Scalar functions of several variables (Sect. 14.1).

Functions of several variables.
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On open, closed sets.
Functions of two variables:
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» Graph of the function.
» Level curves, contour curves.

» Functions of three variables.
» Level surfaces.



Scalar functions of several variables.

Definition
A scalar function of n variables is a function f : D C R" — R C R,
where n € N, the set D is called the domain of the function, and

the set R is called the range of the function.
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Scalar functions of several variables.

Definition

A scalar function of n variables is a function f : D C R" — R C R,
where n € N, the set D is called the domain of the function, and
the set R is called the range of the function.

Remark:
Comparison between f : R? — R with r: R — R?.

» A scalar function of two variables is a function
f:R> >R (x,y) — f(x,y).
» A vector function on the plane is a function

r: R — R2 t —r(t) = (x(t), y(t)).
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table. Each point (x, y) on the table is associated with a
number, its temperature T(x, y).
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Functions of several variables.

Example

» An example of a scalar-valued function of two variables,
T : R? — R is the temperature T of a plane surface, say a
table. Each point (x,y) on the table is associated with a
number, its temperature T(x, y).

» An example of a scalar-valued function of three variables,
T : R3 — R is the temperature T of this room. Each point
(x,y,z) in the room is associated with a number, its
temperature T(x,y, z).

» Another example of a scalar function of three variables is the
speed of the air in the room.

» An example of a vector-valued function of three variables,
v:R3 — R3, is the velocity of the air in the room.
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Scalar functions of several variables.

Example
Find the maximum domain D and range R sets where the function
f:DCR?— RCRgiven by f(x,y) = x> + y? is defined.

Solution: The function f(x,y) = x? + y? is defined for all points
(x,y) € R?, therefore, D = R?,

The values of the function f are non-negative, that is,
f(x,y) = x%+y? >0 for all (x,y) € D. Therefore, the range
space is R = [0, o0). <
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Scalar functions of several variables.

Example
Find the maximum domain D and range R sets where the function
f:DCR?— RCR given by f(x,y) = /x — y is defined.

Solution: The function f(x,y) = /x — y is defined for points
(x,y) € R? such that x — y > 0. Therefore,

y D={(xy) 1 x 2y}

D={(x,y) €R?* : x>y} <

x

y=X
The values of the function f are non-negative, that is,
f(x,y) =+/x—y = 0forall (x,y) € D. Therefore, the range
space is R = [0, c0). <
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Scalar functions of several variables.

Example
Find the maximum domain D and range R sets where the function
f:DCR?— RCR given by f(x,y) =1/y/x — y is defined.

Solution: The function f(x, y) = 1/y/x — y is defined for points
(x,y) € R? such that x — y > 0. Therefore,

y D={(xy) 1 x 2y}

D={(x,y) eR?* : x>y} 7

x

yex
The values of the function f are positive, that is,
f(x,y)=1//x—y >0 forall (x,y) € D. Therefore, the range
space is R = (0, c0). <



Scalar functions of several variables (Sect. 14.1).

» Functions of several variables.

» On open, closed sets.
» Functions of two variables:

» Graph of the function.
» Level curves, contour curves.

» Functions of three variables.
» Level surfaces.
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On open and closed sets in R".

We first generalize from R3 to R” the definition of a ball of radius
r centered at P.

Definition
A set B,(P) C R, with n € N and r > 0, is a ball of radius r
centered at P = (X1, -+ , %,) iff

Br(ls):{(xla”'7xn)€Rn : (X1—>A<1)2+'”+(Xn—§<n)2<r2}.

A

Remark: A ball B,(P) contains the points inside a sphere of radius
r centered at P without the points of the sphere.
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On open and closed sets in R".

Definition
A set S € R”, with n € N, is called open iff every point in S is an
interior point. The set S is called closed iff S contains its

boundary. A set S is called bounded iff S is contained in ball,
otherwise S is called unbounded.



On open and closed sets in R".

Definition

A set S € R”, with n € N, is called open iff every point in S is an
interior point. The set S is called closed iff S contains its
boundary. A set S is called bounded iff S is contained in ball,
otherwise S is called unbounded.

y
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unbounded

bounded

: 7 :

closed and bounded
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On open and closed sets in R".

Example
Find and describe the maximum domain of the function

f(x,y) = In(x = y?).
Solution: The maximum domain of f is the set

D={(x,y) €R? : x> y?}.

D is an open, unbounded set.



On open and closed sets in R".

Example
Find and describe the maximum domain of the function

f(x,y) = In(x = y?).
Solution: The maximum domain of f is the set

D={(x,y) €R? : x> y?}.

D is an open, unbounded set. <
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» Functions of several variables.

» On open, closed sets.
» Functions of two variables:

» Graph of the function.
» Level curves, contour curves.

» Functions of three variables.
» Level surfaces.



The graph of a function of two variables is a surface in R3.
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The graph of a function f : D € R? — R is the set of all points
(x,y,z) in R3 of the form (x,y, f(x,y)). The graph of a function
f is also called the surface z = f(x,y).
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The graph of a function of two variables is a surface in R3.

Definition

The graph of a function f : D € R? — R is the set of all points
(x,y,z) in R3 of the form (x,y, f(x,y)). The graph of a function
f is also called the surface z = f(x,y).

Example fOxy) =x*+y?
2

Draw the graph of f(x,y) = x? + y2.

Solution: The graph of f is the
surface z = x> + y2. Thisis a
paraboloid along the z axis.




Level curves, contour curves.

Definition

The level curves of a function f : D C R? — R C R are the curves
in the domain D C R? of f solutions of the equation f(x,y) = k,

where k € R is a constant in the range of f.

The contour curves of function f are the curves in R3 given by the
intersection of the graph of f with horizontal planes z = k, where

k € R is a constant in the range of f.
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Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function
f(x,y) = x>+ y°.

Solution: z f(xy) =x+y?

The level curves are solutions of
the equation x> + y? = k with [ R -
k > 0. These curves are circles of N ey
radius vk in D = R2.

curves

The contour curves are the circles
{(x,y,2) + X*+y* =k, z=k}.
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Solution:

Since the denominator never
vanishes, hence D = R2.

. 1
Since 0 < m g ]., the
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Level curves, contour curves.

Example
Find the maximum domain, range of, and graph the function

1
f(X,y) = 7]_—{-)(24—)/2'

Solution:

Since the denominator never
vanishes, hence D = R2.

1
Since 0 < ———— < 1, the
1+ x2+y?
range of f is R = (0, 1].
The contour curves are circles on
horizontal planes in (0, 1].



Level curves, contour curves.

Example
Find the maximum domain, range of, and graph the function

1
f(X,y) = 7]_—{-)(24—)/2'

Solution:

Since the denominator never

vanishes, hence D = R2. 2=1(xy)
1 .
Since 0 < ———— < 1, the /’
1+ x24y2

range of f is R = (0, 1].

The contour curves are circles on x
horizontal planes in (0, 1]. <
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Given the topographic map in
the figure, which way do you
choose to the summit?

1000

Solution:
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The graph a function f : D € R3 — R requires four space
dimensions. We cannot picture such graph.



Scalar functions of three variables.

Definition

The graph of a scalar function of three variables,
f:DcCR3— RCR,is the set of points in R* of the form
(x,y,z,f(x,y,z)) for every (x,y,z) € D.

Remark:
The graph a function f : D € R3 — R requires four space
dimensions. We cannot picture such graph.

Definition

The level surfaces of a function f : D C R3 — R C R are the
surfaces in the domain D C R3 of f solutions of the equation
f(x,y,z) = k, where k € R is a constant in the range of f.



Scalar functions of three variables.
Example
Draw one level surface of the function f: D C R3 - RCR

f(X7.y7z) = X2 +y2+22



Scalar functions of three variables.

Example
Draw one level surface of the function f: D C R3 - RCR

f(X7.y7Z) = X2 +y2+22

Solution: The domain of f is D = R3 and its range is R = (0, ).
Writing k = 1/R?, the level surfaces f(x,y,z) = k are spheres
X2+ y?+ 22 = R2, <




Limits and continuity for f : R” — R (Sect. 14.2).

The limit of functions f : R” — R.

Example: Computing a limit by the definition.
Properties of limits of functions.

Examples: Computing limits of simple functions.

Continuous functions f : R" — R.

vV vy vy V. VY

Computing limits of non-continuous functions:

» Two-path test for the non-existence of limits.
» The sandwich test for the existence of limits.



The limit of functions of several variables.

Definition

The function f : D C R" — R, with n € N, has the number L € R
as limit at the point P € R", denoted as limp_ s f(P) = L, iff the
following holds: For every number € > 0 there exists a number

& > 0 such that if |P — P| < & then |[f(P) — L| <.
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The limit of functions of several variables.

Definition

The function f : D C R" — R, with n € N, has the number L € R
as limit at the point P € R", denoted as limp_ s f(P) = L, iff the
following holds: For every number € > 0 there exists a number

& > 0 such that if |P — P| < & then |[f(P) — L| <.

Remarks:

» In Cartesian coordinates P = (x1,- - , Xp), P= (X1, , Xn)-
Then, |P — P] is the distance between points in R”,

~ =
P =Bl =[PPl = /(o —%2)2 + -+ (0 — %)

» |f(P) — L| € R is the absolute value of real numbers.



The limit of functions f : R? — R.

The function with values f(x, y) has the number L as limit at the
point Py = (xo, yo) iff holds: For all points P = (x, y) near
Po = (x0, o) the value of f(x, y) differs little from L.



The limit of functions f : R? — R.

The function with values f(x, y) has the number L as limit at the
point Py = (xo, yo) iff holds: For all points P = (x, y) near
Po = (x0, o) the value of f(x, y) differs little from L.

We denote it as follows:

lim f(x,y)=1L

(XJ/)_)(XOva)




Limits and continuity for f : R” — R (Sect. 14.2).

The limit of functions f : R” — R.

Example: Computing a limit by the definition.
Properties of limits of functions.

Examples: Computing limits of simple functions.

Continuous functions f : R" — R.
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Computing limits of non-continuous functions:

» Two-path test for the non-existence of limits.
» The sandwich test for the existence of limits.



Computing limits by definition usually is not easy.
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Use the definition of limit to compute ~ lim ———.
(x,y)—(0,0) X* + y
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Solution: The function above is not defined at (0, 0).
First: Guess what the limit L is.



Computing limits by definition usually is not easy.

Example

2yx?

Use the definition of limit to compute ~ lim ———.
(xy)—(0,0) X* +y
Solution: The function above is not defined at (0, 0).

First: Guess what the limit L is.
Along the line x = 0 the function above vanishes for all y # 0.



Computing limits by definition usually is not easy.

Example

2yx?

Use the definition of limit to compute ~ lim ———.
(x.y)—(0,0) X= +y
Solution: The function above is not defined at (0, 0).

First: Guess what the limit L is.

Along the line x = 0 the function above vanishes for all y # 0.
So, if L exists, it must be L = 0.



Computing limits by definition usually is not easy.

Example
2yx?

Use the definition of limit to compute ~ lim ———.
(x.y)—(0,0) X= +y
Solution: The function above is not defined at (0, 0).

First: Guess what the limit L is.

Along the line x = 0 the function above vanishes for all y # 0.
So, if L exists, it must be L = 0.

Fix any number € > 0.



Computing limits by definition usually is not easy.

Example
2yx?

Use the definition of limit to compute ~ lim ———.
(x.y)—(0,0) X= +y

Solution: The function above is not defined at (0, 0).

First: Guess what the limit L is.

Along the line x = 0 the function above vanishes for all y # 0.

So, if L exists, it must be L = 0.

Fix any number € > 0. Given that ¢, find a number § > 0 such that

_0)2 _0)2 eyt
Voo -0p<s = |20



Example

I . . 2yx?

Use the definition of limit to compute lim ————.
(x,y)—(0,0) X* + y

Solution: Given any € > 0, find a number § > 0 such that

2 2
\/m<5 = ‘ 2l )<6.

x2 +y2



Example
I . . 2yx?
Use the definition of limit to compute lim ————.
(x,y)—(0,0) X* + y

Solution: Given any € > 0, find a number § > 0 such that

2yx?
A/ x2 2

2

Recall: x2 < x2 + 2, that is, —~—— < 1.
x2 4 y2



Example

2yx?

Use the definition of limit to compute ~ lim ———.
(x,y)—(0,0) X* + y

Solution: Given any € > 0, find a number § > 0 such that

2yx?
A/ x2 2

2

Recall: x2 < x? + y2, that is, —~—— < 1. Then
x2 4 y2

2yx? 2ly|x?
’ yXx ‘: ly|x <2yl = 2v/y2 <2/ + y2.

X2+_y2 X2 +y2




Example

I . . 2yx?
Use the definition of limit to compute ~ lim ———.
(x.y)—(0,0) X* + ¥

Solution: Given any € > 0, find a number § > 0 such that

2 2
VX2+y2<s = ‘ 2l )<e.

x2+y?
x2
Recall: x* < x? 4 y?, that is, ———— < 1. Then
X<ty
2yx? 2|y[x?
’ yXx ‘: ly|x <2yl = 2v/y2 <2/ + y2.

X2+_y2 X2 +y2

Choose ¢ = ¢/2.



Example

I . . 2yx?
Use the definition of limit to compute ~ lim ———.
(x.y)—(0,0) X* + ¥

Solution: Given any € > 0, find a number § > 0 such that

2 2
VX2+y2<s = ‘ 2l )<e.

x2+y?
x2
Recall: x* < x? 4 y?, that is, ———— < 1. Then
X<ty
2yx? 2|y[x?
’ yXx ‘: ly|x <2yl = 2v/y2 <2/ + y2.

X2+_y2 X2 +y2

2 2
Choose § = ¢/2. If \/x2 + y2 < §, then ‘ﬁxﬁ‘ <20 =ce.



Example

I . . 2yx?

Use the definition of limit to compute lim ————.
(x,y)—(0,0) X* + y

Solution: Given any € > 0, find a number § > 0 such that

2 2
VX2+y2<s = ‘ 2l )<e.

x2+y?
2
Recall: x* < x? 4 y?, that is, ———— < 1. Then
X<ty
2yx? 2|y[x?
’ yXx ‘: ly|x <2yl = 2v/y2 <2/ + y2.

X2+_y2 X2 +y2

2 2
Choose § = ¢/2. If \/x2 + y2 < §, then ‘ﬁxﬁ‘ <20 =ce.
We conclude that L = 0.



Limits and continuity for f : R” — R (Sect. 14.2).

The limit of functions f : R” — R.

Example: Computing a limit by the definition.
Properties of limits of functions.

Examples: Computing limits of simple functions.

Continuous functions f : R" — R.

vV vy vy V. VY

Computing limits of non-continuous functions:

» Two-path test for the non-existence of limits.
» The sandwich test for the existence of limits.



Properties of limits of functions.

Theorem
Iff,g: D CR" =R, withneN, andlim,_pf(P)=L,
lim,_ 5 g(P) = M, then the following statements hold:

L limp_p f(P)tg(P)=L+M;
2. If k € R, then lim,_ p kf(P) = kL;
3. limp_ 5 f(P)g(P)=LM;

. f(P) L
4. If M £0, then Im | —< ) = —.

5. Ifk € Z and s € N, then lim [f(P)]"/* = L"/".
P—P



Properties of limits of functions.

Theorem
Iff,g: D CR" =R, withneN, andlim,_pf(P)=L,
lim,_ 5 g(P) = M, then the following statements hold:

L limp_pf(P)£g(P)=L£M;

2. If k € R, then lim,_ s kf(P) = kL;
Nimg_ p f(P)g(P) = LM;

) f(P) L

4. If M £0, then Im | —< ) = —.

5. Ifk € Z and s € N, then lim [f(P)]"/* = L"/".
P—P

w

Remark:

The Theorem above implies that: If f : D C R” — R is a rational
function f = R/S, (quotient of two polynomials), with S(P) # 0,
then lim,_ 5 f(P) = f(P).



Limits and continuity for f : R” — R (Sect. 14.2).

The limit of functions f : R” — R.

Example: Computing a limit by the definition.
Properties of limits of functions.

Examples: Computing limits of simple functions.
Continuous functions f : R" — R.

vV vy vy V. VY

Computing limits of non-continuous functions:

» Two-path test for the non-existence of limits.
» The sandwich test for the existence of limits.



Limits of R/S at P where S(P) # 0 are simple to find.

Example

2 o2y —
Compute  lim w

(y)—=(12) VX =y



Limits of R/S at P where S(P) % 0 are simple to find.

Example
2 o2y —
Compute  lim w

(y)—=(12) VX =Y

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1, 2).



Limits of R/S at P where S(P) % 0 are simple to find.

Example
2 o2y —
Compute  lim w

(y)—=(12) VX =Y

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1,2). Therefore

im x24+2y—x  142(2)—1
(Xv}/)‘)(lvz) V X — _y \V4 1 — 2 ’



Limits of R/S at P where S(P) % 0 are simple to find.

Example
2 o2y —
Compute  lim w

(y)—=(12) VX =Y

Solution: The function above is a rational function in x and y and
its denominator does not vanish at (1,2). Therefore

im x24+2y—x  142(2)—1
(Xv}/)‘)(lvz) V X — _y \V4 1 — 2 ’

that is,
) X242y —x
lim ————

= 4.
(y)—=(12) VX =Yy



Limits and continuity for f : R” — R (Sect. 14.2).

The limit of functions f : R” — R.

Example: Computing a limit by the definition.
Properties of limits of functions.

Examples: Computing limits of simple functions.

Continuous functions f : R" — R.

vV vy vy V. VY

Computing limits of non-continuous functions:

» Two-path test for the non-existence of limits.
» The sandwich test for the existence of limits.



Continuous functions f : R" — R.

Definition
A function f : D C R" — R, with n € N, is called continuous at
P € D iff holds lim,_ » f(P)=f(P).



Continuous functions f : R" — R.

Definition
A function f : D C R" — R, with n € N, is called continuous at
P € D iff holds lim,_ » f(P)=f(P).

Remarks:

» The definition above says:
(a) f(P) is defined;
(b) limp_ p f(P) = L exists;

N

(¢) L=f(P).



Continuous functions f : R" — R.

Definition
A function f : D C R" — R, with n € N, is called continuous at
P € D iff holds lim,_ » f(P)=f(P).

Remarks:
» The definition above says:
(a) f(P) is defined;
(b) limp_ p f(P) = L exists;
(c) L=f(P).
» A function f : D C R" — R is continuous iff f is continuous
at every point in D.



Continuous functions f : R" — R.

Definition
A function f : D C R" — R, with n € N, is called continuous at
P € D iff holds lim,_ » f(P)=f(P).

Remarks:
» The definition above says:
(a) f(P) is defined;
(b) limp_ p f(P) = L exists;
(c) L=f(P).
» A function f : D C R" — R is continuous iff f is continuous
at every point in D.

» Continuous functions have graphs without holes or jumps.



Continuous functions f : RZ — R.

Example

» Polynomial functions are continuous in R”.

For example, Pa(x,y) = ap + bix + boy + c1x? + coxy + c3y?.



Continuous functions f : RZ — R.

Example

» Polynomial functions are continuous in R”.
For example, Pa(x,y) = ap + bix + boy + c1x? + coxy + c3y?.
» Rational functions f = R/S are continuous on their domain.

x2+3y—x2y2+y4
x2 — 2

For example, f(x,y) = , with x # £y.



Continuous functions f : RZ — R.

Example

» Polynomial functions are continuous in R”.
For example, Pa(x,y) = ap + bix + boy + c1x? + coxy + c3y?.
» Rational functions f = R/S are continuous on their domain.

x2+3y—x2y2+y4
x2 — 2

For example, f(x,y) = , with x # £y.

» Composition of continuous functions are continuous.

For example, f(x,y) = cos(x? + y?).



Continuous functions f : RZ — R.

Example
Compute lim(, ). /7.0) cos(x? + y?).



Continuous functions f : RZ — R.

Example
Compute lim(, ). /7.0) cos(x? + y?).

Solution:
The function f(x,y) = cos(x? 4 y?) is continuous for all
(x,y) € R?.



Continuous functions f : RZ — R.

Example
Compute lim(, ). /7.0) cos(x? + y?).

Solution:
The function f(x,y) = cos(x? 4 y?) is continuous for all
(x,y) € R2. Therefore,

lim cos(x? + y?) = cos(7 + 0),
(,y)—(v/7,0) ( ) ( )



Continuous functions f : RZ — R.

Example
Compute lim(, ). /7.0) cos(x? + y?).

Solution:
The function f(x,y) = cos(x? 4 y?) is continuous for all
(x,y) € R2. Therefore,

lim cos(x? + y?) = cos(7 + 0),
(x.y)—=(v,0) ( ) ( )

that is,
lim  cos(x® +y?) = —1.
(,y)—=(v/,0)



Limits and continuity for f : R” — R (Sect. 14.2).

The limit of functions f : R” — R.

Example: Computing a limit by the definition.
Properties of limits of functions.

Examples: Computing limits of simple functions.
Continuous functions f : R" — R.

Computing limits of non-continuous functions:

» Two-path test for the non-existence of limits.
» The sandwich test for the existence of limits.

vV vy vy V. VY



Two-path test for the non-existence of limits.

Theorem
If a function f : D C R" — R, with n € N, has two different limits

along to different paths as P approaches P, then limp_ 5 f(P)
does not exist.



Two-path test for the non-existence of limits.

Theorem
If a function f : D C R" — R, with n € N, has two different limits

along to different paths as P approaches P, then limp_ 5 f(P)
does not exist.

Remark: Consider the case f : D C R? — R:

If
» f(x,y) — L; along a path (7 as (x,y) — (X0, ¥0),
» f(x,y) — Ly along a path G, as (x,y) — (X0, ¥0),
> Ly # Lo,

then lim  f(x,y) does not exist.
(x:y)—(x0,¥0)



Two-path test for the non-existence of limits.

Theorem

If a function f : D C R" — R, with n € N, has two different limits
along to different paths as P approaches P, then limp_ 5 f(P)
does not exist.

Remark: Consider the case f : D C R? — R:

If
» f(x,y) — L; along a path (7 as (x,y) — (X0, ¥0),
» f(x,y) — Ly along a path G, as (x,y) — (X0, ¥0),

> L1 # Lo,

then lim  f(x,y) does not exist.
(x:y)—(x0,¥0)

When side limits do not agree, the limit does not exist.



Two-path test for the non-existence of limits.

When side limits do not agree, the limit does not exist.




Two-path test for the non-existence of limits.

When side limits do not agree, the limit does not exist.

f(xy)=z




Two-path test for the non-existence of limits.

Example

. 3x2
Compute  lim ————.
(x.y)—(0,0) X + 2y



Two-path test for the non-existence of limits.

Example

) 3x2
Compute  lim ———.
(x.y)—(0,0) X? + 22

Solution: f(x,y) = (3x?)/(x? + 2y?) is not continuous at (0, 0).



Two-path test for the non-existence of limits.

Example

. 3x2
Compute  lim ————.
(x.y)—(0,0) X + 2y

Solution: f(x,y) = (3x?)/(x? + 2y?) is not continuous at (0, 0).
We try to show that the limit above does not exist.



Two-path test for the non-existence of limits.

Example

Compute  lim 3

u [ —.

P (x,y)—(0,0) X2 + 2y?

Solution: f(x,y) = (3x?)/(x? + 2y?) is not continuous at (0, 0).
We try to show that the limit above does not exist.

If path G is the x-axis, (y = 0), then,

= = li f(x.0) = 3.
x2 (x,O)ILn(O,O) (x,0)



Two-path test for the non-existence of limits.

Example

. 3x2
Compute  lim ————.
(x.y)—(0,0) X + 2y

Solution: f(x,y) = (3x?)/(x? + 2y?) is not continuous at (0, 0).
We try to show that the limit above does not exist.
If path G is the x-axis, (y = 0), then,

f(x,0)=— =3 li f(x,0) =3.
(Xa ) %2 y = (X,O)[TJ(O,O) (Xa )
If path G, is the y-axis, (x = 0), then,
f(0,y) =0, = lim  £(0,y) = 0.

(0,y)—(0,0)



Two-path test for the non-existence of limits.

Example

. 3x2
Compute  lim ————.
(x.y)—(0,0) X + 2y

Solution: f(x,y) = (3x?)/(x? + 2y?) is not continuous at (0, 0).
We try to show that the limit above does not exist.
If path G is the x-axis, (y = 0), then,

f(x,0)= — =3, = li f(x,0) = 3.
(Xa ) 2 ) (X,O)[TJ(O,O) (Xa )
If path G, is the y-axis, (x = 0), then,
f(0,y)=0, = lim f(0,y)=0.
(0,y) 0,00 [(0)
2
Therefore, lim L does not exist.

(x,y)—(0,0) X2 + 2y2



Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary
lines, that is, C,, given by y = mx, with m a constant.



Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary
lines, that is, C,, given by y = mx, with m a constant.
That is,
3x2 B 3
x24+2m2x2  1+42m?’

f(x, mx) =



Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary
lines, that is, C,, given by y = mx, with m a constant.
That is,
3x2 B 3
x24+2m2x2  1+42m?’

The limits along these paths are:

f(x, mx) =

3
lim  f S -
(X,mxl)rl(op) (X, mX) 1+2m?

which are different for each value of m.



Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary
lines, that is, C,, given by y = mx, with m a constant.
That is,
3x2 B 3
x24+2m2x2  1+42m?’

The limits along these paths are:

f(x, mx) =

3
lim f(x,mx) = ——
(x,mx)—(0,0) 142m?
which are different for each value of m. )
3
This agrees what we concluded: lim X does not exist.

(x,y)—(0,0) X% + 2y2



The sandwich test for the existence of limits.

Theorem
If functions f,g,h: D C R” — R, with n € N, satisfy:

(a) g(P) < f(P) < h(P) for all P near P € D;
(b) limp_pg(P)=L=lim,_ph(P);
then lim, 5 f(P) = L.



The sandwich test for the existence of limits.

Theorem
If functions f,g,h: D C R” — R, with n € N, satisfy:

(a) g(P) < f(P) < h(P) for all P near P € D;
(b) limp_pg(P)=L=lim,_ph(P);
then lim, 5 f(P) = L.

h,g:R— R

S




The sandwich test for the existence of limits.

Example
2
Compute  lim %
(x,y)—(0,0) X* + y



The sandwich test for the existence of limits.

Example
2
Compute lim %
(x,y)—(0,0) X* + y

2
Solution: f(x,y) = XY is not continuous at 0,0).
V)= 2 12



The sandwich test for the existence of limits.

Example
2

Compute lim %
(x,y)—(0,0) X* + y

2
. X<y
Solution: f(x,y) = ———
ution: f(x,y) 2y
The Two-Path Theorem does not prove non-existence of the limit.

is not continuous at (0, 0).



The sandwich test for the existence of limits.

Example
2

Compute lim %
(x,y)—(0,0) X= + y
. x%y
Solution: f(x,y) = 21y
The Two-Path Theorem does not prove non-existence of the limit.
Consider paths Cp, given by y = mx, with m € R. Then

is not continuous at (0, 0).

X2 mx mx

Flx, mx) = x2 + m?x? 1 + m?’




The sandwich test for the existence of limits.

Example
2

Compute lim %
(x,y)—(0,0) X= + y
. x%y
Solution: f(x,y) = 21y
The Two-Path Theorem does not prove non-existence of the limit.
Consider paths Cp, given by y = mx, with m € R. Then

is not continuous at (0, 0).

2

P o x*mx omx
(x mx) = x2 4+ m2x2 14+ m?’
which implies lim f(x,mx)=0, VmeR.

(x,mx)—(0,0)



The sandwich test for the existence of limits.

Example
2

Compute lim %
(x,y)—(0,0) X= + y
. x%y
Solution: f(x,y) = 21y
The Two-Path Theorem does not prove non-existence of the limit.
Consider paths Cp, given by y = mx, with m € R. Then

is not continuous at (0, 0).

P O XPmx omx
(x mx) = x2 4+ m2x2 14+ m?’
which implies lim f(x,mx)=0, VmeR.

(x,mx)—(0,0)
We cannot conclude that the limit does not exist.



The sandwich test for the existence of limits.

Example
2

Compute lim %
(x,y)—(0,0) X= + y
. x%y
Solution: f(x,y) = 21y
The Two-Path Theorem does not prove non-existence of the limit.
Consider paths Cp, given by y = mx, with m € R. Then

is not continuous at (0, 0).

P o xXmx | omx
(x mx) = x2 4+ m2x2 14+ m?’
which implies lim f(x,mx)=0, VmeR.

(x,mx)—(0,0)
We cannot conclude that the limit does not exist.
We cannot conclude that the limit exists.



The sandwich test for the existence of limits.

Example
2
Compute lim %
(x,)—(0,0) X* + y



The sandwich test for the existence of limits.

Example
2

Compute  lim %
(x,y)—(0,0) X= + ¥

2

Solution: Notice: ﬁyz < 1, for all (x,y) # (0,0).



The sandwich test for the existence of limits.

Example
2

Compute  lim %
(x,y)—(0,0) X= + ¥

2
Solution: Notice: ﬁyz < 1, for all (x,y) # (0,0).
x2y
x2 + y?

So, ’ ‘ < |y, for all (x,y) # (0,0). Hence,

X2_y

X2 +y2

—lyl < <yl



The sandwich test for the existence of limits.

Example
2

Compute  lim %
(x,y)—(0,0) X= + ¥

2
Solution: Notice: ﬁyz < 1, for all (x,y) # (0,0).
x2y
x2 + y?

So, ’ ‘ < |y, for all (x,y) # (0,0). Hence,

2
<y

< |yl
e

—lyl <

Since limy,_o |y| = 0, the Sandwich Theorem with g = —|y|,

h = |y|, implies
2
im Y —0
(x.y)—(0,0) X* +y



Partial derivatives and differentiability (Sect

Partial derivatives of f : D C R? — R.
Higher-order partial derivatives.

The Mixed Derivative Theorem.

Examples of implicit partial differentiation.
Partial derivatives of f : D C R" — R.

vV v v v .Y

Next class:
» Partial derivatives and continuity.
» Differentiable functions f : D C R? — R.
» Differentiability and continuity.

» A primer on differential equations.

L 14.3).



Partial derivatives of f : D C R? — R.

Definition
Given a function f : D C R? — R, the partial derivative of f(x,y)
with respect to x at a point (x,y) € D is given by

111 [F(x + h,y) — F(x,¥)].

fX(Xay) = f|7i—r>n07

The partial derivative of f(x,y) with respect to y at a point
(x,y) € D is given by

y) = lim © [F(xy + h) — F(x.y)]-



Partial derivatives of f : D C R? — R.

Definition
Given a function f : D C R? — R, the partial derivative of f(x,y)
with respect to x at a point (x,y) € D is given by

111 [F(x + h,y) — F(x,¥)].

fX(Xay) = f|7i—r>n07

The partial derivative of f(x,y) with respect to y at a point
(x,y) € D is given by

y) = lim © [F(xy + h) — F(x.y)]-

Remark:
» To compute f,(x,y) derivate f(x, y) keeping y constant.



Partial derivatives of f : D C R? — R.

Definition
Given a function f : D C R? — R, the partial derivative of f(x,y)
with respect to x at a point (x,y) € D is given by

111 [F(x + h,y) — F(x,¥)].

&(Xay) = f|7i—r>n07

The partial derivative of f(x,y) with respect to y at a point
(x,y) € D is given by

1
G/(X,_)/) = ATOE[f(X’y—F h) - f(Xay)]
Remark:

» To compute £(x,y) derivate f(x,y) keeping y constant.

» To compute f,(x, y) derivate f(x,y) keeping x constant.



Computing f(x, y) at (xo, o).

» Evaluate the function f at y = yp. The result is a single
variable function f(x, yp).

» Compute the derivative of f(x, o) and evaluate it at x = xp.

> The result is f(xo, y0)-



Computing f(x, y) at (xo, o).

» Evaluate the function f at y = yp. The result is a single
variable function f(x, yp).

» Compute the derivative of f(x, o) and evaluate it at x = xp.

» The result is (X0, ¥0)-

Example
Find £(1,3) for f(x,y) = x2 + y2/4.



Computing f(x, y) at (xo, o).

» Evaluate the function f at y = yp. The result is a single
variable function f(x, yp).

» Compute the derivative of f(x, o) and evaluate it at x = xp.

» The result is (X0, ¥0)-

Example
Find £(1,3) for f(x,y) = x2 + y2/4.

Solution:
> f(x,3) = x? +9/4;



Computing f(x, y) at (xo, o).

» Evaluate the function f at y = yp. The result is a single
variable function f(x, yp).

» Compute the derivative of f(x, o) and evaluate it at x = xp.

» The result is (X0, ¥0)-

Example
Find £(1,3) for f(x,y) = x2 + y2/4.

Solution:
> f(x,3) = x? +9/4;
> f(x,3) = 2x;



Computing f(x, y) at (xo, o).

» Evaluate the function f at y = yp. The result is a single
variable function f(x, yp).

» Compute the derivative of f(x, yp) and evaluate it at x = xp.

» The result is f(xo, ¥0)-

Example
Find £(1,3) for f(x,y) = x2 + y2/4.

Solution:
> f(x,3) = x? +9/4;
> f(x,3) = 2x;

> £(1,3) = 2. <



Computing f(x, y) at (xo, o).

» Evaluate the function f at y = yp. The result is a single
variable function f(x, yp).

» Compute the derivative of f(x, o) and evaluate it at x = xp.

» The result is (X0, ¥0)-

Example
Find £(1,3) for f(x,y) = x2 + y2/4.

Solution:
> f(x,3) =x2+9/4
> f(x,3) = 2x;
» £(1,3)=2. <

To compute £ (x,y) derivate f(x, y) keeping y constant.



Computing f,(x, y) at (xo, yo)-

» Evaluate the function f at x = xg. The result is a single
variable function f(xp, y).

» Compute the derivative of f(xp, y) and evaluate it at y = yp.
> The result is f,(xo, yo).



Computing f,(x, y) at (xo, yo)-

» Evaluate the function f at x = xg. The result is a single
variable function f(xp, y).

» Compute the derivative of f(xp, y) and evaluate it at y = yp.
> The result is f,(xo, yo).

Example
Find £,(1,3) for f(x,y) = x>+ y?/4.



Computing f,(x, y) at (xo, yo)-

» Evaluate the function f at x = xg. The result is a single
variable function f(xp, y).

» Compute the derivative of f(xp, y) and evaluate it at y = yp.
> The result is f,(xo, yo).

Example
Find £,(1,3) for f(x,y) = x>+ y?/4.

Solution:
> f(Ly)=1+y*/4



Computing f,(x, y) at (xo, yo)-

» Evaluate the function f at x = xg. The result is a single
variable function f(xp, y).

» Compute the derivative of f(xp, y) and evaluate it at y = yp.
> The result is f,(xo, yo).

Example
Find £,(1,3) for f(x,y) = x>+ y?/4.

Solution:
> f(Ly)=1+y*/4
> f,(Ly)=y/2;



Computing f,(x, y) at (xo, yo)-

» Evaluate the function f at x = xp. The result is a single
variable function f(xp, y).

» Compute the derivative of f(xp,y) and evaluate it at y = yp.
> The result is f,(xo, y0).

Example
Find £,(1,3) for f(x,y) = x>+ y?/4.

Solution:
> f(Ly)=1+y*/4
> f,(Ly)=y/2;
> £,(1,3) = 3/2. 4



Computing f,(x, y) at (xo, yo)-

» Evaluate the function f at x = xg. The result is a single
variable function f(xp, y).

» Compute the derivative of f(xp, y) and evaluate it at y = yp.
> The result is f,(xo, yo).

Example
Find £,(1,3) for f(x,y) = x>+ y?/4.

Solution:
> f(Ly)=1+y*/4
> f,(Ly)=y/2;
> £,(1,3) = 3/2. 4

To compute f,(x, y) derivate f(x,y) keeping x constant.



Geometrical meaning of partial derivatives.

fx(x0, Y0) is the slope of the line tangent to the graph of
f(x, y) containing the point (xo,yo, f(xo,yo)) and belonging
to a plane parallel to the zx-plane.
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fx(x0, Y0) is the slope of the line tangent to the graph of
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to a plane parallel to the zx-plane.
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Geometrical meaning of partial derivatives.

fx(x0, Y0) is the slope of the line tangent to the graph of
f(x, y) containing the point (xo,yo, f(xo,yg)) and belonging
to a plane parallel to the zx-plane.

HEAAEN

X (X0 )

f,(Xo0, ¥o) is the slope of the line tangent to the graph of
f(x,y) containing the point (xo, yo, f (X0, ¥0)) and belonging
to a plane parallel to the zy-plane.



Partial derivatives can be computed on any point in D.

Example
2x —y

X+ 2y

Find the partial derivatives of f(x,y) =



Partial derivatives can be computed on any point in D.

Example
2x —y

X+ 2y

Find the partial derivatives of f(x,y) =

Solution:




Partial derivatives can be computed on any point in D.

Example
. . . 2x —y
Find th t = :
in e partial derivatives of f(x,y) X1 2y
Solution:
2(x +2y) — (2x — y) Sy
ﬁ( , fx ) - :
2 (x + 2y)2 = Ay (x +2y)?
(C1)(x+2) — (2%~ 1)) 5x
f fxy) = -
}/(va) (X+2y)2 = y(Xay) (X+2)/)2



The derivative of a function is a new function.

Recall: The derivative of a function f : R — R is itself a function.
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Recall: The derivative of a function f : R — R is itself a function.

Example
The derivative of function f(x) = x? at an arbitrary point x is the
function f'(x) = 2x.



The derivative of a function is a new function.

Recall: The derivative of a function f : R — R is itself a function.

Example
The derivative of function f(x) = x? at an arbitrary point x is the
function f'(x) = 2x.

y=f(x) y=f"(x)




The derivative of a function is a new function.

Recall: The derivative of a function f : R — R is itself a function.

Example
The derivative of function f(x) = x? at an arbitrary point x is the
function f'(x) = 2x.

y=f(x) y=f"(x)

The same statement is true for partial derivatives.



The partial derivatives of a function are new functions.
Definition
Given a function f : D C R? — R C R, the functions partial

derivatives of f(x, y) are denoted by f,(x,y) and f,(x,y), and they
are given by the expressions

i y) = lim L IFGx o+ hy) — FOxo)],

k) = fim 2 [F(x,y + ) — Flx,y)]-



The partial derivatives of a function are new functions.

Definition

Given a function f : D C R? — R C R, the functions partial
derivatives of f(x, y) are denoted by f,(x,y) and f,(x,y), and they
are given by the expressions

i y) = lim L IFGx o+ hy) — FOxo)],

) = lim 1y + B) — £ )]

Notation:
Partial derivatives of f(x, y) are denoted in several ways:
fx(X>Y)7 %(Xv)/): 8Xf(X7Y)'

of
G’(Xa)/)v 7(X7}/)7 8yf(xay)
dy



The partial derivatives of a paraboloid are planes

Example
Find the functions partial derivatives of f(x,y) = x2 + y2.



The partial derivatives of a paraboloid are planes

Example
Find the functions partial derivatives of f(x,y) = x2 + y2.

Solution:
foy) =2 = fil(xy)=2x



The partial derivatives of a paraboloid are planes

Example

Find the functions partial derivatives of f(x,y) = x2 + y2.
Solution:

fi(x,y)=2x = fix,y)=2x.

f(x,y) =042y = f,(x,y)=2y.



The partial derivatives of a paraboloid are planes

Example
Find the functions partial derivatives of f(x,y) = x2 + y2.

Solution:
fi(x,y)=2x = f(x,y)=2x.
f(x,y) =042y = f,(x,y)=2y.

The partial derivatives of a paraboloid are planes.

()
,(x)

fx(xy)




The partial derivatives of a function are new functions.

Example
Find the partial derivatives of f(x,y) = x2In(y).



The partial derivatives of a function are new functions.

Example
Find the partial derivatives of f(x,y) = x2In(y).

Solution:
f(x,y) = 2x1In(y),
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Example
Find the partial derivatives of f(x,y) = x2In(y).

Solution:
2

flxy) =2xIn(y),  f(x.y) = X;



The partial derivatives of a function are new functions.

Example
Find the partial derivatives of f(x,y) = x2In(y).

Solution:
2

flxy) =2xIn(y),  f(x.y) = X;

Example

2
Find the partial derivatives of f(x,y) = x2 + yf



The partial derivatives of a function are new functions.

Example
Find the partial derivatives of f(x,y) = x2In(y).

Solution:
2

flxy) =2xIn(y),  f(x.y) = X;

Example

2
Find the partial derivatives of f(x,y) = x2 + yf

Solution:
ﬁ((X7y) = 2X7



The partial derivatives of a function are new functions.

Example
Find the partial derivatives of f(x,y) = x2In(y).

Solution:
2

flxy) =2xIn(y),  f(x.y) = X;

Example

2
Find the partial derivatives of f(x,y) = x2 + yf

Solution:

y
&(X,y):2X, G/(va)zg



Partial derivatives and differentiability (Sect. 14.3).

Partial derivatives of f : D C R? — R.
Higher-order partial derivatives.

The Mixed Derivative Theorem.

Examples of implicit partial differentiation.
Partial derivatives of f : D C R" — R.

vV v . v. v .Y



Higher-order partial derivatives.

Remark:
Higher derivatives of a function are partial derivatives of its partial
derivatives.



Higher-order partial derivatives.

Remark:

Higher derivatives of a function are partial derivatives of its partial
derivatives.

The second partial derivatives of f(x, y) are the following:

foc(X,y) = A@O o I+ hy) = £yl

(o) = lim 21 (v + B) — fy(x, )]

1
f;(y(Xay) = /LTOE [fX(X>y+ h) - fX(Xay)]a

1
fix(x,y) = lim = [fy (x + h,y) = £,(x, y)].



Higher-order partial derivatives.

Remark:

Higher derivatives of a function are partial derivatives of its partial
derivatives.

The second partial derivatives of f(x, y) are the following:

foc(X,y) = A@O o I+ hy) = £yl

(o) = lim 21 (v + B) — fy(x, )]

1

f;(y(Xay) = /LTOE [fX(X>y+ h) - fX(Xay)]a
o1

fix(x,y) = lim = [fy (x + h,y) = £,(x, y)].

PPf Pf

Notation: f, R Oxxf, and also £y, m, Oxy f.



Higher-order partial derivatives.

Example

Find all second order derivatives of the function
f(x,y) = x3e¥ + 3y.
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Example
Find all second order derivatives of the function
f(x,y) = x3e¥ + 3y.
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flx.y) =37, fy(x,y) =2x°e” +3.



Higher-order partial derivatives.

Example
Find all second order derivatives of the function
f(x,y) = x3e¥ + 3y.

Solution:

flx.y) =37, fy(x,y) =2x°e” +3.

fo(x,y) = 6x€¥ . f(x,y) = 4x3e¥.



Higher-order partial derivatives.

Example
Find all second order derivatives of the function
f(x,y) = x3e¥ + 3y.

Solution:

flx.y) =37, fy(x,y) =2x°e” +3.

fo(x,y) = 6x€¥ . f(x,y) = 4x3e¥.

oy = 6x%e? fox = 6x2e?.



Partial derivatives and differentiability (Sect. 14.3).

Partial derivatives of f : D C R> — R.
Higher-order partial derivatives.

The Mixed Derivative Theorem.
Examples of implicit partial differentiation.
Partial derivatives of f : D C R" — R.

vV v . v. v .Y



Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives f, f,, f,, and f . of a function
f: D c R% — R exist and all are continuous functions, then holds

fry = Fn.



Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives f, f,, f,, and f . of a function
f: D c R% — R exist and all are continuous functions, then holds

fry = Fn.

Example
Find £, and f,, for f(x,y) = cos(xy).



Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives f, f,, f,, and f . of a function
f: D c R% — R exist and all are continuous functions, then holds

fry = Fn.

Example
Find £, and f,, for f(x,y) = cos(xy).

Solution:

fx = —ysin(xy), fy = —sin(xy) — yx cos(xy).



Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives f, f,, f,, and f . of a function
f: D c R% — R exist and all are continuous functions, then holds

fry = Fn.

Example
Find £, and f,, for f(x,y) = cos(xy).

Solution:

fx = —ysin(xy), fy = —sin(xy) — yx cos(xy).

f, = —xsin(xy), fyx = —sin(xy) — xy cos(xy).



Partial derivatives and differentiability (Sect. 14.3).

Partial derivatives of f : D C R? — R.
Higher-order partial derivatives.

The Mixed Derivative Theorem.

Examples of implicit partial differentiation.
Partial derivatives of f : D C R" — R.
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Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0xz(x, y) of the function z defined implicitly by the equation
xyz + e%/Y + cos(z) = 0.



Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0xz(x, y) of the function z defined implicitly by the equation
xyz + e%/Y + cos(z) = 0.

Solution:

yz + xy (0xz) + )2/ (8z)e?2/Y — (0xz) sin(z) = 0.



Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0xz(x, y) of the function z defined implicitly by the equation
xyz + e%/Y + cos(z) = 0.

Solution:
2
yz + xy (0xz) + ) (8z)e?2/Y — (0xz) sin(z) = 0.
Compute Oxz as a function of x, y and z(x,y), as follows,

(0x2) [Xy + % e22/y _ sin(z)] = —yz,
y



Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0xz(x, y) of the function z defined implicitly by the equation
xyz + e%/Y + cos(z) = 0.

Solution:
2
yz + xy (0xz) + ) (8z)e?2/Y — (0xz) sin(z) = 0.
Compute Oxz as a function of x, y and z(x,y), as follows,
2 2z/ :
(8Xz)[xy + }—/ ety — sm(z)] = —yz,

. yz
that is, (Oxz) = — . <
at is, (0x2) Dy + 2 &2/ —sin(z)]




Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0, z(x,y) of the function z defined implicitly by the equation
xyz + €?#/Y 4 cos(z) = 0.



Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0, z(x,y) of the function z defined implicitly by the equation
xyz + e%/Y + cos(z) = 0.
Solution:
2

xz + xy (0yz) + (}—/ (0yz) — }/222) e??/Y — (9,z) sin(z) = 0.



Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0, z(x,y) of the function z defined implicitly by the equation
xyz + €?#/Y 4 cos(z) = 0.

Solution:

xz + xy (0yz) + (}2/ (0yz) — }/222) e??/Y — (9,z) sin(z) = 0.

Compute 0,z as a function of x, y and z(x,y), as follows,

(8y2) [xy + )2/ e2z/y _ sin(z)] = —xz + y22ze2z/y,



Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are
similar to those for functions of one variable.

Example
Find 0, z(x,y) of the function z defined implicitly by the equation
xyz + €?#/Y 4 cos(z) = 0.

Solution:

xz + xy (0yz) + (}2/ (0yz) — }/222) e??/Y — (9,z) sin(z) = 0.

Compute 0,z as a function of x, y and z(x,y), as follows,

(8y2) [xy + )2/ e2z/y _ sin(z)] = —xz + y22ze2z/y,

[—Xz + )% z e2z/y]

[xy + }% e??/y —sin(z)]

that is, (0,z) =



Partial derivatives and differentiability (Sect. 14.3).

Partial derivatives of f : D C R> — R.
Higher-order partial derivatives.

The Mixed Derivative Theorem.

Examples of implicit partial differentiation.
Partial derivatives of f : D C R" — R.
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Partial derivatives of f : D C R" — R.

Definition
Given a function f : D C R" — R, with n € N, the partial
derivative of f(x1,- - ,xn) with respect to x;, with i =1,--- /' n, at

a point (x1,--- ,x,) € D is given by

o1
in:)’TOE[f(le'” aXi—l_hu"' 7Xn)_f(X17"‘ aXn)]~



Partial derivatives of f : D C R" — R.

Definition
Given a function f : D C R" — R, with n € N, the partial
derivative of f(x1,- - ,xn) with respect to x;, with i =1,--- /' n, at
a point (x1,--- ,x,) € D is given by
o1
f. = /LTOE[f(Xl"H JXi+hy oo xn) — Fxg, - ,X,,)].

Remark: To compute f,; derivate f with respect to x; keeping all
other variables x; constant.



Partial derivatives of f : D C R" — R.

Definition
Given a function f : D C R" — R, with n € N, the partial
derivative of f(x1,- - ,xn) with respect to x;, with i =1,--- /' n, at
a point (x1,--- ,x,) € D is given by
o1
f. = /LTOE[f(Xl"H JXi+hy oo xn) — Fxg, - ,X,,)].

Remark: To compute f,; derivate f with respect to x; keeping all
other variables x; constant.

Notation: f, f:, ﬁ’
Ox;

i

Ouf,  Oif.



Partial derivatives of f : D C R" — R.

Example

Compute all first partial derivatives of the function
1
o(x,y,2) =

/x2 4+ y2 4+ 22



Partial derivatives of f : D C R" — R.

Example

Compute all first partial derivatives of the function
1

¢ X?.y?Z e
( ) /X2+y2 +Z2
Solution:

1 2x S g = X
2 (Xz + y2 4 22)3/2 x (Xz +y2 4 z2)3/2°

¢x:



Partial derivatives of f : D C R" — R.

Example

Compute all first partial derivatives of the function
1

¢ X?.y?Z e
( ) /X2+y2 +Z2
Solution:

1 2x S g = X
2 (Xz + y2 4 22)3/2 X (Xz +y2 4 z2)3/2°

¢X:_

Analogously, the other partial derivatives are given by

by = 3 0z = ;
y = (x2 + y2 4 z2)3/2° Z (Xz + y2 + z2)3/2°




Partial derivatives of f : D C R" — R.

Example
1
Verify that ¢(x, y,z) = ——————— satisfies the Laplace
VX2 +y?+ 22

equation : @xx + dyy + ¢z = 0.



Partial derivatives of f : D C R" — R.

Example

1
Verify that ¢(x, y,z) =

VX2 4+ y2 + 22

equation : @xx + dyy + ¢z = 0.

satisfies the Laplace

Solution: Recall: ¢ = —x/(x2 +y2 + 22)3/2_



Partial derivatives of f : D C R" — R.

Example

1
Verify that ¢(x, y,z) =

VX2 4+ y2 + 22

equation : @xx + dyy + ¢z = 0.

satisfies the Laplace

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
b = — 1 L3 2x?
XX — (X2 +y2 + 22)3/2 2 (X2 +y2 +22)5/2.




Partial derivatives of f : D C R" — R.

Example
1

Verify that ¢(x,y,z) = ————
VX2 +y2+ 22

equation : @xx + dyy + ¢z = 0.

satisfies the Laplace

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
1 3 2x2

Proc = = (2 + y2 + 22)3/2 T3 (2 +y? + 22)5/%°

Denote r = /x2 + y2 + z2,




Partial derivatives of f : D C R" — R.

Example
1

Verify that ¢(x,y,z) = ————
VX2 +y2+ 22

equation : @xx + dyy + ¢z = 0.

satisfies the Laplace

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
1 3 2x2

Proc = = (2 + y2 + 22)3/2 T3 (2 +y? + 22)5/%°

Denote r = \/x2 + y2 + 22, then ¢ = _713 + 3’%52




Partial derivatives of f : D C R" — R.

Example
1
Verify that ¢(x, y,z) = ——————— satisfies the Laplace

VX2 4+ y2 + 22

equation : @xx + dyy + ¢z = 0.

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
b = — 1 L3 2x?
XX — (X2 +y2 + 22)3/2 2 (X2 +y2 +22)5/2.

Denote r = \/x2 + y2 + 22, then ¢ = _713 + 3’%52

1 3y? 1 322
Analogously, ¢y, = —= + 5, and ¢, = — 5 + 5.




Partial derivatives of f : D C R" — R.

Example
1
Verify that ¢(x, y,z) = ——————— satisfies the Laplace

VX2 4+ y2 + 22

equation : @xx + dyy + ¢z = 0.

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
b = — 1 L3 2x?
XX — (X2 +y2 + 22)3/2 2 (X2 +y2 +22)5/2.

Denote r = \/x2 + y2 + 22, then ¢ = _713 + 3’%52

3 2 2
Analogously, ¢, = —713 + 25, and ¢, = —%3 + 3%5 Then,

3 3(x? 4+ y? + 22
¢Xx+¢yy+¢zz:_ﬁ+ ( ::—, )




Partial derivatives of f : D C R" — R.

Example
1
Verify that ¢(x, y,z) = ——————— satisfies the Laplace

VX2 4+ y2 + 22

equation : @xx + dyy + ¢z = 0.

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
b = — 1 L3 2x?
XX — (X2 +y2 + 22)3/2 2 (X2 +y2 +22)5/2.

Denote r = \/x2 + y2 + 22, then ¢ = _713 + 3’%52

3 2 2
Analogously, ¢, = —713 + 25, and ¢, = —%3 + 3%5 Then,

3 30 +y*+7° 3 3r?
¢Xx+¢yy+¢zz:_ﬁ+ ( :; ):—’_3+r5-




Partial derivatives of f : D C R" — R.

Example

1
Verify that ¢(x, y,z) =

VX2 4+ y2 + 22

equation : @xx + dyy + ¢z = 0.

satisfies the Laplace

Solution: Recall: ¢ = —x/(x2 + y? + z2)3/2. Then,
1 3 2x2

Proc = = (2 + y2 + 22)3/2 T3 (2 +y? + 22)5/%°

Denote r = \/x2 + y2 + 22, then ¢ = _713 + 3’%52

Analogously, ¢, = —713 + 3%52 and ¢,, = —%3 + 3r—z52 Then,
3 3(x2+y*+2° 3 32
¢Xx+¢yy+¢zz:_ﬁ+ ( 5 ):—’_3+r5-

We conclude that ¢y + ¢y + ¢, = 0.



