
Scalar functions of several variables (Sect. 14.1).

I Functions of several variables.

I On open, closed sets.
I Functions of two variables:

I Graph of the function.
I Level curves, contour curves.

I Functions of three variables.
I Level surfaces.
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Scalar functions of several variables.

Definition
A scalar function of n variables is a function f : D ⊂ Rn → R ⊂ R,
where n ∈ N, the set D is called the domain of the function, and
the set R is called the range of the function.

Remark:
Comparison between f : R2 → R with r : R → R2.

I A scalar function of two variables is a function

f : R2 → R (x , y) → f (x , y).

I A vector function on the plane is a function

r : R → R2 t → r(t) = 〈x(t), y(t)〉.
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Functions of several variables.

Example

I An example of a scalar-valued function of two variables,
T : R2 → R is the temperature T of a plane surface, say a
table. Each point (x , y) on the table is associated with a
number, its temperature T (x , y).

I An example of a scalar-valued function of three variables,
T : R3 → R is the temperature T of this room. Each point
(x , y , z) in the room is associated with a number, its
temperature T (x , y , z).

I Another example of a scalar function of three variables is the
speed of the air in the room.

I An example of a vector-valued function of three variables,
v : R3 → R3, is the velocity of the air in the room.
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Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function
f : D ⊂ R2 → R ⊂ R given by f (x , y) = x2 + y2 is defined.

Solution: The function f (x , y) = x2 + y2 is defined for all points
(x , y) ∈ R2, therefore, D = R2.

The values of the function f are non-negative, that is,
f (x , y) = x2 + y2 > 0 for all (x , y) ∈ D. Therefore, the range
space is R = [0,∞). C
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Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function
f : D ⊂ R2 → R ⊂ R given by f (x , y) =

√
x − y is defined.

Solution: The function f (x , y) =
√

x − y is defined for points
(x , y) ∈ R2 such that x − y > 0. Therefore,

D = {(x , y) ∈ R2 : x > y}.

y = x

y

x

D={(x,y) : x > y }

The values of the function f are non-negative, that is,
f (x , y) =
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Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function
f : D ⊂ R2 → R ⊂ R given by f (x , y) = 1/

√
x − y is defined.

Solution: The function f (x , y) = 1/
√

x − y is defined for points
(x , y) ∈ R2 such that x − y > 0. Therefore,

D = {(x , y) ∈ R2 : x > y}.

y = x

y

x

D={(x,y) : x > y }

The values of the function f are positive, that is,
f (x , y) = 1/

√
x − y > 0 for all (x , y) ∈ D. Therefore, the range

space is R = (0,∞). C
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I Functions of several variables.

I On open, closed sets.
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On open and closed sets in Rn.

We first generalize from R3 to Rn the definition of a ball of radius
r centered at P̂.

Definition
A set Br (P̂) ⊂ Rn, with n ∈ N and r > 0, is a ball of radius r
centered at P̂ = (x̂1, · · · , x̂n) iff

Br (P̂) = {(x1, · · · , xn) ∈ Rn : (x1 − x̂1)
2 + · · ·+ (xn − x̂n)

2 < r2}.

Remark: A ball Br (P̂) contains the points inside a sphere of radius
r centered at P̂ without the points of the sphere.
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On open and closed sets in Rn.

Definition
A point P ∈ S ⊂ Rn, with n ∈ N, is called an interior point iff
there is a ball Br (P) ⊂ S . A point P ∈ S ⊂ Rn, with n ∈ N, is
called a boundary point iff every ball Br (P) contains points in S
and points outside S . The boundary of a set S is the set of all
boundary points of S .

Boundary

x

Boundary point

Interior point

y R2
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On open and closed sets in Rn.

Definition
A set S ∈ Rn, with n ∈ N, is called open iff every point in S is an
interior point. The set S is called closed iff S contains its
boundary. A set S is called bounded iff S is contained in ball,
otherwise S is called unbounded.

closed and bounded
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On open and closed sets in Rn.

Example

Find and describe the maximum domain of the function
f (x , y) = ln(x − y2).

Solution: The maximum domain of f is the set

D = {(x , y) ∈ R2 : x > y2}.

D is an open, unbounded set. C

D

y

x
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Scalar functions of several variables (Sect. 14.1).

I Functions of several variables.

I On open, closed sets.
I Functions of two variables:

I Graph of the function.
I Level curves, contour curves.

I Functions of three variables.
I Level surfaces.



The graph of a function of two variables is a surface in R3.

Definition
The graph of a function f : D ⊂ R2 → R is the set of all points
(x , y , z) in R3 of the form (x , y , f (x , y)). The graph of a function
f is also called the surface z = f (x , y).

Example

Draw the graph of f (x , y) = x2 + y2.

Solution: The graph of f is the
surface z = x2 + y2. This is a
paraboloid along the z axis.

C

z f(x,y) = x  + y

x
y

2 2
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Level curves, contour curves.

Definition
The level curves of a function f : D ⊂ R2 → R ⊂ R are the curves
in the domain D ⊂ R2 of f solutions of the equation f (x , y) = k,
where k ∈ R is a constant in the range of f .
The contour curves of function f are the curves in R3 given by the
intersection of the graph of f with horizontal planes z = k, where
k ∈ R is a constant in the range of f .

Curves of constant f in D ⊂ R2 are called level curves.

Curves of constant f in R3 are called contour curves.
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the equation x2 + y2 = k with
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radius

√
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{(x , y , z) : x2 +y2 = k, z = k}.
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Level curves, contour curves.

Example

Find the maximum domain, range of, and graph the function

f (x , y) =
1

1 + x2 + y2
.

Solution:

Since the denominator never
vanishes, hence D = R2.

Since 0 <
1

1 + x2 + y2
6 1, the

range of f is R = (0, 1].

The contour curves are circles on
horizontal planes in (0, 1]. C

1

x

y

z = f ( x, y )
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Level curves, contour curves.

Example

Given the topographic map in
the figure, which way do you
choose to the summit?
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Scalar functions of several variables (Sect. 14.1).

I Functions of several variables.

I On open, closed sets.
I Functions of two variables:

I Graph of the function.
I Level curves, contour curves.

I Functions of three variables.
I Level surfaces.



Scalar functions of three variables.

Definition
The graph of a scalar function of three variables,
f : D ⊂ R3 → R ⊂ R, is the set of points in R4 of the form
(x , y , z , f (x , y , z)) for every (x , y , z) ∈ D.

Remark:
The graph a function f : D ⊂ R3 → R requires four space
dimensions. We cannot picture such graph.

Definition
The level surfaces of a function f : D ⊂ R3 → R ⊂ R are the
surfaces in the domain D ⊂ R3 of f solutions of the equation
f (x , y , z) = k, where k ∈ R is a constant in the range of f .
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Scalar functions of three variables.

Example

Draw one level surface of the function f : D ⊂ R3 → R ⊂ R
f (x , y , z) =

1

x2 + y2 + z2
.

Solution: The domain of f is D = R3 and its range is R = (0,∞).
Writing k = 1/R2, the level surfaces f (x , y , z) = k are spheres
x2 + y2 + z2 = R2. C
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Limits and continuity for f : Rn → R (Sect. 14.2).

I The limit of functions f : Rn → R.

I Example: Computing a limit by the definition.

I Properties of limits of functions.

I Examples: Computing limits of simple functions.

I Continuous functions f : Rn → R.
I Computing limits of non-continuous functions:

I Two-path test for the non-existence of limits.
I The sandwich test for the existence of limits.



The limit of functions of several variables.

Definition
The function f : D ⊂ Rn → R, with n ∈ N, has the number L ∈ R
as limit at the point P̂ ∈ Rn, denoted as limP→P̂ f (P) = L, iff the
following holds: For every number ε > 0 there exists a number
δ > 0 such that if |P − P̂| < δ then |f (P)− L| < ε.

Remarks:

I In Cartesian coordinates P = (x1, · · · , xn), P̂ = (x̂1, · · · , x̂n).
Then, |P − P̂| is the distance between points in Rn,

|P − P̂| = |
−→
PP̂| =

√
(x1 − x̂1)2 + · · ·+ (xn − x̂n)2.

I |f (P)− L| ∈ R is the absolute value of real numbers.
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The limit of functions f : R2 → R.

The function with values f (x , y) has the number L as limit at the
point P0 = (x0, y0) iff holds: For all points P = (x , y) near
P0 = (x0, y0) the value of f (x , y) differs little from L.

We denote it as follows:

lim
(x ,y)→(x0,y0)

f (x , y) = L
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Limits and continuity for f : Rn → R (Sect. 14.2).

I The limit of functions f : Rn → R.

I Example: Computing a limit by the definition.

I Properties of limits of functions.

I Examples: Computing limits of simple functions.

I Continuous functions f : Rn → R.
I Computing limits of non-continuous functions:

I Two-path test for the non-existence of limits.
I The sandwich test for the existence of limits.



Computing limits by definition usually is not easy.

Example

Use the definition of limit to compute lim
(x ,y)→(0,0)

2yx2

x2 + y2
.

Solution: The function above is not defined at (0, 0).
First: Guess what the limit L is.
Along the line x = 0 the function above vanishes for all y 6= 0.
So, if L exists, it must be L = 0.
Fix any number ε > 0. Given that ε, find a number δ > 0 such that√

(x − 0)2 + (y − 0)2 < δ ⇒
∣∣∣ 2yx2

x2 + y2
− 0

∣∣∣ < ε.
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Recall: x2 6 x2 + y2, that is,
x2

x2 + y2
6 1. Then

∣∣∣ 2yx2

x2 + y2

∣∣∣ =
2|y |x2

x2 + y2
6 2|y | = 2

√
y2 6 2

√
x2 + y2.

Choose δ = ε/2. If
√

x2 + y2 < δ, then
∣∣∣ 2yx2

x2 + y2

∣∣∣ < 2δ = ε.

We conclude that L = 0. C
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Limits and continuity for f : Rn → R (Sect. 14.2).

I The limit of functions f : Rn → R.

I Example: Computing a limit by the definition.

I Properties of limits of functions.

I Examples: Computing limits of simple functions.

I Continuous functions f : Rn → R.
I Computing limits of non-continuous functions:

I Two-path test for the non-existence of limits.
I The sandwich test for the existence of limits.



Properties of limits of functions.

Theorem
If f , g : D ⊂ Rn → R, with n ∈ N, and limP→P̂ f (P) = L,
limP→P̂ g(P) = M, then the following statements hold:

1. limP→P̂ f (P)± g(P) = L±M;

2. If k ∈ R, then limP→P̂ kf (P) = kL;

3. limP→P̂ f (P) g(P) = LM;

4. If M 6= 0, then lim
P→P̂

( f (P)

g(P)

)
=

L

M
.

5. If k ∈ Z and s ∈ N, then lim
P→P̂

[
f (P)

]r/s
= Lr/s .

Remark:
The Theorem above implies that: If f : D ⊂ Rn → R is a rational
function f = R/S , (quotient of two polynomials), with S(P̂) 6= 0,
then limP→P̂ f (P) = f (P̂).
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Limits and continuity for f : Rn → R (Sect. 14.2).

I The limit of functions f : Rn → R.
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I Continuous functions f : Rn → R.
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Limits of R/S at P̂ where S(P̂) 6= 0 are simple to find.

Example

Compute lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

.

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1, 2). Therefore

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

=
1 + 2(2)− 1√

1− 2
,

that is,

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

= 4.

C



Limits of R/S at P̂ where S(P̂) 6= 0 are simple to find.

Example

Compute lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

.

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1, 2).

Therefore

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

=
1 + 2(2)− 1√

1− 2
,

that is,

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

= 4.

C



Limits of R/S at P̂ where S(P̂) 6= 0 are simple to find.

Example

Compute lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

.

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1, 2). Therefore

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

=
1 + 2(2)− 1√

1− 2
,

that is,

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

= 4.

C



Limits of R/S at P̂ where S(P̂) 6= 0 are simple to find.

Example

Compute lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

.

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1, 2). Therefore

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

=
1 + 2(2)− 1√

1− 2
,

that is,

lim
(x ,y)→(1,2)

x2 + 2y − x√
x − y

= 4.

C



Limits and continuity for f : Rn → R (Sect. 14.2).

I The limit of functions f : Rn → R.

I Example: Computing a limit by the definition.

I Properties of limits of functions.

I Examples: Computing limits of simple functions.

I Continuous functions f : Rn → R.
I Computing limits of non-continuous functions:

I Two-path test for the non-existence of limits.
I The sandwich test for the existence of limits.



Continuous functions f : Rn → R.

Definition
A function f : D ⊂ Rn → R, with n ∈ N, is called continuous at
P̂ ∈ D iff holds limP→P̂ f (P) = f (P̂).

Remarks:
I The definition above says:

(a) f (P̂) is defined;
(b) limP→P̂ f (P) = L exists;

(c) L = f (P̂).

I A function f : D ⊂ Rn → R is continuous iff f is continuous
at every point in D.

I Continuous functions have graphs without holes or jumps.
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Continuous functions f : R2 → R.

Example

I Polynomial functions are continuous in Rn.

For example, P2(x , y) = a0 + b1x + b2y + c1x
2 + c2xy + c3y

2.

I Rational functions f = R/S are continuous on their domain.

For example, f (x , y) =
x2 + 3y − x2y2 + y4

x2 − y2
, with x 6= ±y .

I Composition of continuous functions are continuous.

For example, f (x , y) = cos(x2 + y2).
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Continuous functions f : R2 → R.

Example

Compute lim(x ,y)→(
√

π,0) cos(x2 + y2).

Solution:
The function f (x , y) = cos(x2 + y2) is continuous for all
(x , y) ∈ R2. Therefore,

lim
(x ,y)→(

√
π,0)

cos(x2 + y2) = cos(π + 0),

that is,
lim

(x ,y)→(
√

π,0)
cos(x2 + y2) = −1.
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Limits and continuity for f : Rn → R (Sect. 14.2).

I The limit of functions f : Rn → R.

I Example: Computing a limit by the definition.

I Properties of limits of functions.

I Examples: Computing limits of simple functions.

I Continuous functions f : Rn → R.
I Computing limits of non-continuous functions:

I Two-path test for the non-existence of limits.
I The sandwich test for the existence of limits.



Two-path test for the non-existence of limits.

Theorem
If a function f : D ⊂ Rn → R, with n ∈ N, has two different limits
along to different paths as P approaches P̂, then limP→P̂ f (P)
does not exist.

Remark: Consider the case f : D ⊂ R2 → R:

If

I f (x , y) → L1 along a path C1 as (x , y) → (x0, y0),

I f (x , y) → L2 along a path C2 as (x , y) → (x0, y0),

I L1 6= L2,

then lim
(x ,y)→(x0,y0)

f (x , y) does not exist.

When side limits do not agree, the limit does not exist.
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Two-path test for the non-existence of limits.

When side limits do not agree, the limit does not exist.
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Two-path test for the non-existence of limits.

Example

Compute lim
(x ,y)→(0,0)

3x2

x2 + 2y2
.

Solution: f (x , y) = (3x2)/(x2 + 2y2) is not continuous at (0, 0).
We try to show that the limit above does not exist.
If path C1 is the x-axis, (y = 0), then,

f (x , 0) =
3x2

x2
= 3, ⇒ lim

(x ,0)→(0,0)
f (x , 0) = 3.

If path C2 is the y -axis, (x = 0), then,

f (0, y) = 0, ⇒ lim
(0,y)→(0,0)

f (0, y) = 0.

Therefore, lim
(x ,y)→(0,0)

3x2

x2 + 2y2
does not exist. C
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Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary
lines, that is, Cm given by y = mx , with m a constant.

That is,

f (x ,mx) =
3x2

x2 + 2m2x2
=

3

1 + 2m2
.

The limits along these paths are:

lim
(x ,mx)→(0,0)

f (x ,mx) =
3

1 + 2m2

which are different for each value of m.

This agrees what we concluded: lim
(x ,y)→(0,0)

3x2

x2 + 2y2
does not exist.
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The sandwich test for the existence of limits.

Theorem
If functions f , g , h : D ⊂ Rn → R, with n ∈ N, satisfy:

(a) g(P) 6 f (P) 6 h(P) for all P near P̂ ∈ D;

(b) limP→P̂ g(P) = L = limP→P̂ h(P);

then limP→P̂ f (P) = L.

x

h

g

h, g : R       R

P = 0

L
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The sandwich test for the existence of limits.

Example

Compute lim
(x ,y)→(0,0)

x2y

x2 + y2
.

Solution: f (x , y) =
x2y

x2 + y2
is not continuous at (0, 0).

The Two-Path Theorem does not prove non-existence of the limit.
Consider paths Cm given by y = mx , with m ∈ R. Then

f (x ,mx) =
x2mx

x2 + m2x2
=

mx

1 + m2
,

which implies lim
(x ,mx)→(0,0)

f (x ,mx) = 0, ∀m ∈ R.

We cannot conclude that the limit does not exist.
We cannot conclude that the limit exists.
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The sandwich test for the existence of limits.

Example

Compute lim
(x ,y)→(0,0)

x2y

x2 + y2
.

Solution: Notice:
x2

x2 + y2
6 1, for all (x , y) 6= (0, 0).

So,
∣∣∣ x2y

x2 + y2

∣∣∣ 6 |y |, for all (x , y) 6= (0, 0). Hence,

−|y | 6 x2y

x2 + y2
6 |y |.

Since limy→0 |y | = 0, the Sandwich Theorem with g = −|y |,
h = |y |, implies

lim
(x ,y)→(0,0)

x2y

x2 + y2
= 0.

C
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Partial derivatives and differentiability (Sect. 14.3).

I Partial derivatives of f : D ⊂ R2 → R.

I Higher-order partial derivatives.

I The Mixed Derivative Theorem.

I Examples of implicit partial differentiation.

I Partial derivatives of f : D ⊂ Rn → R.

Next class:

I Partial derivatives and continuity.

I Differentiable functions f : D ⊂ R2 → R.

I Differentiability and continuity.

I A primer on differential equations.



Partial derivatives of f : D ⊂ R2 → R.

Definition
Given a function f : D ⊂ R2 → R, the partial derivative of f (x , y)
with respect to x at a point (x , y) ∈ D is given by

fx(x , y) = lim
h→0

1

h

[
f (x + h, y)− f (x , y)

]
.

The partial derivative of f (x , y) with respect to y at a point
(x , y) ∈ D is given by

fy (x , y) = lim
h→0

1

h

[
f (x , y + h)− f (x , y)

]
.

Remark:

I To compute fx(x , y) derivate f (x , y) keeping y constant.

I To compute fy (x , y) derivate f (x , y) keeping x constant.
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Computing fx(x , y) at (x0, y0).

I Evaluate the function f at y = y0. The result is a single
variable function f (x , y0).

I Compute the derivative of f (x , y0) and evaluate it at x = x0.

I The result is fx(x0, y0).

Example

Find fx(1, 3) for f (x , y) = x2 + y2/4.

Solution:

I f (x , 3) = x2 + 9/4;

I fx(x , 3) = 2x ;

I fx(1, 3) = 2. C

To compute fx(x , y) derivate f (x , y) keeping y constant.
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Computing fy(x , y) at (x0, y0).

I Evaluate the function f at x = x0. The result is a single
variable function f (x0, y).

I Compute the derivative of f (x0, y) and evaluate it at y = y0.

I The result is fy (x0, y0).

Example

Find fy (1, 3) for f (x , y) = x2 + y2/4.

Solution:

I f (1, y) = 1 + y2/4;

I fy (1, y) = y/2;

I fy (1, 3) = 3/2. C

To compute fy(x , y) derivate f (x , y) keeping x constant.
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Geometrical meaning of partial derivatives.

fx(x0, y0) is the slope of the line tangent to the graph of
f (x , y) containing the point

(
x0, y0, f (x0, y0)

)
and belonging

to a plane parallel to the zx-plane.
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fy(x0, y0) is the slope of the line tangent to the graph of
f (x , y) containing the point

(
x0, y0, f (x0, y0)

)
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to a plane parallel to the zy -plane.
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Partial derivatives can be computed on any point in D.

Example

Find the partial derivatives of f (x , y) =
2x − y

x + 2y
.

Solution:

fx(x , y) =
2(x + 2y)− (2x − y)

(x + 2y)2
⇒ fx(x , y) =

5y

(x + 2y)2
.

fy (x , y) =
(−1)(x + 2y)− (2x − y)(2)

(x + 2y)2
⇒ fy (x , y) = − 5x

(x + 2y)2
.

C
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The derivative of a function is a new function.

Recall: The derivative of a function f : R → R is itself a function.

Example

The derivative of function f (x) = x2 at an arbitrary point x is the
function f ′(x) = 2x .

x

y = f ( x )

x

y = f ’ ( x )

The same statement is true for partial derivatives.
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The partial derivatives of a function are new functions.

Definition
Given a function f : D ⊂ R2 → R ⊂ R, the functions partial
derivatives of f (x , y) are denoted by fx(x , y) and fy (x , y), and they
are given by the expressions

fx(x , y) = lim
h→0

1

h
[f (x + h, y)− f (x , y)] ,

fy (x , y) = lim
h→0

1

h
[f (x , y + h)− f (x , y)] .

Notation:
Partial derivatives of f (x , y) are denoted in several ways:

fx(x , y),
∂f

∂x
(x , y), ∂x f (x , y).

fy (x , y),
∂f

∂y
(x , y), ∂y f (x , y)
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The partial derivatives of a paraboloid are planes

Example

Find the functions partial derivatives of f (x , y) = x2 + y2.

Solution:
fx(x , y) = 2x ⇒ fx(x , y) = 2x .
fy (x , y) = 0 + 2y ⇒ fy (x , y) = 2y . C

The partial derivatives of a paraboloid are planes.
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The partial derivatives of a function are new functions.

Example

Find the partial derivatives of f (x , y) = x2 ln(y).

Solution:

fx(x , y) = 2x ln(y), fy (x , y) =
x2

y
.

C

Example

Find the partial derivatives of f (x , y) = x2 +
y2

4
.

Solution:
fx(x , y) = 2x , fy (x , y) =

y

2
.
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Higher-order partial derivatives.

Remark:
Higher derivatives of a function are partial derivatives of its partial
derivatives.

The second partial derivatives of f (x , y) are the following:

fxx(x , y) = lim
h→0

1

h
[fx(x + h, y)− fx(x , y)] ,

fyy (x , y) = lim
h→0

1

h
[fy (x , y + h)− fy (x , y)] ,

fxy (x , y) = lim
h→0

1

h
[fx(x , y + h)− fx(x , y)] ,

fyx(x , y) = lim
h→0

1

h
[fy (x + h, y)− fy (x , y)] .

Notation: fxx ,
∂2f

∂x2
, ∂xx f , and also fxy ,

∂2f

∂x∂y
, ∂xy f .
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Higher-order partial derivatives.

Example

Find all second order derivatives of the function
f (x , y) = x3e2y + 3y .

Solution:

fx(x , y) = 3x2e2y , fy (x , y) = 2x3e2y + 3.

fxx(x , y) = 6xe2y , fyy (x , y) = 4x3e2y .

fxy = 6x2e2y , fyx = 6x2e2y .

C
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Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives fx , fy , fxy and fyx of a function
f : D ⊂ R2 → R exist and all are continuous functions, then holds

fxy = fyx .

Example

Find fxy and fyx for f (x , y) = cos(xy).

Solution:

fx = −y sin(xy), fxy = − sin(xy)− yx cos(xy).

fy = −x sin(xy), fyx = − sin(xy)− xy cos(xy).

C
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Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example

Find ∂xz(x , y) of the function z defined implicitly by the equation
xyz + e2z/y + cos(z) = 0.

Solution:

yz + xy (∂xz) +
2

y
(∂xz)e2z/y − (∂xz) sin(z) = 0.

Compute ∂xz as a function of x , y and z(x , y), as follows,

(∂xz)
[
xy +

2

y
e2z/y − sin(z)

]
= −yz ,

that is, (∂xz) = − yz[
xy + 2

y e2z/y − sin(z)
] . C
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Partial derivatives of f : D ⊂ Rn → R.

Definition
Given a function f : D ⊂ Rn → R, with n ∈ N, the partial
derivative of f (x1, · · · , xn) with respect to xi , with i = 1, · · · , n, at
a point (x1, · · · , xn) ∈ D is given by

fxi = lim
h→0

1

h

[
f (x1, · · · , xi + h, · · · , xn)− f (x1, · · · , xn)

]
.

Remark: To compute fxi derivate f with respect to xi keeping all
other variables xj constant.

Notation: fxi , fi ,
∂f

∂xi
, ∂xi f , ∂i f .
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Partial derivatives of f : D ⊂ Rn → R.

Example

Compute all first partial derivatives of the function

φ(x , y , z) =
1√

x2 + y2 + z2
.

Solution:

φx = −1

2

2x(
x2 + y2 + z2)3/2

⇒ φx = − x(
x2 + y2 + z2)3/2

.

Analogously, the other partial derivatives are given by

φy = − y(
x2 + y2 + z2)3/2

, φz = − z(
x2 + y2 + z2)3/2

.

C
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Partial derivatives of f : D ⊂ Rn → R.

Example

Verify that φ(x , y , z) =
1√

x2 + y2 + z2
satisfies the Laplace

equation : φxx + φyy + φzz = 0.

Solution: Recall: φx = −x/
(
x2 + y2 + z2)3/2. Then,

φxx = − 1(
x2 + y2 + z2)3/2

+
3

2

2x2(
x2 + y2 + z2)5/2

.

Denote r =
√

x2 + y2 + z2, then φxx = − 1
r3 + 3x2

r5 .

Analogously, φyy = − 1
r3 + 3y2

r5 , and φzz = − 1
r3 + 3z2

r5 . Then,

φxx + φyy + φzz = − 3

r3
+

3(x2 + y2 + z2)

r5
= − 3

r3
+

3r2

r5
.

We conclude that φxx + φyy + φzz = 0. C
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Partial derivatives of f : D ⊂ Rn → R.

Example

Verify that φ(x , y , z) =
1√

x2 + y2 + z2
satisfies the Laplace

equation : φxx + φyy + φzz = 0.

Solution: Recall: φx = −x/
(
x2 + y2 + z2)3/2. Then,

φxx = − 1(
x2 + y2 + z2)3/2

+
3

2

2x2(
x2 + y2 + z2)5/2

.

Denote r =
√

x2 + y2 + z2, then φxx = − 1
r3 + 3x2

r5 .

Analogously, φyy = − 1
r3 + 3y2

r5 , and φzz = − 1
r3 + 3z2

r5 . Then,

φxx + φyy + φzz = − 3

r3
+

3(x2 + y2 + z2)

r5
= − 3

r3
+

3r2

r5
.

We conclude that φxx + φyy + φzz = 0. C


