{9}{5} C+k(32)^{2} .
$$

Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.

Example

The volume V of a gas in a balloon depends on the temperature F in Fahrenheit as follows: $V(F)=k F^{2}$. Let $F(C)=(9 / 5) C+32$ be the temperature in Fahrenheit corresponding to C in Celsius. Find $\hat{V}(C)=V(F(C))$ and $\hat{V}^{\prime}(C)$.

Solution:

The function \hat{V} is the composition $\hat{V}(C)=k\left(\frac{9}{5} C+32\right)^{2}$.
Which could also be written as

$$
\hat{V}(C)=k \frac{81}{25} C^{2}+64 k \frac{9}{5} C+k(32)^{2}
$$

The formula $\frac{d \hat{V}}{d C}=\frac{d V}{d F} \frac{d F}{d C}$ implies $\hat{V}^{\prime}(C)=2 k\left(\frac{9}{5} C+32\right) \frac{9}{5} . \triangleleft$

The chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- The chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in a plane.
- The chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in space.
- The chain rule for functions defined on surfaces in space.
- The chain rule for change of coordinates in space.
- A formula for implicit differentiation.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.
Theorem
If the functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{2}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}(t)=\frac{\partial f}{\partial x}(\mathbf{r}(t)) \frac{d x}{d t}(t)+\frac{\partial f}{\partial y}(\mathbf{r}(t)) \frac{d y}{d t}(t) .
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.
Theorem
If the functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{2}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}(t)=\frac{\partial f}{\partial x}(\mathbf{r}(t)) \frac{d x}{d t}(t)+\frac{\partial f}{\partial y}(\mathbf{r}(t)) \frac{d y}{d t}(t) .
$$

Notation:
The equation above is usually written as $\frac{d \hat{f}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.
Theorem
If the functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{2}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}(t)=\frac{\partial f}{\partial x}(\mathbf{r}(t)) \frac{d x}{d t}(t)+\frac{\partial f}{\partial y}(\mathbf{r}(t)) \frac{d y}{d t}(t) .
$$

Notation:
The equation above is usually written as $\frac{d \hat{f}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
An alternative notation is $\hat{f}^{\prime}=\left(\partial_{x} f\right) x^{\prime}+\left(\partial_{y} f\right) y^{\prime}$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$. Furthermore, compute the derivative of f along that curve.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$. Furthermore, compute the derivative of f along that curve.

Solution: The function f along the curve $\mathbf{r}(t)$ is denoted as $\hat{f}(t)=f(x(t), y(t))$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$. Furthermore, compute the derivative of f along that curve.

Solution: The function f along the curve $\mathbf{r}(t)$ is denoted as $\hat{f}(t)=f(x(t), y(t))$. The result is $\hat{f}(t)=\sin ^{2}(t)+2 \cos ^{3}(2 t)$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$. Furthermore, compute the derivative of f along that curve.

Solution: The function f along the curve $\mathbf{r}(t)$ is denoted as $\hat{f}(t)=f(x(t), y(t))$. The result is $\hat{f}(t)=\sin ^{2}(t)+2 \cos ^{3}(2 t)$.

The derivative of f along the curve \mathbf{r} is \hat{f}^{\prime}.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$. Furthermore, compute the derivative of f along that curve.

Solution: The function f along the curve $\mathbf{r}(t)$ is denoted as $\hat{f}(t)=f(x(t), y(t))$. The result is $\hat{f}(t)=\sin ^{2}(t)+2 \cos ^{3}(2 t)$.

The derivative of f along the curve \mathbf{r} is \hat{f}^{\prime}. The result is

$$
\begin{aligned}
\hat{f}^{\prime}(t) & =2 x(t) x^{\prime}(t)+6(y(t))^{2} y^{\prime}(t), \\
& =2 x(t) \cos (t)-12(y(t))^{2} \sin (2 t)
\end{aligned}
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
The chain rule for functions defined on a curve in a plane.

Example

Evaluate the function $f(x, y)=x^{2}+2 y^{3}$, along the curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle\sin (t), \cos (2 t)\rangle$. Furthermore, compute the derivative of f along that curve.

Solution: The function f along the curve $\mathbf{r}(t)$ is denoted as $\hat{f}(t)=f(x(t), y(t))$. The result is $\hat{f}(t)=\sin ^{2}(t)+2 \cos ^{3}(2 t)$.

The derivative of f along the curve \mathbf{r} is \hat{f}^{\prime}. The result is

$$
\begin{aligned}
\hat{f}^{\prime}(t) & =2 x(t) x^{\prime}(t)+6(y(t))^{2} y^{\prime}(t), \\
& =2 x(t) \cos (t)-12(y(t))^{2} \sin (2 t)
\end{aligned}
$$

We conclude: $\hat{f}^{\prime}(t)=2 \sin (t) \cos (t)-12 \cos ^{2}(2 t) \sin (2 t)$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.
Theorem
If the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the change of coordinate functions $x, y: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s)$ and $y(t, s)$, then the function $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s)=f(x(t, s), y(t, s))$ is differentiable and holds

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s} .
\end{aligned}
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.
Theorem
If the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the change of coordinate functions $x, y: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s)$ and $y(t, s)$, then the function $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s)=f(x(t, s), y(t, s))$ is differentiable and holds

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s} .
\end{aligned}
$$

Remark:
We denote by $f(x, y)$ are the function values in the coordinates (x, y), while we denote by $\hat{f}(t, s)$ are the function values in the coordinates (t, s).

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.

Solution: The polar coordinates (r, θ) are related to Cartesian coordinates (x, y) by the formula

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta)
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.

Solution: The polar coordinates (r, θ) are related to Cartesian coordinates (x, y) by the formula

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta)
$$

The function $\hat{f}(r, \theta)=f(x(r, \theta), y(r, \theta))$ is simple to compute,

$$
\hat{f}(r, \theta)=r^{2} \cos ^{2}(\theta)+3 r^{2} \sin ^{2}(\theta)
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.
Solution: Recall: $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.
Solution: Recall: $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$.
Compute the derivatives of $\hat{f}(r, \theta)=r^{2} \cos ^{2}(\theta)+3 r^{2} \sin ^{2}(\theta)$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.
Solution: Recall: $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$.
Compute the derivatives of $\hat{f}(r, \theta)=r^{2} \cos ^{2}(\theta)+3 r^{2} \sin ^{2}(\theta)$.

$$
\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}=2 x \cos (\theta)+6 y \sin (\theta)
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.

Solution: Recall: $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$.
Compute the derivatives of $\hat{f}(r, \theta)=r^{2} \cos ^{2}(\theta)+3 r^{2} \sin ^{2}(\theta)$.

$$
\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}=2 x \cos (\theta)+6 y \sin (\theta)
$$

we obtain $\hat{f}_{r}=2 r \cos ^{2}(\theta)+6 r \sin ^{2}(\theta)$.

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.
Solution: Recall: $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$.
Compute the derivatives of $\hat{f}(r, \theta)=r^{2} \cos ^{2}(\theta)+3 r^{2} \sin ^{2}(\theta)$.

$$
\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}=2 x \cos (\theta)+6 y \sin (\theta)
$$

we obtain $\hat{f}_{r}=2 r \cos ^{2}(\theta)+6 r \sin ^{2}(\theta)$. Analogously,

$$
\hat{f}_{\theta}=f_{x} x_{\theta}+f_{y} y_{\theta}=-2 x r \sin (\theta)+6 y r \cos (\theta)
$$

Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in a plane.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(r, \theta)$ in polar coordinates (r, θ). Furthermore, compute \hat{f}_{r} and \hat{f}_{θ}.
Solution: Recall: $x(r, \theta)=r \cos (\theta)$ and $y(r, \theta)=r \sin (\theta)$.
Compute the derivatives of $\hat{f}(r, \theta)=r^{2} \cos ^{2}(\theta)+3 r^{2} \sin ^{2}(\theta)$.

$$
\hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}=2 x \cos (\theta)+6 y \sin (\theta)
$$

we obtain $\hat{f}_{r}=2 r \cos ^{2}(\theta)+6 r \sin ^{2}(\theta)$. Analogously,

$$
\hat{f}_{\theta}=f_{x} x_{\theta}+f_{y} y_{\theta}=-2 x r \sin (\theta)+6 y r \cos (\theta)
$$

we obtain $\hat{f}_{\theta}=-2 r^{2} \cos (\theta) \sin (\theta)+6 r^{2} \cos (\theta) \sin (\theta)$.

The chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- The chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in a plane.
- The chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in space.
- The chain rule for functions defined on surfaces in space.
- The chain rule for change of coordinates in space.
- A formula for implicit differentiation.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in space.
Theorem
If the functions $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, then the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} .
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in space.
Theorem
If the functions $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\mathbf{r}: \mathbb{R} \rightarrow D \subset \mathbb{R}^{3}$ are differentiable, with $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, then the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t)=f(\mathbf{r}(t))$ is differentiable and holds

$$
\frac{d \hat{f}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} .
$$

Notation:
The equation above is usually written as

$$
\hat{f}^{\prime}=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in space.

Example

Find the derivative of $f=x^{2}+y^{3}+z^{4}$ along the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), 3 t\rangle$.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in space.

Example

Find the derivative of $f=x^{2}+y^{3}+z^{4}$ along the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), 3 t\rangle$.

Solution: We first compute $\hat{f}(t)=f(x(t), y(t), z(t))$, that is,

$$
\hat{f}(t)=\cos ^{2}(t)+\sin ^{3}(t)+81 t^{4}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in space.

Example

Find the derivative of $f=x^{2}+y^{3}+z^{4}$ along the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), 3 t\rangle$.

Solution: We first compute $\hat{f}(t)=f(x(t), y(t), z(t))$, that is,

$$
\hat{f}(t)=\cos ^{2}(t)+\sin ^{3}(t)+81 t^{4}
$$

The derivative of f along the curve \mathbf{r} is the derivative of \hat{f}, that is,

$$
\hat{f}^{\prime}=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime}=-2 x \sin (t)+3 y^{2} \cos (t)+4 z^{3}(3) .
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on a curve in space.
Example
Find the derivative of $f=x^{2}+y^{3}+z^{4}$ along the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), 3 t\rangle$.

Solution: We first compute $\hat{f}(t)=f(x(t), y(t), z(t))$, that is,

$$
\hat{f}(t)=\cos ^{2}(t)+\sin ^{3}(t)+81 t^{4} .
$$

The derivative of f along the curve \mathbf{r} is the derivative of \hat{f}, that is,

$$
\hat{f}^{\prime}=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime}=-2 x \sin (t)+3 y^{2} \cos (t)+4 z^{3}(3) .
$$

We obtain $\hat{f}^{\prime}=-2 \cos (t) \sin (t)+3 \sin ^{2}(t) \cos (t)+4(3)\left(3^{3}\right) t^{3} . \triangleleft$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.
Theorem
If the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the surface given by functions $x, y, z: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s)$ and $y(t, s)$, and $z(t, s)$, then the function $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is differentiable and holds

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t}, \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} .
\end{aligned}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.
Theorem
If the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the surface given by functions $x, y, z: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s)$ and $y(t, s)$, and $z(t, s)$, then the function $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is differentiable and holds

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t}, \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} .
\end{aligned}
$$

Remark:
We denote by $f(x, y, z)$ the function values in the coordinates (x, y, z), while we denote by $\hat{f}(t, s)$ the function values at the surface point with coordinates (t, s).

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Solution: The function $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is simple to compute:

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Solution: The function $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is simple to compute: $\hat{f}(t, s)=(t+s)^{2}+3\left(t^{2}-s^{2}\right)^{2}+2(t-s)^{2}$.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Solution: The function $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is simple to compute: $\hat{f}(t, s)=(t+s)^{2}+3\left(t^{2}-s^{2}\right)^{2}+2(t-s)^{2}$.
The derivatives of f along the surface $x(t, s), y(t, s)$ and $z(t, s)$ are given by \hat{f}_{t} and \hat{f}_{s};

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for functions defined on surfaces in space.

Example

Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Solution: The function $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is simple to compute: $\hat{f}(t, s)=(t+s)^{2}+3\left(t^{2}-s^{2}\right)^{2}+2(t-s)^{2}$.
The derivatives of f along the surface $x(t, s), y(t, s)$ and $z(t, s)$ are given by \hat{f}_{t} and \hat{f}_{s}; which are given by

$$
\hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \quad \hat{f}_{S}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
The chain rule for functions defined on surfaces in space.
Example
Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Solution: The function $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is simple to compute: $\hat{f}(t, s)=(t+s)^{2}+3\left(t^{2}-s^{2}\right)^{2}+2(t-s)^{2}$.
The derivatives of f along the surface $x(t, s), y(t, s)$ and $z(t, s)$ are given by \hat{f}_{t} and \hat{f}_{s}; which are given by

$$
\hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \quad \hat{f}_{S}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s}
$$

We obtain $\hat{f}_{t}=2(t+s)+6\left(t^{2}-s^{2}\right)(2 t)+4(t-s)$,

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
The chain rule for functions defined on surfaces in space.
Example
Given the function $f(x, y)=x^{2}+3 y^{2}+2 z^{2}$, in Cartesian coordinates (x, y), find $\hat{f}(t, s)$, the values of f and its derivatives on the surface given by $x(t, s)=t+s, y(t, s)=t^{2}-s^{2}$, $z(t, s)=t-s$.

Solution: The function $\hat{f}(t, s)=f(x(t, s), y(t, s), z(t, s))$ is simple to compute: $\hat{f}(t, s)=(t+s)^{2}+3\left(t^{2}-s^{2}\right)^{2}+2(t-s)^{2}$.
The derivatives of f along the surface $x(t, s), y(t, s)$ and $z(t, s)$ are given by \hat{f}_{t} and \hat{f}_{s}; which are given by

$$
\hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \quad \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} .
$$

We obtain $\hat{f}_{t}=2(t+s)+6\left(t^{2}-s^{2}\right)(2 t)+4(t-s)$, and $\hat{f}_{s}=2(t+s)+6\left(t^{2}-s^{2}\right)(-2 s)-4(t-s)$.

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.
Theorem
If the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the change of coordinate functions $x, y, z: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s, r), y(t, s, r)$, and $z(t, s, r)$, then the function $\hat{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s, r)=f(x(t, s, r), y(t, s, r), z(t, s, r))$ is differentiable and

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} \\
& \hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}+f_{z} z_{r} .
\end{aligned}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.

Theorem

If the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the change of coordinate functions $x, y, z: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are differentiable, with $x(t, s, r), y(t, s, r)$, and $z(t, s, r)$, then the function $\hat{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by the composition $\hat{f}(t, s, r)=f(x(t, s, r), y(t, s, r), z(t, s, r))$ is differentiable and

$$
\begin{aligned}
& \hat{f}_{t}=f_{x} x_{t}+f_{y} y_{t}+f_{z} z_{t} \\
& \hat{f}_{s}=f_{x} x_{s}+f_{y} y_{s}+f_{z} z_{s} \\
& \hat{f}_{r}=f_{x} x_{r}+f_{y} y_{r}+f_{z} z_{r} .
\end{aligned}
$$

Remark:
We denote by $f(x, y, z)$ the function values in the coordinates (x, y, z), while we denote by $\hat{f}(t, s, r)$ the function values in the coordinates (t, s, r).

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.

Example

Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates (x, y, z), find $\hat{f}(r, \theta, \phi)$ and its derivatives in spherical coordinates (r, θ, ϕ), where

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta) .
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.
Example
Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates (x, y, z), find $\hat{f}(r, \theta, \phi)$ and its derivatives in spherical coordinates (r, θ, ϕ), where

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta)
$$

Solution: We first compute the function

$$
\begin{aligned}
& \hat{f}(r, \theta, \phi)=f(x(r, \theta, \phi), y(r, \theta, \phi), z(r, \theta, \phi)), \\
& \hat{f}=r^{2} \cos ^{2}(\phi) \sin ^{2}(\theta)+3 r^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)+r^{2} \cos ^{2}(\theta) \\
& \\
& =r^{2} \sin ^{2}(\theta)+2 r^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)+r^{2} \cos ^{2}(\theta)
\end{aligned}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.
Example
Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates (x, y, z), find $\hat{f}(r, \theta, \phi)$ and its derivatives in spherical coordinates (r, θ, ϕ), where

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta) .
$$

Solution: We first compute the function

$$
\begin{aligned}
& \hat{f}(r, \theta, \phi)=f(x(r, \theta, \phi), y(r, \theta, \phi), z(r, \theta, \phi)), \\
& \hat{f}=r^{2} \cos ^{2}(\phi) \sin ^{2}(\theta)+3 r^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)+r^{2} \cos ^{2}(\theta) \\
& \\
& =r^{2} \sin ^{2}(\theta)+2 r^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)+r^{2} \cos ^{2}(\theta)
\end{aligned}
$$

so we obtain

$$
\hat{f}=r^{2}+2 r^{2} \sin ^{2}(\phi) \sin ^{2}(\theta) .
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.

Example

Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates (x, y, z), find $\hat{f}(r, \theta, \phi)$ and its r-derivative in spherical coordinates (r, θ, ϕ), where

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta) .
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.

Example

Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates (x, y, z), find $\hat{f}(r, \theta, \phi)$ and its r-derivative in spherical coordinates (r, θ, ϕ), where

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta) .
$$

Solution: The r-derivative of \hat{f} is given by

$$
\begin{aligned}
\hat{f}_{r} & =2 x x_{r}+6 y y_{r}+2 z z_{r} \\
& =2 r \cos ^{2}(\phi) \sin ^{2}(\theta)+6 r \sin ^{2}(\phi) \sin ^{2}(\theta)+2 r \cos ^{2}(\theta) \\
& =2 r \sin ^{2}(\theta)+4 r \sin ^{2}(\phi) \sin ^{2}(\theta)+2 r \cos ^{2}(\theta) .
\end{aligned}
$$

Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.

The chain rule for change of coordinates in space.

Example

Given the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$, in Cartesian coordinates (x, y, z), find $\hat{f}(r, \theta, \phi)$ and its r-derivative in spherical coordinates (r, θ, ϕ), where

$$
x=r \cos (\phi) \sin (\theta), \quad y=r \sin (\phi) \sin (\theta), \quad z=r \cos (\theta) .
$$

Solution: The r-derivative of \hat{f} is given by

$$
\begin{aligned}
\hat{f}_{r} & =2 x x_{r}+6 y y_{r}+2 z z_{r} \\
& =2 r \cos ^{2}(\phi) \sin ^{2}(\theta)+6 r \sin ^{2}(\phi) \sin ^{2}(\theta)+2 r \cos ^{2}(\theta) \\
& =2 r \sin ^{2}(\theta)+4 r \sin ^{2}(\phi) \sin ^{2}(\theta)+2 r \cos ^{2}(\theta) .
\end{aligned}
$$

We conclude that $\hat{f}_{r}=2 r+4 r \sin ^{2}(\phi) \sin ^{2}(\theta)$.

The chain rule for functions of 2, 3 variables (Sect. 14.4)

- Review: The chain rule for $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
- The chain rule for change of coordinates in a line.
- Functions of two variables, $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in a plane.
- The chain rule for change of coordinates in a plane.
- Functions of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
- The chain rule for functions defined on a curve in space.
- The chain rule for functions defined on surfaces in space.
- The chain rule for change of coordinates in space.
- A formula for implicit differentiation.

A formula for implicit differentiation.

Theorem

Assume that the differentiable function with values $F(x, y)$ defines implicitly a function with values $y(x)$ by the equation $F(x, y)=0$. If the function $F_{y} \neq 0$, then y is differentiable and

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

A formula for implicit differentiation.

Theorem
Assume that the differentiable function with values $F(x, y)$ defines implicitly a function with values $y(x)$ by the equation $F(x, y)=0$. If the function $F_{y} \neq 0$, then y is differentiable and

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

Proof.
Since $\hat{F}(x)=F(x, y(x))=0$, then $0=\frac{d \hat{F}}{d x}=F_{x}+F_{y} y^{\prime}$.

A formula for implicit differentiation.

Theorem
Assume that the differentiable function with values $F(x, y)$ defines implicitly a function with values $y(x)$ by the equation $F(x, y)=0$. If the function $F_{y} \neq 0$, then y is differentiable and

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

Proof.
Since $\hat{F}(x)=F(x, y(x))=0$, then $0=\frac{d \hat{F}}{d x}=F_{x}+F_{y} y^{\prime}$.
We conclude that $y^{\prime}=-\frac{F_{x}}{F_{y}}$.

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution:
The partial derivatives of function F are

$$
F_{x}=e^{y}-\sin (x-y), \quad F_{y}=x e^{y}+\sin (x-y)
$$

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution:
The partial derivatives of function F are

$$
F_{x}=e^{y}-\sin (x-y), \quad F_{y}=x e^{y}+\sin (x-y)
$$

Therefore,

$$
y^{\prime}(x)=\frac{\left[\sin (x-y)-e^{y}\right]}{\left[x e^{y}+\sin (x-y)\right]} .
$$

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution: (Old method.)
Since $F(x, y(x))=x e^{y}+\cos (x-y)=0$, then

$$
e^{y}+x y^{\prime} e^{y}-\sin (x-y)-\sin (x-y)\left(-y^{\prime}\right)=0
$$

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution: (Old method.)
Since $F(x, y(x))=x e^{y}+\cos (x-y)=0$, then

$$
e^{y}+x y^{\prime} e^{y}-\sin (x-y)-\sin (x-y)\left(-y^{\prime}\right)=0
$$

Reordering terms,

$$
y^{\prime}\left[x e^{y}+\sin (x-y)\right]=\sin (x-y)-e^{y}
$$

A formula for implicit differentiation.

Example

Find the derivative of function $y: \mathbb{R} \rightarrow \mathbb{R}$ defined implicitly by the equation $F(x, y)=0$, where $F(x, y)=x e^{y}+\cos (x-y)$.

Solution: (Old method.)
Since $F(x, y(x))=x e^{y}+\cos (x-y)=0$, then

$$
e^{y}+x y^{\prime} e^{y}-\sin (x-y)-\sin (x-y)\left(-y^{\prime}\right)=0
$$

Reordering terms,

$$
y^{\prime}\left[x e^{y}+\sin (x-y)\right]=\sin (x-y)-e^{y}
$$

We conclude that: $\quad y^{\prime}(x)=\frac{\left[\sin (x-y)-e^{y}\right]}{\left[x e^{y}+\sin (x-y)\right]}$.

