Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.
- Functions of three variables.
 - Level surfaces.

Definition A scalar function of n

A scalar function of *n* variables is a function $f : D \subset \mathbb{R}^n \to R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set *D* is called the *domain* of the function, and the set *R* is called the *range* of the function.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

A scalar function of *n* variables is a function $f : D \subset \mathbb{R}^n \to R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set *D* is called the *domain* of the function, and the set *R* is called the *range* of the function.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark:

Comparison between $f : \mathbb{R}^2 \to \mathbb{R}$ with $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$.

Definition

A scalar function of *n* variables is a function $f : D \subset \mathbb{R}^n \to R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set *D* is called the *domain* of the function, and the set *R* is called the *range* of the function.

Remark:

Comparison between $f : \mathbb{R}^2 \to \mathbb{R}$ with $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$.

A scalar function of two variables is a function

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $(x, y) \to f(x, y).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

A scalar function of *n* variables is a function $f : D \subset \mathbb{R}^n \to R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set *D* is called the *domain* of the function, and the set *R* is called the *range* of the function.

Remark:

Comparison between $f : \mathbb{R}^2 \to \mathbb{R}$ with $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$.

A scalar function of two variables is a function

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $(x, y) \to f(x, y).$

A vector function on the plane is a function

$$\mathbf{r}:\mathbb{R} o\mathbb{R}^2$$
 $t o\mathbf{r}(t)=\langle x(t),y(t)
angle.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

An example of a scalar-valued function of two variables, *T* : ℝ² → ℝ is the temperature *T* of a plane surface, say a table. Each point (*x*, *y*) on the table is associated with a number, its temperature *T*(*x*, *y*).

Example

- An example of a scalar-valued function of two variables, *T* : ℝ² → ℝ is the temperature *T* of a plane surface, say a table. Each point (*x*, *y*) on the table is associated with a number, its temperature *T*(*x*, *y*).
- An example of a scalar-valued function of three variables,
 T : ℝ³ → ℝ is the temperature T of this room. Each point (x, y, z) in the room is associated with a number, its temperature T(x, y, z).

Example

- An example of a scalar-valued function of two variables, *T* : ℝ² → ℝ is the temperature *T* of a plane surface, say a table. Each point (*x*, *y*) on the table is associated with a number, its temperature *T*(*x*, *y*).
- An example of a scalar-valued function of three variables, *T* : ℝ³ → ℝ is the temperature *T* of this room. Each point (*x*, *y*, *z*) in the room is associated with a number, its temperature *T*(*x*, *y*, *z*).
- Another example of a scalar function of three variables is the speed of the air in the room.

Example

- An example of a scalar-valued function of two variables, *T* : ℝ² → ℝ is the temperature *T* of a plane surface, say a table. Each point (*x*, *y*) on the table is associated with a number, its temperature *T*(*x*, *y*).
- An example of a scalar-valued function of three variables, *T* : ℝ³ → ℝ is the temperature *T* of this room. Each point (*x*, *y*, *z*) in the room is associated with a number, its temperature *T*(*x*, *y*, *z*).
- Another example of a scalar function of three variables is the speed of the air in the room.
- ▶ An example of a vector-valued function of three variables, $\mathbf{v} : \mathbb{R}^3 \to \mathbb{R}^3$, is the velocity of the air in the room.

 \triangleleft

(日) (同) (三) (三) (三) (○) (○)

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ is defined.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ is defined.

Solution: The function $f(x, y) = x^2 + y^2$ is defined for all points $(x, y) \in \mathbb{R}^2$, therefore, $D = \mathbb{R}^2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = x^2 + y^2$ is defined.

Solution: The function $f(x, y) = x^2 + y^2$ is defined for all points $(x, y) \in \mathbb{R}^2$, therefore, $D = \mathbb{R}^2$.

The values of the function f are non-negative, that is, $f(x,y) = x^2 + y^2 \ge 0$ for all $(x,y) \in D$. Therefore, the range space is $R = [0, \infty)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = \sqrt{x - y}$ is defined.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = \sqrt{x - y}$ is defined.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: The function $f(x, y) = \sqrt{x - y}$ is defined for points $(x, y) \in \mathbb{R}^2$ such that $x - y \ge 0$. Therefore,

 $D = \{(x, y) \in \mathbb{R}^2 : x \ge y\}.$

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = \sqrt{x - y}$ is defined.

Solution: The function $f(x, y) = \sqrt{x - y}$ is defined for points $(x, y) \in \mathbb{R}^2$ such that $x - y \ge 0$. Therefore,

$$D = \{(x, y) \in \mathbb{R}^2 : x \ge y\}.$$

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = \sqrt{x - y}$ is defined.

Solution: The function $f(x, y) = \sqrt{x - y}$ is defined for points $(x, y) \in \mathbb{R}^2$ such that $x - y \ge 0$. Therefore,

The values of the function f are non-negative, that is, $f(x, y) = \sqrt{x - y} \ge 0$ for all $(x, y) \in D$. Therefore, the range space is $R = [0, \infty)$.

 \triangleleft

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = 1/\sqrt{x-y}$ is defined.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = 1/\sqrt{x-y}$ is defined.

Solution: The function $f(x, y) = 1/\sqrt{x - y}$ is defined for points $(x, y) \in \mathbb{R}^2$ such that x - y > 0. Therefore,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $D = \{(x, y) \in \mathbb{R}^2 : x > y\}.$

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = 1/\sqrt{x-y}$ is defined.

Solution: The function $f(x, y) = 1/\sqrt{x - y}$ is defined for points $(x, y) \in \mathbb{R}^2$ such that x - y > 0. Therefore,

$$D = \{(x, y) \in \mathbb{R}^2 : x > y\}.$$

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ given by $f(x, y) = 1/\sqrt{x-y}$ is defined.

Solution: The function $f(x, y) = 1/\sqrt{x - y}$ is defined for points $(x, y) \in \mathbb{R}^2$ such that x - y > 0. Therefore,

The values of the function f are positive, that is, $f(x,y) = 1/\sqrt{x-y} > 0$ for all $(x,y) \in D$. Therefore, the range space is $R = (0, \infty)$.

Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Functions of three variables.
 - Level surfaces.

We first generalize from \mathbb{R}^3 to \mathbb{R}^n the definition of a ball of radius r centered at \hat{P} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

We first generalize from \mathbb{R}^3 to \mathbb{R}^n the definition of a ball of radius r centered at \hat{P} .

Definition

A set $B_r(\hat{P}) \subset \mathbb{R}^n$, with $n \in \mathbb{N}$ and r > 0, is a *ball of radius r* centered at $\hat{P} = (\hat{x}_1, \cdots, \hat{x}_n)$ iff

 $B_r(\hat{P}) = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : (x_1 - \hat{x}_1)^2 + \cdots + (x_n - \hat{x}_n)^2 < r^2\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We first generalize from \mathbb{R}^3 to \mathbb{R}^n the definition of a ball of radius r centered at \hat{P} .

Definition

A set $B_r(\hat{P}) \subset \mathbb{R}^n$, with $n \in \mathbb{N}$ and r > 0, is a *ball of radius r* centered at $\hat{P} = (\hat{x}_1, \cdots, \hat{x}_n)$ iff

 $B_r(\hat{P}) = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : (x_1 - \hat{x}_1)^2 + \cdots + (x_n - \hat{x}_n)^2 < r^2\}.$

Remark: A ball $B_r(\hat{P})$ contains the points inside a sphere of radius r centered at \hat{P} without the points of the sphere.

Definition

A point $P \in S \subset \mathbb{R}^n$, with $n \in \mathbb{N}$, is called an *interior point* iff there is a ball $B_r(P) \subset S$. A point $P \in S \subset \mathbb{R}^n$, with $n \in \mathbb{N}$, is called a *boundary point* iff every ball $B_r(P)$ contains points in S and points outside S. The *boundary* of a set S is the set of all boundary points of S.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A point $P \in S \subset \mathbb{R}^n$, with $n \in \mathbb{N}$, is called an *interior point* iff there is a ball $B_r(P) \subset S$. A point $P \in S \subset \mathbb{R}^n$, with $n \in \mathbb{N}$, is called a *boundary point* iff every ball $B_r(P)$ contains points in S and points outside S. The *boundary* of a set S is the set of all boundary points of S.

Definition

A set $S \in \mathbb{R}^n$, with $n \in \mathbb{N}$, is called *open* iff every point in S is an interior point. The set S is called *closed* iff S contains its boundary. A set S is called *bounded* iff S is contained in ball, otherwise S is called *unbounded*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A set $S \in \mathbb{R}^n$, with $n \in \mathbb{N}$, is called *open* iff every point in S is an interior point. The set S is called *closed* iff S contains its boundary. A set S is called *bounded* iff S is contained in ball, otherwise S is called *unbounded*.

Example

Find and describe the maximum domain of the function $f(x, y) = \ln(x - y^2)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find and describe the maximum domain of the function $f(x, y) = \ln(x - y^2)$.

Solution: The maximum domain of f is the set

$$D = \{(x, y) \in \mathbb{R}^2 : x > y^2\}.$$

Example

Find and describe the maximum domain of the function $f(x, y) = \ln(x - y^2)$.

Solution: The maximum domain of f is the set

$$D = \{(x, y) \in \mathbb{R}^2 : x > y^2\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

D is an open, unbounded set.

Example

Find and describe the maximum domain of the function $f(x, y) = \ln(x - y^2)$.

Solution: The maximum domain of f is the set

$$D = \{(x, y) \in \mathbb{R}^2 : x > y^2\}.$$

D is an open, unbounded set. \lhd

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Functions of three variables.
 - Level surfaces.

The graph of a function of two variables is a surface in \mathbb{R}^3 .

Definition

The graph of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^3 of the form (x, y, f(x, y)). The graph of a function f is also called the surface z = f(x, y).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The graph of a function of two variables is a surface in \mathbb{R}^3 .

Definition

The graph of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^3 of the form (x, y, f(x, y)). The graph of a function f is also called the surface z = f(x, y).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Draw the graph of $f(x, y) = x^2 + y^2$.

The graph of a function of two variables is a surface in \mathbb{R}^3 .

Definition

The graph of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^3 of the form (x, y, f(x, y)). The graph of a function f is also called the surface z = f(x, y).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Draw the graph of $f(x, y) = x^2 + y^2$.

Solution: The graph of f is the surface $z = x^2 + y^2$. This is a paraboloid along the z axis.
The graph of a function of two variables is a surface in \mathbb{R}^3 .

Definition

The graph of a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^3 of the form (x, y, f(x, y)). The graph of a function f is also called the surface z = f(x, y).

 \triangleleft

Example

Draw the graph of $f(x, y) = x^2 + y^2$.

Solution: The graph of f is the surface $z = x^2 + y^2$. This is a paraboloid along the z axis.

- 日本 本語 本 本 田 本 本 田 本

Definition

The *level curves* of a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ are the curves in the domain $D \subset \mathbb{R}^2$ of f solutions of the equation f(x, y) = k, where $k \in R$ is a constant in the range of f.

The *contour curves* of function f are the curves in \mathbb{R}^3 given by the intersection of the graph of f with horizontal planes z = k, where $k \in R$ is a constant in the range of f.

Definition

The *level curves* of a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ are the curves in the domain $D \subset \mathbb{R}^2$ of f solutions of the equation f(x, y) = k, where $k \in R$ is a constant in the range of f. The *contour curves* of function f are the curves in \mathbb{R}^3 given by the intersection of the graph of f with horizontal planes z = k, where $k \in R$ is a constant in the range of f.

(日) (同) (三) (三) (三) (○) (○)

Curves of constant f in $D \subset \mathbb{R}^2$ are called level curves.

Definition

The *level curves* of a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$ are the curves in the domain $D \subset \mathbb{R}^2$ of f solutions of the equation f(x, y) = k, where $k \in R$ is a constant in the range of f. The *contour curves* of function f are the curves in \mathbb{R}^3 given by the intersection of the graph of f with horizontal planes z = k, where $k \in R$ is a constant in the range of f.

Curves of constant f in $D \subset \mathbb{R}^2$ are called level curves.

Curves of constant f in \mathbb{R}^3 are called contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y) = x^2 + y^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find and draw few level curves and contour curves for the function $f(x, y) = x^2 + y^2$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

The level curves are solutions of the equation $x^2 + y^2 = k$ with $k \ge 0$.

Example

Find and draw few level curves and contour curves for the function $f(x, y) = x^2 + y^2$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

The level curves are solutions of the equation $x^2 + y^2 = k$ with $k \ge 0$. These curves are circles of radius \sqrt{k} in $D = \mathbb{R}^2$.

Example

Find and draw few level curves and contour curves for the function $f(x, y) = x^2 + y^2$.

Solution:

The level curves are solutions of the equation $x^2 + y^2 = k$ with $k \ge 0$. These curves are circles of radius \sqrt{k} in $D = \mathbb{R}^2$.

The contour curves are the circles $\{(x, y, z) : x^2 + y^2 = k, z = k\}.$

Example

Find and draw few level curves and contour curves for the function $f(x, y) = x^2 + y^2$.

Solution:

The level curves are solutions of the equation $x^2 + y^2 = k$ with $k \ge 0$. These curves are circles of radius \sqrt{k} in $D = \mathbb{R}^2$.

The contour curves are the circles $\{(x, y, z) : x^2 + y^2 = k, z = k\}.$

Example

Find the maximum domain, range of, and graph the function f(x,y) = 1

(ロ)、(型)、(E)、(E)、 E、 の(の)

 $f(x,y) = \frac{1}{1+x^2+y^2}.$

Example

Find the maximum domain, range of, and graph the function $f(x,y) = \frac{1}{1 + x^2 + y^2}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

Since the denominator never vanishes, hence $D = \mathbb{R}^2$.

Example

Find the maximum domain, range of, and graph the function $f(x,y) = \frac{1}{1 + x^2 + y^2}$.

Solution:

Since the denominator never vanishes, hence $D = \mathbb{R}^2$.

Since
$$0 < \frac{1}{1 + x^2 + y^2} \leq 1$$
, the range of f is $R = (0, 1]$.

Example

Find the maximum domain, range of, and graph the function $f(x,y) = \frac{1}{1 + x^2 + y^2}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

Since the denominator never vanishes, hence $D = \mathbb{R}^2$.

Since
$$0 < \frac{1}{1 + x^2 + y^2} \leq 1$$
, the range of f is $R = (0, 1]$.

The contour curves are circles on horizontal planes in (0, 1].

Example

Find the maximum domain, range of, and graph the function $f(x, y) = \frac{1}{1 + x^2 + y^2}$.

Solution:

Since the denominator never vanishes, hence $D = \mathbb{R}^2$.

Since
$$0 < \frac{1}{1 + x^2 + y^2} \leq 1$$
, the range of f is $R = (0, 1]$.

The contour curves are circles on horizontal planes in (0, 1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Example

Given the topographic map in the figure, which way do you choose to the summit?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example

Given the topographic map in the figure, which way do you choose to the summit?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

From the east.

Example

Given the topographic map in the figure, which way do you choose to the summit?

Solution:

From the east.

Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
 - Graph of the function.
 - Level curves, contour curves.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- **Functions of three variables.**
 - Level surfaces.

Definition The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$, is the set of points in \mathbb{R}^4 of the form (x, y, z, f(x, y, z)) for every $(x, y, z) \in D$.

Definition

The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$, is the set of points in \mathbb{R}^4 of the form (x, y, z, f(x, y, z)) for every $(x, y, z) \in D$.

Remark:

The graph a function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ requires four space dimensions. We cannot picture such graph.

Definition

The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$, is the set of points in \mathbb{R}^4 of the form (x, y, z, f(x, y, z)) for every $(x, y, z) \in D$.

Remark:

The graph a function $f : D \subset \mathbb{R}^3 \to \mathbb{R}$ requires four space dimensions. We cannot picture such graph.

Definition

The *level surfaces* of a function $f : D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$ are the surfaces in the domain $D \subset \mathbb{R}^3$ of f solutions of the equation f(x, y, z) = k, where $k \in R$ is a constant in the range of f.

Example

Draw one level surface of the function $f: D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$ $f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Draw one level surface of the function $f : D \subset \mathbb{R}^3 \to R \subset \mathbb{R}$ $f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}.$

Solution: The domain of f is $D = \mathbb{R}^3$ and its range is $R = (0, \infty)$. Writing $k = 1/R^2$, the level surfaces f(x, y, z) = k are spheres $x^2 + y^2 + z^2 = R^2$.

Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the non-existence of limits.
 - The sandwich test for the existence of limits.

Definition

The function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as *limit at the point* $\hat{P} \in \mathbb{R}^n$, denoted as $\lim_{P \to \hat{P}} f(P) = L$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that if $|P - \hat{P}| < \delta$ then $|f(P) - L| < \epsilon$.

Definition

The function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as *limit at the point* $\hat{P} \in \mathbb{R}^n$, denoted as $\lim_{P \to \hat{P}} f(P) = L$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that if $|P - \hat{P}| < \delta$ then $|f(P) - L| < \epsilon$.

Remarks:

In Cartesian coordinates P = (x₁, · · · , x_n), P̂ = (x̂₁, · · · , x̂_n). Then, |P − P̂| is the distance between points in ℝⁿ,

Definition

The function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as *limit at the point* $\hat{P} \in \mathbb{R}^n$, denoted as $\lim_{P \to \hat{P}} f(P) = L$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that if $|P - \hat{P}| < \delta$ then $|f(P) - L| < \epsilon$.

Remarks:

In Cartesian coordinates P = (x₁, · · · , x_n), P̂ = (x̂₁, · · · , x̂_n). Then, |P − P̂| is the distance between points in ℝⁿ,

$$|P-\hat{P}|=|\overrightarrow{P\hat{P}}|=\sqrt{(x_1-\hat{x}_1)^2+\cdots+(x_n-\hat{x}_n)^2}.$$

Definition

The function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as *limit at the point* $\hat{P} \in \mathbb{R}^n$, denoted as $\lim_{P \to \hat{P}} f(P) = L$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that if $|P - \hat{P}| < \delta$ then $|f(P) - L| < \epsilon$. Remarks:

▶ In Cartesian coordinates $P = (x_1, \dots, x_n)$, $\hat{P} = (\hat{x}_1, \dots, \hat{x}_n)$. Then, $|P - \hat{P}|$ is the distance between points in \mathbb{R}^n ,

$$|P-\hat{P}|=|\overrightarrow{P\hat{P}}|=\sqrt{(x_1-\hat{x}_1)^2+\cdots+(x_n-\hat{x}_n)^2}.$$

▶ $|f(P) - L| \in \mathbb{R}$ is the absolute value of real numbers.

The limit of functions $f : \mathbb{R}^2 \to \mathbb{R}$.

The function with values f(x, y) has the number L as limit at the point $P_0 = (x_0, y_0)$ iff holds: For all points P = (x, y) near $P_0 = (x_0, y_0)$ the value of f(x, y) differs little from L.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The limit of functions $f : \mathbb{R}^2 \to \mathbb{R}$.

The function with values f(x, y) has the number L as limit at the point $P_0 = (x_0, y_0)$ iff holds: For all points P = (x, y) near $P_0 = (x_0, y_0)$ the value of f(x, y) differs little from L.

We denote it as follows:

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$$

Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the non-existence of limits.
 - The sandwich test for the existence of limits.

Example Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: The function above is not defined at (0,0).

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: The function above is not defined at (0,0). First: Guess what the limit *L* is.

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: The function above is not defined at (0,0). First: Guess what the limit *L* is. Along the line x = 0 the function above vanishes for all $y \neq 0$.

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: The function above is not defined at (0,0). First: Guess what the limit L is. Along the line x = 0 the function above vanishes for all $y \neq 0$. So, if L exists, it must be L = 0.
Computing limits by definition usually is not easy.

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: The function above is not defined at (0,0). First: Guess what the limit *L* is. Along the line x = 0 the function above vanishes for all $y \neq 0$. So, if *L* exists, it must be L = 0. Fix any number $\epsilon > 0$.

Computing limits by definition usually is not easy.

Example

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: The function above is not defined at (0,0). First: Guess what the limit *L* is. Along the line x = 0 the function above vanishes for all $y \neq 0$. So, if *L* exists, it must be L = 0. Fix any number $\epsilon > 0$. Given that ϵ , find a number $\delta > 0$ such that

$$\sqrt{(x-0)^2+(y-0)^2} < \delta \quad \Rightarrow \quad \left|rac{2yx^2}{x^2+y^2}-0
ight| < \epsilon.$$

~

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0,$ find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left| rac{2yx^2}{x^2+y^2}
ight| < \epsilon.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0,$ find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left| rac{2yx^2}{x^2+y^2}
ight| < \epsilon.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Recall:
$$x^2 \leqslant x^2 + y^2$$
, that is, $\frac{x^2}{x^2 + y^2} \leqslant 1$.

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0$, find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left|\frac{2yx^2}{x^2+y^2}\right| < \epsilon.$$

~

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall: $x^2 \leqslant x^2 + y^2$, that is, $\frac{x^2}{x^2 + y^2} \leqslant 1$. Then

$$\left|\frac{2yx^2}{x^2+y^2}\right| = \frac{2|y|x^2}{x^2+y^2} \leqslant 2|y| = 2\sqrt{y^2} \leqslant 2\sqrt{x^2+y^2}.$$

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0,$ find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left| rac{2yx^2}{x^2+y^2}
ight| < \epsilon.$$

Recall:
$$x^2 \leqslant x^2 + y^2$$
, that is, $\frac{x^2}{x^2 + y^2} \leqslant 1$. Then

$$\left|\frac{2yx^2}{x^2+y^2}\right| = \frac{2|y|x^2}{x^2+y^2} \leqslant 2|y| = 2\sqrt{y^2} \leqslant 2\sqrt{x^2+y^2}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Choose $\delta = \epsilon/2$.

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0$, find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left|\frac{2yx^2}{x^2+y^2}\right| < \epsilon.$$

~

Recall:
$$x^2 \leqslant x^2 + y^2$$
, that is, $\frac{x^2}{x^2 + y^2} \leqslant 1$. Then

$$\left|\frac{2yx^2}{x^2+y^2}\right| = \frac{2|y|x^2}{x^2+y^2} \leqslant 2|y| = 2\sqrt{y^2} \leqslant 2\sqrt{x^2+y^2}.$$

Choose $\delta = \epsilon/2$. If $\sqrt{x^2 + y^2} < \delta$, then $\left|\frac{2yx^2}{x^2 + y^2}\right| < 2\delta = \epsilon$.

◆□> ◆□> ◆目> ◆目> ◆目> 三日 のへで

Use the definition of limit to compute $\lim_{(x,y)\to(0,0)} \frac{2yx^2}{x^2+y^2}$.

Solution: Given any $\epsilon > 0$, find a number $\delta > 0$ such that

$$\sqrt{x^2+y^2} < \delta \quad \Rightarrow \quad \left|\frac{2yx^2}{x^2+y^2}\right| < \epsilon.$$

~

 \triangleleft

Recall:
$$x^2 \leqslant x^2 + y^2$$
, that is, $\frac{x^2}{x^2 + y^2} \leqslant 1$. Then

$$\left|\frac{2yx^2}{x^2+y^2}\right| = \frac{2|y|x^2}{x^2+y^2} \leqslant 2|y| = 2\sqrt{y^2} \leqslant 2\sqrt{x^2+y^2}.$$

Choose $\delta = \epsilon/2$. If $\sqrt{x^2 + y^2} < \delta$, then $\left|\frac{2yx^2}{x^2 + y^2}\right| < 2\delta = \epsilon$. We conclude that L = 0. Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the non-existence of limits.
 - The sandwich test for the existence of limits.

Properties of limits of functions.

Theorem If $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, and $\lim_{P \to \hat{P}} f(P) = L$, $\lim_{P \to \hat{P}} g(P) = M$, then the following statements hold: 1. $\lim_{P \to \hat{P}} f(P) \pm g(P) = L \pm M;$ 2. If $k \in \mathbb{R}$, then $\lim_{P \to \hat{P}} kf(P) = kL$; 3. $\lim_{P \to \hat{P}} f(P) g(P) = LM;$ 4. If $M \neq 0$, then $\lim_{P \to \hat{P}} \left(\frac{f(P)}{g(P)} \right) = \frac{L}{M}$. 5. If $k \in \mathbb{Z}$ and $s \in \mathbb{N}$, then $\lim_{P \to D} [f(P)]^{r/s} = L^{r/s}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Properties of limits of functions.

Theorem If $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, and $\lim_{P \subseteq \widehat{P}} f(P) = L$, $\lim_{P \to \hat{P}} g(P) = M$, then the following statements hold: 1. $\lim_{P \to \hat{P}} f(P) \pm g(P) = L \pm M;$ 2. If $k \in \mathbb{R}$, then $\lim_{P \to \hat{P}} kf(P) = kL$; 3. $\lim_{P \to \hat{P}} f(P) g(P) = LM;$ 4. If $M \neq 0$, then $\lim_{P \to \widehat{P}} \left(\frac{f(P)}{g(P)} \right) = \frac{L}{M}$. 5. If $k \in \mathbb{Z}$ and $s \in \mathbb{N}$, then $\lim_{P \to \mathcal{D}} [f(P)]^{r/s} = L^{r/s}$.

Remark:

The Theorem above implies that: If $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is a rational function f = R/S, (quotient of two polynomials), with $S(\hat{P}) \neq 0$, then $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the non-existence of limits.
 - The sandwich test for the existence of limits.

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Example Compute $\lim_{(x,y)\to(1,2)} \frac{x^2 + 2y - x}{\sqrt{x - y}}$.

Example Compute $\lim_{(x,y)\to(1,2)} \frac{x^2 + 2y - x}{\sqrt{x - y}}$.

Solution: The function above is a rational function in x and y and its denominator does not vanish at (1, 2).

Example Compute $\lim_{(x,y)\to(1,2)} \frac{x^2 + 2y - x}{\sqrt{x - y}}$.

Solution: The function above is a rational function in x and y and its denominator does not vanish at (1,2). Therefore

$$\lim_{(x,y)\to(1,2)}\frac{x^2+2y-x}{\sqrt{x-y}}=\frac{1+2(2)-1}{\sqrt{1-2}},$$

Example Compute $\lim_{(x,y)\to(1,2)} \frac{x^2 + 2y - x}{\sqrt{x - y}}$.

Solution: The function above is a rational function in x and y and its denominator does not vanish at (1, 2). Therefore

$$\lim_{(x,y)\to(1,2)}\frac{x^2+2y-x}{\sqrt{x-y}}=\frac{1+2(2)-1}{\sqrt{1-2}},$$

that is,

$$\lim_{(x,y)\to(1,2)}\frac{x^2+2y-x}{\sqrt{x-y}}=4.$$

<1

Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the non-existence of limits.
 - The sandwich test for the existence of limits.

Definition

A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, is called *continuous at* $\hat{P} \in D$ iff holds $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, is called *continuous at* $\hat{P} \in D$ iff holds $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks:

The definition above says:
 (a) f(P̂) is defined;
 (b) lim_{P→P̂} f(P) = L exists;
 (c) L = f(P̂).

Definition

A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, is called *continuous at* $\hat{P} \in D$ iff holds $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

Remarks:

- The definition above says:
 (a) f(P̂) is defined;
 (b) lim_{P→P̂} f(P) = L exists;
 - (c) $L = f(\hat{P})$.
- ▶ A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$ is *continuous* iff f is continuous at every point in D.

Definition

A function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, is called *continuous at* $\hat{P} \in D$ iff holds $\lim_{P \to \hat{P}} f(P) = f(\hat{P})$.

Remarks:

- The definition above says:
 - (a) $f(\hat{P})$ is defined;
 - (b) $\lim_{P\to\hat{P}} f(P) = L$ exists;
 - (c) $L = f(\hat{P})$.
- A function f : D ⊂ ℝⁿ → ℝ is continuous iff f is continuous at every point in D.
- Continuous functions have graphs without holes or jumps.

Example

• Polynomial functions are continuous in \mathbb{R}^n .

For example, $P_2(x, y) = a_0 + b_1 x + b_2 y + c_1 x^2 + c_2 x y + c_3 y^2$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

• Polynomial functions are continuous in \mathbb{R}^n .

For example, $P_2(x, y) = a_0 + b_1 x + b_2 y + c_1 x^2 + c_2 x y + c_3 y^2$.

▶ Rational functions f = R/S are continuous on their domain.

For example,
$$f(x, y) = \frac{x^2 + 3y - x^2y^2 + y^4}{x^2 - y^2}$$
, with $x \neq \pm y$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

• Polynomial functions are continuous in \mathbb{R}^n .

For example, $P_2(x, y) = a_0 + b_1 x + b_2 y + c_1 x^2 + c_2 x y + c_3 y^2$.

▶ Rational functions f = R/S are continuous on their domain.

For example,
$$f(x, y) = \frac{x^2 + 3y - x^2y^2 + y^4}{x^2 - y^2}$$
, with $x \neq \pm y$.

Composition of continuous functions are continuous.

For example, $f(x, y) = \cos(x^2 + y^2)$.

Example

Compute $\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Compute
$$\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2)$$
.

Solution:

The function $f(x, y) = \cos(x^2 + y^2)$ is continuous for all $(x, y) \in \mathbb{R}^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Compute
$$\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2)$$
.

Solution:

The function $f(x, y) = \cos(x^2 + y^2)$ is continuous for all $(x, y) \in \mathbb{R}^2$. Therefore,

$$\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2)=\cos(\pi+0),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Compute
$$\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2)$$
.

Solution:

The function $f(x, y) = \cos(x^2 + y^2)$ is continuous for all $(x, y) \in \mathbb{R}^2$. Therefore,

$$\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2)=\cos(\pi+0),$$

that is,

$$\lim_{(x,y)\to(\sqrt{\pi},0)}\cos(x^2+y^2) = -1.$$

 \triangleleft

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Limits and continuity for $f : \mathbb{R}^n \to \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- Computing limits of non-continuous functions:
 - Two-path test for the **non-existence** of limits.
 - The sandwich test for the **existence** of limits.

Theorem

If a function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along to different paths as P approaches \hat{P} , then $\lim_{P \to \hat{P}} f(P)$ does not exist.

Theorem

If a function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along to different paths as P approaches \hat{P} , then $\lim_{P \to \hat{P}} f(P)$ does not exist.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: Consider the case $f : D \subset \mathbb{R}^2 \to \mathbb{R}$: If

▶ $f(x, y) \rightarrow L_1$ along a path C_1 as $(x, y) \rightarrow (x_0, y_0)$, ▶ $f(x, y) \rightarrow L_2$ along a path C_2 as $(x, y) \rightarrow (x_0, y_0)$, ▶ $L_1 \neq L_2$, then $\lim_{(x,y)\rightarrow(x_0,y_0)} f(x, y)$ does not exist.

Theorem

If a function $f : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along to different paths as P approaches \hat{P} , then $\lim_{P \to \hat{P}} f(P)$ does not exist.

Remark: Consider the case $f : D \subset \mathbb{R}^2 \to \mathbb{R}$: If

f(*x*, *y*) → *L*₁ along a path *C*₁ as (*x*, *y*) → (*x*₀, *y*₀), *f*(*x*, *y*) → *L*₂ along a path *C*₂ as (*x*, *y*) → (*x*₀, *y*₀), *L*₁ ≠ *L*₂,
then lim_{(x,y)→(x_0,y_0)} *f*(*x*, *y*) does not exist.

When side limits do not agree, the limit does not exist.

When side limits do not agree, the limit does not exist.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When side limits do not agree, the limit does not exist.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$.

Example Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$.

Solution: $f(x, y) = (3x^2)/(x^2 + 2y^2)$ is not continuous at (0, 0).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ
Example

Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2 + 2y^2}$.

Solution: $f(x, y) = (3x^2)/(x^2 + 2y^2)$ is not continuous at (0, 0). We try to show that the limit above does not exist.

Example

Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2 + 2y^2}$.

Solution: $f(x, y) = (3x^2)/(x^2 + 2y^2)$ is not continuous at (0, 0). We try to show that the limit above does not exist. If path C_1 is the x-axis, (y = 0), then,

$$f(x,0) = \frac{3x^2}{x^2} = 3, \quad \Rightarrow \quad \lim_{(x,0)\to(0,0)} f(x,0) = 3.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$.

Solution: $f(x, y) = (3x^2)/(x^2 + 2y^2)$ is not continuous at (0, 0). We try to show that the limit above does not exist. If path C_1 is the x-axis, (y = 0), then,

$$f(x,0) = \frac{3x^2}{x^2} = 3, \quad \Rightarrow \quad \lim_{(x,0)\to(0,0)} f(x,0) = 3.$$

If path C_2 is the y-axis, (x = 0), then,

$$f(0,y)=0, \quad \Rightarrow \quad \lim_{(0,y)\to(0,0)} f(0,y)=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Compute $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$.

Solution: $f(x, y) = (3x^2)/(x^2 + 2y^2)$ is not continuous at (0, 0). We try to show that the limit above does not exist. If path C_1 is the x-axis, (y = 0), then,

$$f(x,0) = \frac{3x^2}{x^2} = 3, \quad \Rightarrow \quad \lim_{(x,0)\to(0,0)} f(x,0) = 3.$$

If path C_2 is the y-axis, (x = 0), then,

$$f(0,y)=0, \quad \Rightarrow \quad \lim_{(0,y)\to(0,0)}f(0,y)=0.$$

Therefore, $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$ does not exist.

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_m given by y = mx, with m a constant.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_m given by y = mx, with m a constant. That is,

$$f(x,mx) = \frac{3x^2}{x^2 + 2m^2x^2} = \frac{3}{1+2m^2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_m given by y = mx, with m a constant. That is,

$$f(x,mx) = \frac{3x^2}{x^2 + 2m^2x^2} = \frac{3}{1+2m^2}.$$

The limits along these paths are:

$$\lim_{(x,mx)\to(0,0)} f(x,mx) = \frac{3}{1+2m^2}$$

which are different for each value of m.

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_m given by y = mx, with m a constant. That is,

$$f(x,mx) = \frac{3x^2}{x^2 + 2m^2x^2} = \frac{3}{1+2m^2}.$$

The limits along these paths are:

$$\lim_{(x,mx)\to(0,0)} f(x,mx) = \frac{3}{1+2m^2}$$

which are different for each value of *m*. This agrees what we concluded: $\lim_{(x,y)\to(0,0)} \frac{3x^2}{x^2+2y^2}$ does not exist.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem If functions $f, g, h : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, satisfy: (a) $g(P) \leq f(P) \leq h(P)$ for all P near $\hat{P} \in D$; (b) $\lim_{P \to \hat{P}} g(P) = L = \lim_{P \to \hat{P}} h(P)$; then $\lim_{P \to \hat{P}} f(P) = L$.

Theorem If functions $f, g, h : D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, satisfy: (a) $g(P) \leq f(P) \leq h(P)$ for all P near $\hat{P} \in D$; (b) $\lim_{P \to \hat{P}} g(P) = L = \lim_{P \to \hat{P}} h(P)$; then $\lim_{P \to \hat{P}} f(P) = L$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example Compute $\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+v^2}.$

Example
Compute
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
.
Solution: $f(x,y) = \frac{x^2y}{x^2+y^2}$ is not continuous at $(0,0)$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$.

Solution: $f(x, y) = \frac{x^2 y}{x^2 + y^2}$ is not continuous at (0,0). The Two-Path Theorem does not prove non-existence of the limit.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example
Compute
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
.

Solution: $f(x, y) = \frac{x^2 y}{x^2 + y^2}$ is not continuous at (0, 0). The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_m given by y = mx, with $m \in \mathbb{R}$. Then

$$f(x, mx) = \frac{x^2 mx}{x^2 + m^2 x^2} = \frac{mx}{1 + m^2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example
Compute
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

Solution: $f(x, y) = \frac{x^2 y}{x^2 + y^2}$ is not continuous at (0, 0). The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_m given by y = mx, with $m \in \mathbb{R}$. Then

$$f(x, mx) = \frac{x^2 mx}{x^2 + m^2 x^2} = \frac{mx}{1 + m^2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

which implies $\lim_{(x,mx)\to(0,0)} f(x,mx) = 0, \quad \forall m \in \mathbb{R}.$

Example Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$.

Solution: $f(x, y) = \frac{x^2 y}{x^2 + y^2}$ is not continuous at (0, 0). The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_m given by y = mx, with $m \in \mathbb{R}$. Then

$$f(x, mx) = \frac{x^2 mx}{x^2 + m^2 x^2} = \frac{mx}{1 + m^2},$$

which implies $\lim_{(x,mx)\to(0,0)} f(x,mx) = 0, \quad \forall m \in \mathbb{R}.$ We cannot conclude that the limit does not exist.

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Example Compute lim

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

Solution: $f(x, y) = \frac{x^2 y}{x^2 + y^2}$ is not continuous at (0, 0). The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_m given by y = mx, with $m \in \mathbb{R}$. Then

$$f(x, mx) = \frac{x^2 mx}{x^2 + m^2 x^2} = \frac{mx}{1 + m^2},$$

which implies $\lim_{(x,mx)\to(0,0)} f(x,mx) = 0, \quad \forall m \in \mathbb{R}.$ We cannot conclude that the limit does not exist. We cannot conclude that the limit exists.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$. Solution: Notice: $\frac{x^2}{x^2+y^2} \leq 1$, for all $(x,y) \neq (0,0)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$. Solution: Notice: $\frac{x^2}{x^2 + v^2} \leq 1$, for all $(x, y) \neq (0, 0)$. So, $\left|\frac{x^2y}{x^2+y^2}\right|\leqslant |y|$, for all (x,y)
eq (0,0). Hence, $-|y| \leqslant \frac{x^2 y}{x^2 + y^2} \leqslant |y|.$

・ロト・日本・日本・日本・日本・今日・

Example Compute $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$. Solution: Notice: $\frac{x^2}{x^2 + v^2} \leq 1$, for all $(x, y) \neq (0, 0)$. So, $\left|\frac{x^2y}{x^2+y^2}\right| \leq |y|$, for all $(x,y) \neq (0,0)$. Hence, $-|y| \leqslant \frac{x^2 y}{x^2 + y^2} \leqslant |y|.$

Since $\lim_{y\to 0} |y| = 0$, the Sandwich Theorem with g = -|y|, h = |y|, implies

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+y^2}=0.$$

< □ > < 雹 > < 茎 > < 茎 > うへぐ

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Next class:

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^2 \to \mathbb{R}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Differentiability and continuity.
- A primer on differential equations.

Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.

Definition

Given a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$, the *partial derivative of* f(x, y) with respect to x at a point $(x, y) \in D$ is given by

$$f_{\mathsf{x}}(x,y) = \lim_{h \to 0} \frac{1}{h} \big[f(x+h,y) - f(x,y) \big].$$

The partial derivative of f(x, y) with respect to y at a point $(x, y) \in D$ is given by

$$f_y(x,y) = \lim_{h \to 0} \frac{1}{h} \big[f(x,y+h) - f(x,y) \big].$$

Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.

Definition

Given a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$, the *partial derivative of* f(x, y) with respect to x at a point $(x, y) \in D$ is given by

$$f_{\mathsf{x}}(x,y) = \lim_{h \to 0} \frac{1}{h} \big[f(x+h,y) - f(x,y) \big].$$

The partial derivative of f(x, y) with respect to y at a point $(x, y) \in D$ is given by

$$f_y(x,y) = \lim_{h \to 0} \frac{1}{h} \big[f(x,y+h) - f(x,y) \big].$$

Remark:

• To compute $f_x(x, y)$ derivate f(x, y) keeping y constant.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.

Definition

Given a function $f : D \subset \mathbb{R}^2 \to \mathbb{R}$, the *partial derivative of* f(x, y) with respect to x at a point $(x, y) \in D$ is given by

$$f_{x}(x,y) = \lim_{h\to 0} \frac{1}{h} \big[f(x+h,y) - f(x,y) \big].$$

The partial derivative of f(x, y) with respect to y at a point $(x, y) \in D$ is given by

$$f_y(x,y) = \lim_{h\to 0} \frac{1}{h} \big[f(x,y+h) - f(x,y) \big].$$

Remark:

- To compute $f_x(x, y)$ derivate f(x, y) keeping y constant.
- To compute $f_y(x, y)$ derivate f(x, y) keeping x constant.

- ► Evaluate the function f at y = y₀. The result is a single variable function f(x, y₀).
- Compute the derivative of $f(x, y_0)$ and evaluate it at $x = x_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The result is $f_x(x_0, y_0)$.

- ► Evaluate the function f at y = y₀. The result is a single variable function f(x, y₀).
- Compute the derivative of $f(x, y_0)$ and evaluate it at $x = x_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The result is $f_x(x_0, y_0)$.

Example

Find $f_x(1,3)$ for $f(x,y) = x^2 + y^2/4$.

- Evaluate the function f at y = y₀. The result is a single variable function f(x, y₀).
- Compute the derivative of $f(x, y_0)$ and evaluate it at $x = x_0$.

• The result is $f_x(x_0, y_0)$.

Example

Find
$$f_x(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

•
$$f(x,3) = x^2 + 9/4;$$

- Evaluate the function f at y = y₀. The result is a single variable function f(x, y₀).
- Compute the derivative of $f(x, y_0)$ and evaluate it at $x = x_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The result is $f_x(x_0, y_0)$.

Example

Find
$$f_x(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

Solution:

f(*x*, 3) = *x*² + 9/4; *f_x*(*x*, 3) = 2*x*;

- Evaluate the function f at y = y₀. The result is a single variable function f(x, y₀).
- Compute the derivative of $f(x, y_0)$ and evaluate it at $x = x_0$.

<1

• The result is $f_x(x_0, y_0)$.

Example

Find
$$f_x(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

- $f(x,3) = x^2 + 9/4;$
- $f_x(x,3) = 2x;$
- $f_x(1,3) = 2.$

- Evaluate the function f at y = y₀. The result is a single variable function f(x, y₀).
- Compute the derivative of $f(x, y_0)$ and evaluate it at $x = x_0$.
- The result is $f_x(x_0, y_0)$.

Example

Find
$$f_x(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

Solution:

f(*x*, 3) = *x*² + 9/4; *f_x*(*x*, 3) = 2*x*; *f_x*(1, 3) = 2.

<1

To compute $f_x(x, y)$ derivate f(x, y) keeping y constant.

- ► Evaluate the function f at x = x₀. The result is a single variable function f(x₀, y).
- Compute the derivative of $f(x_0, y)$ and evaluate it at $y = y_0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The result is $f_y(x_0, y_0)$.

- ► Evaluate the function f at x = x₀. The result is a single variable function f(x₀, y).
- Compute the derivative of $f(x_0, y)$ and evaluate it at $y = y_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The result is $f_y(x_0, y_0)$.

Example

Find $f_y(1,3)$ for $f(x,y) = x^2 + y^2/4$.

- ► Evaluate the function f at x = x₀. The result is a single variable function f(x₀, y).
- Compute the derivative of $f(x_0, y)$ and evaluate it at $y = y_0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The result is $f_y(x_0, y_0)$.

Example

Find
$$f_y(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

•
$$f(1, y) = 1 + y^2/4;$$

- ► Evaluate the function f at x = x₀. The result is a single variable function f(x₀, y).
- Compute the derivative of $f(x_0, y)$ and evaluate it at $y = y_0$.

• The result is $f_y(x_0, y_0)$.

Example

Find
$$f_y(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

- $f(1, y) = 1 + y^2/4;$
- $f_y(1, y) = y/2;$

- Evaluate the function f at x = x₀. The result is a single variable function f(x₀, y).
- Compute the derivative of $f(x_0, y)$ and evaluate it at $y = y_0$.

<1

• The result is $f_y(x_0, y_0)$.

Example

Find
$$f_y(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

- $f(1, y) = 1 + y^2/4;$
- $f_y(1, y) = y/2;$
- $f_y(1,3) = 3/2.$
Computing $f_y(x, y)$ at (x_0, y_0) .

- ► Evaluate the function f at x = x₀. The result is a single variable function f(x₀, y).
- Compute the derivative of $f(x_0, y)$ and evaluate it at $y = y_0$.
- The result is $f_y(x_0, y_0)$.

Example

Find
$$f_y(1,3)$$
 for $f(x,y) = x^2 + y^2/4$.

Solution:

• $f(1, y) = 1 + y^2/4;$ • $f_y(1, y) = y/2;$ • $f_y(1, 3) = 3/2.$

To compute $f_y(x, y)$ derivate f(x, y) keeping x constant.

Geometrical meaning of partial derivatives.

 $f_x(x_0, y_0)$ is the slope of the line tangent to the graph of f(x, y) containing the point $(x_0, y_0, f(x_0, y_0))$ and belonging to a plane parallel to the *zx*-plane.

Geometrical meaning of partial derivatives.

 $f_x(x_0, y_0)$ is the slope of the line tangent to the graph of f(x, y) containing the point $(x_0, y_0, f(x_0, y_0))$ and belonging to a plane parallel to the *zx*-plane.

Geometrical meaning of partial derivatives.

 $f_x(x_0, y_0)$ is the slope of the line tangent to the graph of f(x, y) containing the point $(x_0, y_0, f(x_0, y_0))$ and belonging to a plane parallel to the *zx*-plane.

 $f_y(x_0, y_0)$ is the slope of the line tangent to the graph of f(x, y) containing the point $(x_0, y_0, f(x_0, y_0))$ and belonging to a plane parallel to the *zy*-plane.

Partial derivatives can be computed on any point in D.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find the partial derivatives of $f(x, y) = \frac{2x - y}{x + 2y}$.

Partial derivatives can be computed on any point in D.

Example

Find the partial derivatives of
$$f(x, y) = \frac{2x - y}{x + 2y}$$
.

Solution:

$$f_x(x,y) = rac{2(x+2y)-(2x-y)}{(x+2y)^2} \quad \Rightarrow \quad f_x(x,y) = rac{5y}{(x+2y)^2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Partial derivatives can be computed on any point in D.

Example

Find the partial derivatives of
$$f(x, y) = \frac{2x - y}{x + 2y}$$
.

Solution:

$$f_x(x,y) = \frac{2(x+2y)-(2x-y)}{(x+2y)^2} \quad \Rightarrow \quad f_x(x,y) = \frac{5y}{(x+2y)^2}.$$

$$f_y(x,y) = \frac{(-1)(x+2y) - (2x-y)(2)}{(x+2y)^2} \Rightarrow f_y(x,y) = -\frac{5x}{(x+2y)^2}.$$

 \triangleleft

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall: The derivative of a function $f : \mathbb{R} \to \mathbb{R}$ is itself a function.

Recall: The derivative of a function $f : \mathbb{R} \to \mathbb{R}$ is itself a function.

Example

The derivative of function $f(x) = x^2$ at an arbitrary point x is the function f'(x) = 2x.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Recall: The derivative of a function $f : \mathbb{R} \to \mathbb{R}$ is itself a function.

Example

The derivative of function $f(x) = x^2$ at an arbitrary point x is the function f'(x) = 2x.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Recall: The derivative of a function $f : \mathbb{R} \to \mathbb{R}$ is itself a function.

Example

The derivative of function $f(x) = x^2$ at an arbitrary point x is the function f'(x) = 2x.

The same statement is true for partial derivatives.

Definition

Given a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$, the functions partial derivatives of f(x, y) are denoted by $f_x(x, y)$ and $f_y(x, y)$, and they are given by the expressions

$$f_{x}(x,y) = \lim_{h \to 0} \frac{1}{h} [f(x+h,y) - f(x,y)],$$

$$f_{y}(x,y) = \lim_{h \to 0} \frac{1}{h} [f(x,y+h) - f(x,y)].$$

Definition

Given a function $f : D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$, the functions partial derivatives of f(x, y) are denoted by $f_x(x, y)$ and $f_y(x, y)$, and they are given by the expressions

$$f_{x}(x,y) = \lim_{h \to 0} \frac{1}{h} [f(x+h,y) - f(x,y)],$$

$$f_{y}(x,y) = \lim_{h \to 0} \frac{1}{h} [f(x,y+h) - f(x,y)].$$

Notation:

Partial derivatives of f(x, y) are denoted in several ways:

$$f_{x}(x,y), \qquad \frac{\partial f}{\partial x}(x,y), \qquad \partial_{x}f(x,y).$$

$$f_{y}(x,y), \qquad \frac{\partial f}{\partial y}(x,y), \qquad \partial_{y}f(x,y)$$

Example

Find the functions partial derivatives of $f(x, y) = x^2 + y^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the functions partial derivatives of $f(x, y) = x^2 + y^2$.

Solution:

 $f_x(x,y) = 2x \quad \Rightarrow \quad f_x(x,y) = 2x.$

Example

Find the functions partial derivatives of $f(x, y) = x^2 + y^2$.

Solution:

$$\begin{array}{ll} f_x(x,y) = 2x & \Rightarrow & f_x(x,y) = 2x. \\ f_y(x,y) = 0 + 2y & \Rightarrow & f_y(x,y) = 2y. \end{array}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find the functions partial derivatives of $f(x, y) = x^2 + y^2$.

Solution:

$$\begin{array}{ll} f_x(x,y) = 2x & \Rightarrow & f_x(x,y) = 2x. \\ f_y(x,y) = 0 + 2y & \Rightarrow & f_y(x,y) = 2y. \end{array}$$

The partial derivatives of a paraboloid are planes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

Solution:

$$f_x(x,y)=2x\ln(y),$$

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

Solution:

$$f_x(x,y) = 2x \ln(y), \qquad f_y(x,y) = \frac{x^2}{y}$$

0

<1

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

Solution:

$$f_x(x,y) = 2x \ln(y), \qquad f_y(x,y) = \frac{x^2}{y}.$$

<1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the partial derivatives of
$$f(x, y) = x^2 + \frac{y^2}{4}$$
.

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

Solution:

$$f_x(x,y) = 2x \ln(y), \qquad f_y(x,y) = \frac{x^2}{y}.$$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the partial derivatives of $f(x, y) = x^2 + \frac{y^2}{4}$.

Solution:

$$f_x(x,y)=2x$$

Example

Find the partial derivatives of $f(x, y) = x^2 \ln(y)$.

Solution:

$$f_x(x,y) = 2x \ln(y), \qquad f_y(x,y) = \frac{x^2}{y}.$$

<1

Example

Find the partial derivatives of $f(x, y) = x^2 + \frac{y^2}{4}$.

Solution:

$$f_x(x,y) = 2x, \qquad f_y(x,y) = \frac{y}{2}.$$

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.

• Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Remark:

Higher derivatives of a function are partial derivatives of its partial derivatives.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

Higher derivatives of a function are partial derivatives of its partial derivatives.

The second partial derivatives of f(x, y) are the following:

$$f_{xx}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_x(x + h, y) - f_x(x, y)],$$

$$f_{yy}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_y(x, y + h) - f_y(x, y)],$$

$$f_{xy}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_x(x, y + h) - f_x(x, y)],$$

$$f_{yx}(x, y) = \lim_{h \to 0} \frac{1}{h} [f_y(x + h, y) - f_y(x, y)].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Remark:

Higher derivatives of a function are partial derivatives of its partial derivatives.

The second partial derivatives of f(x, y) are the following:

$$f_{xx}(x,y) = \lim_{h \to 0} \frac{1}{h} [f_x(x+h,y) - f_x(x,y)],$$

$$f_{yy}(x,y) = \lim_{h \to 0} \frac{1}{h} [f_y(x,y+h) - f_y(x,y)],$$

$$f_{xy}(x,y) = \lim_{h \to 0} \frac{1}{h} [f_x(x,y+h) - f_x(x,y)],$$

$$f_{yx}(x,y) = \lim_{h \to 0} \frac{1}{h} [f_y(x+h,y) - f_y(x,y)].$$

Notation: f_{xx} , $\frac{\partial^2 f}{\partial x^2}$, $\partial_{xx} f$, and also f_{xy} , $\frac{\partial^2 f}{\partial x \partial y}$, $\partial_{xy} f$.

Example

Find all second order derivatives of the function $f(x, y) = x^3 e^{2y} + 3y$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find all second order derivatives of the function $f(x, y) = x^3 e^{2y} + 3y$.

Solution:

$$f_x(x,y) = 3x^2 e^{2y}, \qquad f_y(x,y) = 2x^3 e^{2y} + 3.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find all second order derivatives of the function $f(x, y) = x^3 e^{2y} + 3y$.

Solution:

 $f_x(x,y) = 3x^2 e^{2y}, \qquad f_y(x,y) = 2x^3 e^{2y} + 3.$ $f_{xx}(x,y) = 6xe^{2y}, \qquad f_{yy}(x,y) = 4x^3 e^{2y}.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find all second order derivatives of the function $f(x, y) = x^3 e^{2y} + 3y$.

Solution:

 $f_x(x, y) = 3x^2 e^{2y}, \qquad f_y(x, y) = 2x^3 e^{2y} + 3.$ $f_{xx}(x, y) = 6xe^{2y}, \qquad f_{yy}(x, y) = 4x^3 e^{2y}.$ $f_{xy} = 6x^2 e^{2y}, \qquad f_{yx} = 6x^2 e^{2y}.$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^2 \to \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Theorem

If the partial derivatives f_x , f_y , f_{xy} and f_{yx} of a function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ exist and all are continuous functions, then holds

 $f_{xy} = f_{yx}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

If the partial derivatives f_x , f_y , f_{xy} and f_{yx} of a function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ exist and all are continuous functions, then holds

$$f_{xy} = f_{yx}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example Find f_{xy} and f_{yx} for $f(x, y) = \cos(xy)$.

Theorem

If the partial derivatives f_x , f_y , f_{xy} and f_{yx} of a function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ exist and all are continuous functions, then holds

$$f_{xy} = f_{yx}$$

Example

Find f_{xy} and f_{yx} for $f(x, y) = \cos(xy)$.

Solution:

$$f_x = -y\sin(xy),$$
 $f_{xy} = -\sin(xy) - yx\cos(xy).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If the partial derivatives f_x , f_y , f_{xy} and f_{yx} of a function $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ exist and all are continuous functions, then holds

$$f_{xy} = f_{yx}$$
.

Example

Find f_{xy} and f_{yx} for $f(x, y) = \cos(xy)$.

$$f_x = -y\sin(xy), \qquad f_{xy} = -\sin(xy) - yx\cos(xy).$$

$$f_y = -x\sin(xy), \qquad f_{yx} = -\sin(xy) - xy\cos(xy).$$

 \triangleleft
Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f : D \subset \mathbb{R}^2 \to \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_x z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_x z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

Solution:

$$yz + xy(\partial_x z) + \frac{2}{y}(\partial_x z)e^{2z/y} - (\partial_x z)\sin(z) = 0.$$

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_x z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

Solution:

$$yz + xy(\partial_x z) + \frac{2}{y}(\partial_x z)e^{2z/y} - (\partial_x z)\sin(z) = 0.$$

Compute $\partial_x z$ as a function of x, y and z(x, y), as follows,

$$(\partial_x z)[xy+\frac{2}{y}e^{2z/y}-\sin(z)]=-yz,$$

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_x z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

Solution:

$$yz + xy(\partial_x z) + \frac{2}{y}(\partial_x z)e^{2z/y} - (\partial_x z)\sin(z) = 0.$$

Compute $\partial_x z$ as a function of x, y and z(x, y), as follows,

$$(\partial_x z) \left[xy + \frac{2}{y} e^{2z/y} - \sin(z) \right] = -yz,$$

that is, $(\partial_x z) = -\frac{yz}{\left[xy + \frac{2}{y}e^{2z/y} - \sin(z)\right]}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_y z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

・ロト・日本・モート モー うへぐ

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_y z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

Solution:

$$xz + xy(\partial_y z) + \left(\frac{2}{y}(\partial_y z) - \frac{2}{y^2}z\right)e^{2z/y} - (\partial_y z)\sin(z) = 0.$$

・ロト・日本・モート モー うへぐ

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_y z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0$.

Solution:

$$xz + xy(\partial_y z) + \left(\frac{2}{y}(\partial_y z) - \frac{2}{y^2}z\right)e^{2z/y} - (\partial_y z)\sin(z) = 0.$$

Compute $\partial_y z$ as a function of x, y and z(x, y), as follows,

$$(\partial_y z)[xy + \frac{2}{y}e^{2z/y} - \sin(z)] = -xz + \frac{2}{y^2}ze^{2z/y},$$

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_v z(x, y)$ of the function z defined implicitly by the equation $xyz + e^{2z/y} + \cos(z) = 0.$

Solution:

$$xz + xy(\partial_y z) + \left(\frac{2}{y}(\partial_y z) - \frac{2}{y^2}z\right)e^{2z/y} - (\partial_y z)\sin(z) = 0.$$

Compute $\partial_{y} z$ as a function of x, y and z(x, y), as follows,

$$(\partial_y z)[xy + \frac{2}{y}e^{2z/y} - \sin(z)] = -xz + \frac{2}{y^2}ze^{2z/y},$$

<1

that is, $(\partial_y z) = \frac{\left\lfloor -xz + \frac{z}{y^2} z e^{2z/y} \right\rfloor}{\left\lceil xy + \frac{2}{y} e^{2z/y} - \sin(z) \right\rceil}.$ (日) (同) (三) (三) (三) (○) (○)

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^2 \to \mathbb{R}$.
- Higher-order partial derivatives.
- ► The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Partial derivatives of $f : D \subset \mathbb{R}^n \to \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, the *partial* derivative of $f(x_1, \dots, x_n)$ with respect to x_i , with $i = 1, \dots, n$, at a point $(x_1, \dots, x_n) \in D$ is given by

$$f_{x_i} = \lim_{h\to 0} \frac{1}{h} \big[f(x_1, \cdots, x_i + h, \cdots, x_n) - f(x_1, \cdots, x_n) \big].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

Given a function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, the *partial* derivative of $f(x_1, \dots, x_n)$ with respect to x_i , with $i = 1, \dots, n$, at a point $(x_1, \dots, x_n) \in D$ is given by

$$f_{x_i} = \lim_{h\to 0} \frac{1}{h} \big[f(x_1, \cdots, x_i + h, \cdots, x_n) - f(x_1, \cdots, x_n) \big].$$

Remark: To compute f_{x_i} derivate f with respect to x_i keeping all other variables x_i constant.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Given a function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, with $n \in \mathbb{N}$, the *partial* derivative of $f(x_1, \dots, x_n)$ with respect to x_i , with $i = 1, \dots, n$, at a point $(x_1, \dots, x_n) \in D$ is given by

$$f_{x_i} = \lim_{h\to 0} \frac{1}{h} \big[f(x_1,\cdots,x_i+h,\cdots,x_n) - f(x_1,\cdots,x_n) \big].$$

Remark: To compute f_{x_i} derivate f with respect to x_i keeping all other variables x_i constant.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation:
$$f_{x_i}$$
, f_i , $\frac{\partial f}{\partial x_i}$, $\partial_{x_i} f$, $\partial_i f$.

Example

Compute all first partial derivatives of the function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Example

Compute all first partial derivatives of the function

$$\phi(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}.$$

Solution:

$$\phi_x = -\frac{1}{2} \frac{2x}{(x^2 + y^2 + z^2)^{3/2}} \quad \Rightarrow \quad \phi_x = -\frac{x}{(x^2 + y^2 + z^2)^{3/2}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Compute all first partial derivatives of the function

$$\phi(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

Solution:

$$\phi_x = -\frac{1}{2} \frac{2x}{(x^2 + y^2 + z^2)^{3/2}} \quad \Rightarrow \quad \phi_x = -\frac{x}{(x^2 + y^2 + z^2)^{3/2}}.$$

Analogously, the other partial derivatives are given by

$$\phi_y = -\frac{y}{(x^2 + y^2 + z^2)^{3/2}}, \qquad \phi_z = -\frac{z}{(x^2 + y^2 + z^2)^{3/2}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

<1

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Recall: $\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$.

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.
Denote $r = \sqrt{x^2 + y^2 + z^2}$,

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.
Denote $r = \sqrt{x^2 + y^2 + z^2}$, then $\phi_{xx} = -\frac{1}{r^3} + \frac{3x^2}{r^5}$.

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.
Denote $r = \sqrt{x^2 + y^2 + z^2}$, then $\phi_{xx} = -\frac{1}{r^3} + \frac{3x^2}{r^5}$.
Analogously, $\phi_{yy} = -\frac{1}{r^3} + \frac{3y^2}{r^5}$, and $\phi_{zz} = -\frac{1}{r^3} + \frac{3z^2}{r^5}$.

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.
Denote $r = \sqrt{x^2 + y^2 + z^2}$, then $\phi_{xx} = -\frac{1}{r^3} + \frac{3x^2}{r^5}$.
Analogously, $\phi_{yy} = -\frac{1}{r^3} + \frac{3y^2}{r^5}$, and $\phi_{zz} = -\frac{1}{r^3} + \frac{3z^2}{r^5}$. Then,

$$\phi_{xx} + \phi_{yy} + \phi_{zz} = -\frac{3}{r^3} + \frac{3(x^2 + y^2 + z^2)}{r^5}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.
Denote $r = \sqrt{x^2 + y^2 + z^2}$, then $\phi_{xx} = -\frac{1}{r^3} + \frac{3x^2}{r^5}$.
Analogously, $\phi_{yy} = -\frac{1}{r^3} + \frac{3y^2}{r^5}$, and $\phi_{zz} = -\frac{1}{r^3} + \frac{3z^2}{r^5}$. Then,

$$\phi_{xx} + \phi_{yy} + \phi_{zz} = -\frac{3}{r^3} + \frac{3(x^2 + y^2 + z^2)}{r^5} = -\frac{3}{r^3} + \frac{3r^2}{r^5}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example

Verify that $\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ satisfies the Laplace equation : $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

Solution: Recall:
$$\phi_x = -x/(x^2 + y^2 + z^2)^{3/2}$$
. Then,
 $\phi_{xx} = -\frac{1}{(x^2 + y^2 + z^2)^{3/2}} + \frac{3}{2} \frac{2x^2}{(x^2 + y^2 + z^2)^{5/2}}$.
Denote $r = \sqrt{x^2 + y^2 + z^2}$, then $\phi_{xx} = -\frac{1}{r^3} + \frac{3x^2}{r^5}$.
Analogously, $\phi_{yy} = -\frac{1}{r^3} + \frac{3y^2}{r^5}$, and $\phi_{zz} = -\frac{1}{r^3} + \frac{3z^2}{r^5}$. Then,

$$\phi_{xx} + \phi_{yy} + \phi_{zz} = -\frac{3}{r^3} + \frac{3(x^2 + y^2 + z^2)}{r^5} = -\frac{3}{r^3} + \frac{3r^2}{r^5}.$$

We conclude that $\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$.

 \triangleleft