Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.

- Level surfaces.

Scalar functions of several variables.

Definition
A scalar function of n variables is a function $f: D \subset \mathbb{R}^{n} \rightarrow R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set D is called the domain of the function, and the set R is called the range of the function.

Scalar functions of several variables.

Definition

A scalar function of n variables is a function $f: D \subset \mathbb{R}^{n} \rightarrow R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set D is called the domain of the function, and the set R is called the range of the function.

Remark:
Comparison between $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

Scalar functions of several variables.

Definition

A scalar function of n variables is a function $f: D \subset \mathbb{R}^{n} \rightarrow R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set D is called the domain of the function, and the set R is called the range of the function.

Remark:
Comparison between $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

- A scalar function of two variables is a function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad(x, y) \rightarrow f(x, y)
$$

Scalar functions of several variables.

Definition

A scalar function of n variables is a function $f: D \subset \mathbb{R}^{n} \rightarrow R \subset \mathbb{R}$, where $n \in \mathbb{N}$, the set D is called the domain of the function, and the set R is called the range of the function.

Remark:
Comparison between $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

- A scalar function of two variables is a function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad(x, y) \rightarrow f(x, y)
$$

- A vector function on the plane is a function

$$
\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2} \quad t \rightarrow \mathbf{r}(t)=\langle x(t), y(t)\rangle
$$

Functions of several variables.

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature $T(x, y)$.

Functions of several variables.

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature $T(x, y)$.
- An example of a scalar-valued function of three variables, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the temperature T of this room. Each point (x, y, z) in the room is associated with a number, its temperature $T(x, y, z)$.

Functions of several variables.

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature $T(x, y)$.
- An example of a scalar-valued function of three variables, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the temperature T of this room. Each point (x, y, z) in the room is associated with a number, its temperature $T(x, y, z)$.
- Another example of a scalar function of three variables is the speed of the air in the room.

Functions of several variables.

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature $T(x, y)$.
- An example of a scalar-valued function of three variables, $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the temperature T of this room. Each point (x, y, z) in the room is associated with a number, its temperature $T(x, y, z)$.
- Another example of a scalar function of three variables is the speed of the air in the room.
- An example of a vector-valued function of three variables, $\mathbf{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, is the velocity of the air in the room.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=x^{2}+y^{2}$ is defined.

Scalar functions of several variables.

Example
Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=x^{2}+y^{2}$ is defined.

Solution: The function $f(x, y)=x^{2}+y^{2}$ is defined for all points $(x, y) \in \mathbb{R}^{2}$, therefore, $D=\mathbb{R}^{2}$.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=x^{2}+y^{2}$ is defined.

Solution: The function $f(x, y)=x^{2}+y^{2}$ is defined for all points $(x, y) \in \mathbb{R}^{2}$, therefore, $D=\mathbb{R}^{2}$.

The values of the function f are non-negative, that is, $f(x, y)=x^{2}+y^{2} \geqslant 0$ for all $(x, y) \in D$. Therefore, the range space is $R=[0, \infty)$.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=\sqrt{x-y}$ is defined.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=\sqrt{x-y}$ is defined.

Solution: The function $f(x, y)=\sqrt{x-y}$ is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y \geqslant 0$. Therefore,

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant y\right\} .
$$

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=\sqrt{x-y}$ is defined.

Solution: The function $f(x, y)=\sqrt{x-y}$ is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y \geqslant 0$. Therefore,

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant y\right\} .
$$

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=\sqrt{x-y}$ is defined.

Solution: The function $f(x, y)=\sqrt{x-y}$ is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y \geqslant 0$. Therefore,

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant y\right\} .
$$

The values of the function f are non-negative, that is, $f(x, y)=\sqrt{x-y} \geqslant 0$ for all $(x, y) \in D$. Therefore, the range space is $R=[0, \infty)$.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=1 / \sqrt{x-y}$ is defined.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=1 / \sqrt{x-y}$ is defined.

Solution: The function $f(x, y)=1 / \sqrt{x-y}$ is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y>0$. Therefore,
$D=\left\{(x, y) \in \mathbb{R}^{2}: x>y\right\}$.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=1 / \sqrt{x-y}$ is defined.

Solution: The function $f(x, y)=1 / \sqrt{x-y}$ is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y>0$. Therefore,
$D=\left\{(x, y) \in \mathbb{R}^{2}: x>y\right\}$.

Scalar functions of several variables.

Example

Find the maximum domain D and range R sets where the function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ given by $f(x, y)=1 / \sqrt{x-y}$ is defined.

Solution: The function $f(x, y)=1 / \sqrt{x-y}$ is defined for points $(x, y) \in \mathbb{R}^{2}$ such that $x-y>0$. Therefore,

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x>y\right\} .
$$

The values of the function f are positive, that is, $f(x, y)=1 / \sqrt{x-y}>0$ for all $(x, y) \in D$. Therefore, the range space is $R=(0, \infty)$.

Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Level surfaces.

On open and closed sets in \mathbb{R}^{n}.

We first generalize from \mathbb{R}^{3} to \mathbb{R}^{n} the definition of a ball of radius r centered at \hat{P}.

On open and closed sets in \mathbb{R}^{n}.

We first generalize from \mathbb{R}^{3} to \mathbb{R}^{n} the definition of a ball of radius r centered at \hat{P}.

Definition
A set $B_{r}(\hat{P}) \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$ and $r>0$, is a ball of radius r centered at $\hat{P}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$ iff
$B_{r}(\hat{P})=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}:\left(x_{1}-\hat{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\hat{x}_{n}\right)^{2}<r^{2}\right\}$.

On open and closed sets in \mathbb{R}^{n}.

We first generalize from \mathbb{R}^{3} to \mathbb{R}^{n} the definition of a ball of radius r centered at \hat{P}.

Definition
A set $B_{r}(\hat{P}) \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$ and $r>0$, is a ball of radius r centered at $\hat{P}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$ iff
$B_{r}(\hat{P})=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}:\left(x_{1}-\hat{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\hat{x}_{n}\right)^{2}<r^{2}\right\}$.

Remark: A ball $B_{r}(\hat{P})$ contains the points inside a sphere of radius r centered at \hat{P} without the points of the sphere.

On open and closed sets in \mathbb{R}^{n}.

Definition

A point $P \in S \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called an interior point iff there is a ball $B_{r}(P) \subset S$. A point $P \in S \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called a boundary point iff every ball $B_{r}(P)$ contains points in S and points outside S. The boundary of a set S is the set of all boundary points of S.

On open and closed sets in \mathbb{R}^{n}.

Definition

A point $P \in S \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called an interior point iff there is a ball $B_{r}(P) \subset S$. A point $P \in S \subset \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called a boundary point iff every ball $B_{r}(P)$ contains points in S and points outside S. The boundary of a set S is the set of all boundary points of S.

On open and closed sets in \mathbb{R}^{n}.

Definition

A set $S \in \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called open iff every point in S is an interior point. The set S is called closed iff S contains its boundary. A set S is called bounded iff S is contained in ball, otherwise S is called unbounded.

On open and closed sets in \mathbb{R}^{n}.

Definition

A set $S \in \mathbb{R}^{n}$, with $n \in \mathbb{N}$, is called open iff every point in S is an interior point. The set S is called closed iff S contains its boundary. A set S is called bounded iff S is contained in ball, otherwise S is called unbounded.

On open and closed sets in \mathbb{R}^{n}.

Example

Find and describe the maximum domain of the function $f(x, y)=\ln \left(x-y^{2}\right)$.

On open and closed sets in \mathbb{R}^{n}.

Example

Find and describe the maximum domain of the function $f(x, y)=\ln \left(x-y^{2}\right)$.

Solution: The maximum domain of f is the set

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x>y^{2}\right\}
$$

On open and closed sets in \mathbb{R}^{n}.

Example

Find and describe the maximum domain of the function $f(x, y)=\ln \left(x-y^{2}\right)$.

Solution: The maximum domain of f is the set

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x>y^{2}\right\}
$$

D is an open, unbounded set.

On open and closed sets in \mathbb{R}^{n}.

Example

Find and describe the maximum domain of the function $f(x, y)=\ln \left(x-y^{2}\right)$.

Solution: The maximum domain of f is the set

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x>y^{2}\right\}
$$

D is an open, unbounded set. \triangleleft

Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Level surfaces.

The graph of a function of two variables is a surface in \mathbb{R}^{3}.

Definition

The graph of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^{3} of the form $(x, y, f(x, y))$. The graph of a function f is also called the surface $z=f(x, y)$.

The graph of a function of two variables is a surface in \mathbb{R}^{3}.

Definition

The graph of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^{3} of the form $(x, y, f(x, y))$. The graph of a function f is also called the surface $z=f(x, y)$.

Example
Draw the graph of $f(x, y)=x^{2}+y^{2}$.

The graph of a function of two variables is a surface in \mathbb{R}^{3}.

Definition

The graph of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^{3} of the form $(x, y, f(x, y))$. The graph of a function f is also called the surface $z=f(x, y)$.

Example

Draw the graph of $f(x, y)=x^{2}+y^{2}$.
Solution: The graph of f is the surface $z=x^{2}+y^{2}$. This is a paraboloid along the z axis.

The graph of a function of two variables is a surface in \mathbb{R}^{3}.

Definition

The graph of a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the set of all points (x, y, z) in \mathbb{R}^{3} of the form $(x, y, f(x, y))$. The graph of a function f is also called the surface $z=f(x, y)$.

Example

Draw the graph of $f(x, y)=x^{2}+y^{2}$.
Solution: The graph of f is the surface $z=x^{2}+y^{2}$. This is a paraboloid along the z axis.

Level curves, contour curves.

Definition

The level curves of a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ are the curves in the domain $D \subset \mathbb{R}^{2}$ of f solutions of the equation $f(x, y)=k$, where $k \in R$ is a constant in the range of f.
The contour curves of function f are the curves in \mathbb{R}^{3} given by the intersection of the graph of f with horizontal planes $z=k$, where $k \in R$ is a constant in the range of f.

Level curves, contour curves.

Definition

The level curves of a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ are the curves in the domain $D \subset \mathbb{R}^{2}$ of f solutions of the equation $f(x, y)=k$, where $k \in R$ is a constant in the range of f.
The contour curves of function f are the curves in \mathbb{R}^{3} given by the intersection of the graph of f with horizontal planes $z=k$, where $k \in R$ is a constant in the range of f.

Curves of constant f in $D \subset \mathbb{R}^{2}$ are called level curves.

Level curves, contour curves.

Definition

The level curves of a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$ are the curves in the domain $D \subset \mathbb{R}^{2}$ of f solutions of the equation $f(x, y)=k$, where $k \in R$ is a constant in the range of f.
The contour curves of function f are the curves in \mathbb{R}^{3} given by the intersection of the graph of f with horizontal planes $z=k$, where $k \in R$ is a constant in the range of f.

Curves of constant f in $D \subset \mathbb{R}^{2}$ are called level curves.

Curves of constant f in \mathbb{R}^{3} are called contour curves.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y)=x^{2}+y^{2}$.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y)=x^{2}+y^{2}$.

Solution:

The level curves are solutions of the equation $x^{2}+y^{2}=k$ with $k \geqslant 0$.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y)=x^{2}+y^{2}$.

Solution:

The level curves are solutions of the equation $x^{2}+y^{2}=k$ with $k \geqslant 0$. These curves are circles of radius \sqrt{k} in $D=\mathbb{R}^{2}$.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y)=x^{2}+y^{2}$.

Solution:

The level curves are solutions of the equation $x^{2}+y^{2}=k$ with $k \geqslant 0$. These curves are circles of radius \sqrt{k} in $D=\mathbb{R}^{2}$.

The contour curves are the circles $\left\{(x, y, z): x^{2}+y^{2}=k, z=k\right\}$.

Level curves, contour curves.

Example

Find and draw few level curves and contour curves for the function $f(x, y)=x^{2}+y^{2}$.

Solution:

The level curves are solutions of the equation $x^{2}+y^{2}=k$ with $k \geqslant 0$. These curves are circles of radius \sqrt{k} in $D=\mathbb{R}^{2}$.

The contour curves are the circles $\left\{(x, y, z): x^{2}+y^{2}=k, z=k\right\}$.

Level curves, contour curves.

Example

Find the maximum domain, range of, and graph the function
$f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Level curves, contour curves.

Example

Find the maximum domain, range of, and graph the function
$f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Solution:
Since the denominator never vanishes, hence $D=\mathbb{R}^{2}$.

Level curves, contour curves.

Example

Find the maximum domain, range of, and graph the function
$f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Solution:

Since the denominator never vanishes, hence $D=\mathbb{R}^{2}$.
Since $0<\frac{1}{1+x^{2}+y^{2}} \leqslant 1$, the range of f is $R=(0,1]$.

Level curves, contour curves.

Example

Find the maximum domain, range of, and graph the function
$f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Solution:

Since the denominator never vanishes, hence $D=\mathbb{R}^{2}$.
Since $0<\frac{1}{1+x^{2}+y^{2}} \leqslant 1$, the
range of f is $R=(0,1]$.
The contour curves are circles on horizontal planes in $(0,1]$.

Level curves, contour curves.

Example

Find the maximum domain, range of, and graph the function $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$.

Solution:

Since the denominator never vanishes, hence $D=\mathbb{R}^{2}$.
Since $0<\frac{1}{1+x^{2}+y^{2}} \leqslant 1$, the range of f is $R=(0,1]$.

The contour curves are circles on horizontal planes in $(0,1]$.

Level curves, contour curves.

Example

Given the topographic map in the figure, which way do you choose to the summit?

1000

Level curves, contour curves.

Example

Given the topographic map in the figure, which way do you choose to the summit?

1000

Solution:
From the east.

Level curves, contour curves.

Example

Given the topographic map in the figure, which way do you choose to the summit?

1000

Solution:
From the east.

Scalar functions of several variables (Sect. 14.1).

- Functions of several variables.
- On open, closed sets.
- Functions of two variables:
- Graph of the function.
- Level curves, contour curves.
- Functions of three variables.
- Level surfaces.

Scalar functions of three variables.

Definition

The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$, is the set of points in \mathbb{R}^{4} of the form $(x, y, z, f(x, y, z))$ for every $(x, y, z) \in D$.

Scalar functions of three variables.

Definition

The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$, is the set of points in \mathbb{R}^{4} of the form $(x, y, z, f(x, y, z))$ for every $(x, y, z) \in D$.

Remark:
The graph a function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ requires four space dimensions. We cannot picture such graph.

Scalar functions of three variables.

Definition

The graph of a scalar function of three variables, $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$, is the set of points in \mathbb{R}^{4} of the form $(x, y, z, f(x, y, z))$ for every $(x, y, z) \in D$.

Remark:
The graph a function $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ requires four space dimensions. We cannot picture such graph.

Definition

The level surfaces of a function $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$ are the surfaces in the domain $D \subset \mathbb{R}^{3}$ of f solutions of the equation $f(x, y, z)=k$, where $k \in R$ is a constant in the range of f.

Scalar functions of three variables.

Example
Draw one level surface of the function $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$ $f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}$.

Scalar functions of three variables.

Example
Draw one level surface of the function $f: D \subset \mathbb{R}^{3} \rightarrow R \subset \mathbb{R}$ $f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}$.
Solution: The domain of f is $D=\mathbb{R}^{3}$ and its range is $R=(0, \infty)$. Writing $k=1 / R^{2}$, the level surfaces $f(x, y, z)=k$ are spheres $x^{2}+y^{2}+z^{2}=R^{2}$.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

The limit of functions of several variables.

Definition
The function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as limit at the point $\hat{P} \in \mathbb{R}^{n}$, denoted as $\lim _{P \rightarrow \hat{P}} f(P)=L$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that if $|P-\hat{P}|<\delta$ then $|f(P)-L|<\epsilon$.

The limit of functions of several variables.

Definition
The function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as limit at the point $\hat{P} \in \mathbb{R}^{n}$, denoted as $\lim _{P \rightarrow \hat{P}} f(P)=L$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that if $|P-\hat{P}|<\delta$ then $|f(P)-L|<\epsilon$.
Remarks:

- In Cartesian coordinates $P=\left(x_{1}, \cdots, x_{n}\right), \hat{P}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$. Then, $|P-\hat{P}|$ is the distance between points in \mathbb{R}^{n},

The limit of functions of several variables.

Definition

The function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as limit at the point $\hat{P} \in \mathbb{R}^{n}$, denoted as $\lim _{P \rightarrow \hat{P}} f(P)=L$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that if $|P-\hat{P}|<\delta$ then $|f(P)-L|<\epsilon$.
Remarks:

- In Cartesian coordinates $P=\left(x_{1}, \cdots, x_{n}\right), \hat{P}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$. Then, $|P-\hat{P}|$ is the distance between points in \mathbb{R}^{n},

$$
|P-\hat{P}|=|\overrightarrow{P \hat{P}}|=\sqrt{\left(x_{1}-\hat{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\hat{x}_{n}\right)^{2}}
$$

The limit of functions of several variables.

Definition

The function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has the number $L \in \mathbb{R}$ as limit at the point $\hat{P} \in \mathbb{R}^{n}$, denoted as $\lim _{P \rightarrow \hat{P}} f(P)=L$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that if $|P-\hat{P}|<\delta$ then $|f(P)-L|<\epsilon$.
Remarks:

- In Cartesian coordinates $P=\left(x_{1}, \cdots, x_{n}\right), \hat{P}=\left(\hat{x}_{1}, \cdots, \hat{x}_{n}\right)$. Then, $|P-\hat{P}|$ is the distance between points in \mathbb{R}^{n},

$$
|P-\hat{P}|=|\overrightarrow{P \hat{P}}|=\sqrt{\left(x_{1}-\hat{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\hat{x}_{n}\right)^{2}}
$$

- $|f(P)-L| \in \mathbb{R}$ is the absolute value of real numbers.

The limit of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The function with values $f(x, y)$ has the number L as limit at the point $P_{0}=\left(x_{0}, y_{0}\right)$ iff holds: For all points $P=(x, y)$ near $P_{0}=\left(x_{0}, y_{0}\right)$ the value of $f(x, y)$ differs little from L.

The limit of functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

The function with values $f(x, y)$ has the number L as limit at the point $P_{0}=\left(x_{0}, y_{0}\right)$ iff holds: For all points $P=(x, y)$ near $P_{0}=\left(x_{0}, y_{0}\right)$ the value of $f(x, y)$ differs little from L.

We denote it as follows:

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Computing limits by definition usually is not easy.

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Computing limits by definition usually is not easy.

Example
Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: The function above is not defined at $(0,0)$.

Computing limits by definition usually is not easy.

Example
Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: The function above is not defined at $(0,0)$.
First: Guess what the limit L is.

Computing limits by definition usually is not easy.

Example
Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: The function above is not defined at $(0,0)$.
First: Guess what the limit L is.
Along the line $x=0$ the function above vanishes for all $y \neq 0$.

Computing limits by definition usually is not easy.

Example
Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: The function above is not defined at $(0,0)$.
First: Guess what the limit L is.
Along the line $x=0$ the function above vanishes for all $y \neq 0$. So, if L exists, it must be $L=0$.

Computing limits by definition usually is not easy.

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: The function above is not defined at $(0,0)$.
First: Guess what the limit L is.
Along the line $x=0$ the function above vanishes for all $y \neq 0$.
So, if L exists, it must be $L=0$.
Fix any number $\epsilon>0$.

Computing limits by definition usually is not easy.

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: The function above is not defined at $(0,0)$.
First: Guess what the limit L is.
Along the line $x=0$ the function above vanishes for all $y \neq 0$.
So, if L exists, it must be $L=0$.
Fix any number $\epsilon>0$. Given that ϵ, find a number $\delta>0$ such that

$$
\sqrt{(x-0)^{2}+(y-0)^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}-0\right|<\epsilon
$$

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Recall: $x^{2} \leqslant x^{2}+y^{2}$, that is, $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$.

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Recall: $x^{2} \leqslant x^{2}+y^{2}$, that is, $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$. Then

$$
\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|=\frac{2|y| x^{2}}{x^{2}+y^{2}} \leqslant 2|y|=2 \sqrt{y^{2}} \leqslant 2 \sqrt{x^{2}+y^{2}}
$$

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Recall: $x^{2} \leqslant x^{2}+y^{2}$, that is, $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$. Then

$$
\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|=\frac{2|y| x^{2}}{x^{2}+y^{2}} \leqslant 2|y|=2 \sqrt{y^{2}} \leqslant 2 \sqrt{x^{2}+y^{2}}
$$

Choose $\delta=\epsilon / 2$.

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Recall: $x^{2} \leqslant x^{2}+y^{2}$, that is, $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$. Then

$$
\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|=\frac{2|y| x^{2}}{x^{2}+y^{2}} \leqslant 2|y|=2 \sqrt{y^{2}} \leqslant 2 \sqrt{x^{2}+y^{2}} .
$$

Choose $\delta=\epsilon / 2$. If $\sqrt{x^{2}+y^{2}}<\delta$, then $\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<2 \delta=\epsilon$.

Example

Use the definition of limit to compute $\lim _{(x, y) \rightarrow(0,0)} \frac{2 y x^{2}}{x^{2}+y^{2}}$.

Solution: Given any $\epsilon>0$, find a number $\delta>0$ such that

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<\epsilon
$$

Recall: $x^{2} \leqslant x^{2}+y^{2}$, that is, $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$. Then

$$
\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|=\frac{2|y| x^{2}}{x^{2}+y^{2}} \leqslant 2|y|=2 \sqrt{y^{2}} \leqslant 2 \sqrt{x^{2}+y^{2}}
$$

Choose $\delta=\epsilon / 2$. If $\sqrt{x^{2}+y^{2}}<\delta$, then $\left|\frac{2 y x^{2}}{x^{2}+y^{2}}\right|<2 \delta=\epsilon$.
We conclude that $L=0$.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Properties of limits of functions.

Theorem
If $f, g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, and $\lim _{P \rightarrow \hat{P}} f(P)=L$, $\lim _{P \rightarrow \hat{P}} g(P)=M$, then the following statements hold:

1. $\lim _{P \rightarrow \hat{P}} f(P) \pm g(P)=L \pm M$;
2. If $k \in \mathbb{R}$, then $\lim _{P \rightarrow \hat{P}} k f(P)=k L$;
3. $\lim _{P \rightarrow \hat{P}} f(P) g(P)=L M$;
4. If $M \neq 0$, then $\lim _{P \rightarrow \hat{P}}\left(\frac{f(P)}{g(P)}\right)=\frac{L}{M}$.
5. If $k \in \mathbb{Z}$ and $s \in \mathbb{N}$, then $\lim _{P \rightarrow \hat{P}}[f(P)]^{r / s}=L^{r / s}$.

Properties of limits of functions.

Theorem
If $f, g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, and $\lim _{P \rightarrow \hat{P}} f(P)=L$, $\lim _{P \rightarrow \hat{P}} g(P)=M$, then the following statements hold:

1. $\lim _{P \rightarrow \hat{P}} f(P) \pm g(P)=L \pm M$;
2. If $k \in \mathbb{R}$, then $\lim _{P \rightarrow \hat{P}} k f(P)=k L$;
3. $\lim _{P \rightarrow \hat{P}} f(P) g(P)=L M$;
4. If $M \neq 0$, then $\lim _{P \rightarrow \hat{P}}\left(\frac{f(P)}{g(P)}\right)=\frac{L}{M}$.
5. If $k \in \mathbb{Z}$ and $s \in \mathbb{N}$, then $\lim _{P \rightarrow \hat{P}}[f(P)]^{r / s}=L^{r / s}$.

Remark:
The Theorem above implies that: If $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a rational function $f=R / S$, (quotient of two polynomials), with $S(\hat{P}) \neq 0$, then $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Limits of R / S at \hat{P} where $S(\hat{P}) \neq 0$ are simple to find.

Example
Compute $\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}$.

Limits of R / S at \hat{P} where $S(\hat{P}) \neq 0$ are simple to find.

Example
Compute $\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}$.

Solution: The function above is a rational function in x and y and its denominator does not vanish at $(1,2)$.

Limits of R / S at \hat{P} where $S(\hat{P}) \neq 0$ are simple to find.

Example
Compute $\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}$.

Solution: The function above is a rational function in x and y and its denominator does not vanish at $(1,2)$. Therefore

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}=\frac{1+2(2)-1}{\sqrt{1-2}}
$$

Limits of R / S at \hat{P} where $S(\hat{P}) \neq 0$ are simple to find.

Example
Compute $\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}$.

Solution: The function above is a rational function in x and y and its denominator does not vanish at $(1,2)$. Therefore

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}=\frac{1+2(2)-1}{\sqrt{1-2}}
$$

that is,

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+2 y-x}{\sqrt{x-y}}=4
$$

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition
A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, is called continuous at $\hat{P} \in D$ iff holds $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.

Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition
A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, is called continuous at
$\hat{P} \in D$ iff holds $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.
Remarks:

- The definition above says:
(a) $f(\hat{P})$ is defined;
(b) $\lim _{P \rightarrow \hat{P}} f(P)=L$ exists;
(c) $L=f(\hat{P})$.

Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition

A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, is called continuous at
$\hat{P} \in D$ iff holds $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.

Remarks:

- The definition above says:
(a) $f(\hat{P})$ is defined;
(b) $\lim _{P \rightarrow \hat{P}} f(P)=L$ exists;
(c) $L=f(\hat{P})$.
- A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous iff f is continuous at every point in D.

Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition

A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, is called continuous at $\hat{P} \in D$ iff holds $\lim _{P \rightarrow \hat{P}} f(P)=f(\hat{P})$.

Remarks:

- The definition above says:
(a) $f(\hat{P})$ is defined;
(b) $\lim _{P \rightarrow \hat{P}} f(P)=L$ exists;
(c) $L=f(\hat{P})$.
- A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous iff f is continuous at every point in D.
- Continuous functions have graphs without holes or jumps.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

- Polynomial functions are continuous in \mathbb{R}^{n}.

For example, $P_{2}(x, y)=a_{0}+b_{1} x+b_{2} y+c_{1} x^{2}+c_{2} x y+c_{3} y^{2}$.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

- Polynomial functions are continuous in \mathbb{R}^{n}.

For example, $P_{2}(x, y)=a_{0}+b_{1} x+b_{2} y+c_{1} x^{2}+c_{2} x y+c_{3} y^{2}$.

- Rational functions $f=R / S$ are continuous on their domain.

For example, $f(x, y)=\frac{x^{2}+3 y-x^{2} y^{2}+y^{4}}{x^{2}-y^{2}}$, with $x \neq \pm y$.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

- Polynomial functions are continuous in \mathbb{R}^{n}.

For example, $P_{2}(x, y)=a_{0}+b_{1} x+b_{2} y+c_{1} x^{2}+c_{2} x y+c_{3} y^{2}$.

- Rational functions $f=R / S$ are continuous on their domain.

For example, $f(x, y)=\frac{x^{2}+3 y-x^{2} y^{2}+y^{4}}{x^{2}-y^{2}}$, with $x \neq \pm y$.

- Composition of continuous functions are continuous.

For example, $f(x, y)=\cos \left(x^{2}+y^{2}\right)$.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

Compute $\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)$.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

Compute $\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)$.

Solution:
The function $f(x, y)=\cos \left(x^{2}+y^{2}\right)$ is continuous for all $(x, y) \in \mathbb{R}^{2}$.

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

Compute $\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)$.

Solution:
The function $f(x, y)=\cos \left(x^{2}+y^{2}\right)$ is continuous for all $(x, y) \in \mathbb{R}^{2}$. Therefore,

$$
\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)=\cos (\pi+0)
$$

Continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Example

Compute $\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)$.

Solution:
The function $f(x, y)=\cos \left(x^{2}+y^{2}\right)$ is continuous for all $(x, y) \in \mathbb{R}^{2}$. Therefore,

$$
\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)=\cos (\pi+0)
$$

that is,

$$
\lim _{(x, y) \rightarrow(\sqrt{\pi}, 0)} \cos \left(x^{2}+y^{2}\right)=-1
$$

Limits and continuity for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (Sect. 14.2).

- The limit of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Example: Computing a limit by the definition.
- Properties of limits of functions.
- Examples: Computing limits of simple functions.
- Continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Computing limits of non-continuous functions:
- Two-path test for the non-existence of limits.
- The sandwich test for the existence of limits.

Two-path test for the non-existence of limits.

Theorem
If a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along to different paths as P approaches \hat{P}, then $\lim _{P \rightarrow \hat{P}} f(P)$ does not exist.

Two-path test for the non-existence of limits.

Theorem

If a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along to different paths as P approaches \hat{P}, then $\lim _{P \rightarrow \hat{P}} f(P)$ does not exist.

Remark: Consider the case $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$:
If

- $f(x, y) \rightarrow L_{1}$ along a path C_{1} as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$,
- $f(x, y) \rightarrow L_{2}$ along a path C_{2} as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$,
- $L_{1} \neq L_{2}$,
then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not exist.

Two-path test for the non-existence of limits.

Theorem

If a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, has two different limits along to different paths as P approaches \hat{P}, then $\lim _{P \rightarrow \hat{P}} f(P)$ does not exist.

Remark: Consider the case $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$:
If

- $f(x, y) \rightarrow L_{1}$ along a path C_{1} as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$,
- $f(x, y) \rightarrow L_{2}$ along a path C_{2} as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$,
- $L_{1} \neq L_{2}$,
then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not exist.
When side limits do not agree, the limit does not exist.

Two-path test for the non-existence of limits.

When side limits do not agree, the limit does not exist.

Two-path test for the non-existence of limits.

When side limits do not agree, the limit does not exist.

Two-path test for the non-existence of limits.
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.

Two-path test for the non-existence of limits.
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.
Solution: $f(x, y)=\left(3 x^{2}\right) /\left(x^{2}+2 y^{2}\right)$ is not continuous at $(0,0)$.

Two-path test for the non-existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.
Solution: $f(x, y)=\left(3 x^{2}\right) /\left(x^{2}+2 y^{2}\right)$ is not continuous at $(0,0)$. We try to show that the limit above does not exist.

Two-path test for the non-existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.
Solution: $f(x, y)=\left(3 x^{2}\right) /\left(x^{2}+2 y^{2}\right)$ is not continuous at $(0,0)$. We try to show that the limit above does not exist.
If path C_{1} is the x-axis, $(y=0)$, then,

$$
f(x, 0)=\frac{3 x^{2}}{x^{2}}=3, \quad \Rightarrow \quad \lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=3
$$

Two-path test for the non-existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.
Solution: $f(x, y)=\left(3 x^{2}\right) /\left(x^{2}+2 y^{2}\right)$ is not continuous at $(0,0)$. We try to show that the limit above does not exist.
If path C_{1} is the x-axis, $(y=0)$, then,

$$
f(x, 0)=\frac{3 x^{2}}{x^{2}}=3, \quad \Rightarrow \quad \lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=3
$$

If path C_{2} is the y-axis, $(x=0)$, then,

$$
f(0, y)=0, \quad \Rightarrow \quad \lim _{(0, y) \rightarrow(0,0)} f(0, y)=0
$$

Two-path test for the non-existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$.
Solution: $f(x, y)=\left(3 x^{2}\right) /\left(x^{2}+2 y^{2}\right)$ is not continuous at $(0,0)$. We try to show that the limit above does not exist.
If path C_{1} is the x-axis, $(y=0)$, then,

$$
f(x, 0)=\frac{3 x^{2}}{x^{2}}=3, \quad \Rightarrow \quad \lim _{(x, 0) \rightarrow(0,0)} f(x, 0)=3
$$

If path C_{2} is the y-axis, $(x=0)$, then,

$$
f(0, y)=0, \quad \Rightarrow \quad \lim _{(0, y) \rightarrow(0,0)} f(0, y)=0
$$

Therefore, $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$ does not exist.

Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary lines, that is, C_{m} given by $y=m x$, with m a constant.

Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary lines, that is, C_{m} given by $y=m x$, with m a constant.
That is,

$$
f(x, m x)=\frac{3 x^{2}}{x^{2}+2 m^{2} x^{2}}=\frac{3}{1+2 m^{2}} .
$$

Two-path test for the non-existence of limits.

Remark:
In the example above one could compute the limit for arbitrary lines, that is, C_{m} given by $y=m x$, with m a constant.
That is,

$$
f(x, m x)=\frac{3 x^{2}}{x^{2}+2 m^{2} x^{2}}=\frac{3}{1+2 m^{2}}
$$

The limits along these paths are:

$$
\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=\frac{3}{1+2 m^{2}}
$$

which are different for each value of m.

Two-path test for the non-existence of limits.

Remark:

In the example above one could compute the limit for arbitrary lines, that is, C_{m} given by $y=m x$, with m a constant.
That is,

$$
f(x, m x)=\frac{3 x^{2}}{x^{2}+2 m^{2} x^{2}}=\frac{3}{1+2 m^{2}} .
$$

The limits along these paths are:

$$
\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=\frac{3}{1+2 m^{2}}
$$

which are different for each value of m.
This agrees what we concluded: $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}$ does not exist.

The sandwich test for the existence of limits.

Theorem
If functions $f, g, h: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, satisfy:
(a) $g(P) \leqslant f(P) \leqslant h(P)$ for all P near $\hat{P} \in D$;
(b) $\lim _{P \rightarrow \hat{P}} g(P)=L=\lim _{P \rightarrow \hat{P}} h(P)$;
then $\lim _{P \rightarrow \hat{P}} f(P)=L$.

The sandwich test for the existence of limits.

Theorem
If functions $f, g, h: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, satisfy:
(a) $g(P) \leqslant f(P) \leqslant h(P)$ for all P near $\hat{P} \in D$;
(b) $\lim _{P \rightarrow \hat{P}} g(P)=L=\lim _{P \rightarrow \hat{P}} h(P)$;
then $\lim _{P \rightarrow \hat{P}} f(P)=L$.

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.
The Two-Path Theorem does not prove non-existence of the limit.

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.
The Two-Path Theorem does not prove non-existence of the limit.
Consider paths C_{m} given by $y=m x$, with $m \in \mathbb{R}$. Then

$$
f(x, m x)=\frac{x^{2} m x}{x^{2}+m^{2} x^{2}}=\frac{m x}{1+m^{2}}
$$

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.
The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_{m} given by $y=m x$, with $m \in \mathbb{R}$. Then

$$
f(x, m x)=\frac{x^{2} m x}{x^{2}+m^{2} x^{2}}=\frac{m x}{1+m^{2}}
$$

which implies $\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=0, \quad \forall m \in \mathbb{R}$.

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.
The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_{m} given by $y=m x$, with $m \in \mathbb{R}$. Then

$$
f(x, m x)=\frac{x^{2} m x}{x^{2}+m^{2} x^{2}}=\frac{m x}{1+m^{2}}
$$

which implies $\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=0, \quad \forall m \in \mathbb{R}$.
We cannot conclude that the limit does not exist.

The sandwich test for the existence of limits.

Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is not continuous at $(0,0)$.
The Two-Path Theorem does not prove non-existence of the limit. Consider paths C_{m} given by $y=m x$, with $m \in \mathbb{R}$. Then

$$
f(x, m x)=\frac{x^{2} m x}{x^{2}+m^{2} x^{2}}=\frac{m x}{1+m^{2}}
$$

which implies $\lim _{(x, m x) \rightarrow(0,0)} f(x, m x)=0, \quad \forall m \in \mathbb{R}$.
We cannot conclude that the limit does not exist.
We cannot conclude that the limit exists.

The sandwich test for the existence of limits.
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.

The sandwich test for the existence of limits.
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: Notice: $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$, for all $(x, y) \neq(0,0)$.

The sandwich test for the existence of limits.
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: Notice: $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$, for all $(x, y) \neq(0,0)$.
So, $\left|\frac{x^{2} y}{x^{2}+y^{2}}\right| \leqslant|y|$, for all $(x, y) \neq(0,0)$. Hence,

$$
-|y| \leqslant \frac{x^{2} y}{x^{2}+y^{2}} \leqslant|y|
$$

The sandwich test for the existence of limits.
Example
Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.
Solution: Notice: $\frac{x^{2}}{x^{2}+y^{2}} \leqslant 1$, for all $(x, y) \neq(0,0)$.
So, $\left|\frac{x^{2} y}{x^{2}+y^{2}}\right| \leqslant|y|$, for all $(x, y) \neq(0,0)$. Hence,

$$
-|y| \leqslant \frac{x^{2} y}{x^{2}+y^{2}} \leqslant|y|
$$

Since $\lim _{y \rightarrow 0}|y|=0$, the Sandwich Theorem with $g=-|y|$, $h=|y|$, implies

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0
$$

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Next class:

- Partial derivatives and continuity.
- Differentiable functions $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Differentiability and continuity.
- A primer on differential equations.

Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, the partial derivative of $f(x, y)$ with respect to x at a point $(x, y) \in D$ is given by

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] .
$$

The partial derivative of $f(x, y)$ with respect to y at a point $(x, y) \in D$ is given by

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)]
$$

Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, the partial derivative of $f(x, y)$ with respect to x at a point $(x, y) \in D$ is given by

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)]
$$

The partial derivative of $f(x, y)$ with respect to y at a point $(x, y) \in D$ is given by

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)] .
$$

Remark:

- To compute $f_{x}(x, y)$ derivate $f(x, y)$ keeping y constant.

Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, the partial derivative of $f(x, y)$ with respect to x at a point $(x, y) \in D$ is given by

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] .
$$

The partial derivative of $f(x, y)$ with respect to y at a point $(x, y) \in D$ is given by

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)] .
$$

Remark:

- To compute $f_{x}(x, y)$ derivate $f(x, y)$ keeping y constant.
- To compute $f_{y}(x, y)$ derivate $f(x, y)$ keeping x constant.

Computing $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $y=y_{0}$. The result is a single variable function $f\left(x, y_{0}\right)$.
- Compute the derivative of $f\left(x, y_{0}\right)$ and evaluate it at $x=x_{0}$.
- The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Computing $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $y=y_{0}$. The result is a single variable function $f\left(x, y_{0}\right)$.
- Compute the derivative of $f\left(x, y_{0}\right)$ and evaluate it at $x=x_{0}$.
- The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{x}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.

Computing $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $y=y_{0}$. The result is a single variable function $f\left(x, y_{0}\right)$.
- Compute the derivative of $f\left(x, y_{0}\right)$ and evaluate it at $x=x_{0}$.
- The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{x}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(x, 3)=x^{2}+9 / 4 ;$

Computing $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $y=y_{0}$. The result is a single variable function $f\left(x, y_{0}\right)$.
- Compute the derivative of $f\left(x, y_{0}\right)$ and evaluate it at $x=x_{0}$.
- The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{x}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(x, 3)=x^{2}+9 / 4 ;$
- $f_{x}(x, 3)=2 x$;

Computing $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $y=y_{0}$. The result is a single variable function $f\left(x, y_{0}\right)$.
- Compute the derivative of $f\left(x, y_{0}\right)$ and evaluate it at $x=x_{0}$.
- The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{x}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(x, 3)=x^{2}+9 / 4 ;$
- $f_{x}(x, 3)=2 x$;
- $f_{x}(1,3)=2$.

Computing $f_{x}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $y=y_{0}$. The result is a single variable function $f\left(x, y_{0}\right)$.
- Compute the derivative of $f\left(x, y_{0}\right)$ and evaluate it at $x=x_{0}$.
- The result is $f_{x}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{x}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(x, 3)=x^{2}+9 / 4 ;$
- $f_{x}(x, 3)=2 x$;
- $f_{x}(1,3)=2$.

To compute $f_{x}(x, y)$ derivate $f(x, y)$ keeping y constant.

Computing $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $x=x_{0}$. The result is a single variable function $f\left(x_{0}, y\right)$.
- Compute the derivative of $f\left(x_{0}, y\right)$ and evaluate it at $y=y_{0}$.
- The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Computing $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $x=x_{0}$. The result is a single variable function $f\left(x_{0}, y\right)$.
- Compute the derivative of $f\left(x_{0}, y\right)$ and evaluate it at $y=y_{0}$.
- The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{y}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.

Computing $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $x=x_{0}$. The result is a single variable function $f\left(x_{0}, y\right)$.
- Compute the derivative of $f\left(x_{0}, y\right)$ and evaluate it at $y=y_{0}$.
- The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{y}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(1, y)=1+y^{2} / 4 ;$

Computing $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $x=x_{0}$. The result is a single variable function $f\left(x_{0}, y\right)$.
- Compute the derivative of $f\left(x_{0}, y\right)$ and evaluate it at $y=y_{0}$.
- The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{y}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(1, y)=1+y^{2} / 4 ;$
- $f_{y}(1, y)=y / 2$;

Computing $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $x=x_{0}$. The result is a single variable function $f\left(x_{0}, y\right)$.
- Compute the derivative of $f\left(x_{0}, y\right)$ and evaluate it at $y=y_{0}$.
- The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{y}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(1, y)=1+y^{2} / 4 ;$
- $f_{y}(1, y)=y / 2$;
- $f_{y}(1,3)=3 / 2$.

Computing $f_{y}(x, y)$ at $\left(x_{0}, y_{0}\right)$.

- Evaluate the function f at $x=x_{0}$. The result is a single variable function $f\left(x_{0}, y\right)$.
- Compute the derivative of $f\left(x_{0}, y\right)$ and evaluate it at $y=y_{0}$.
- The result is $f_{y}\left(x_{0}, y_{0}\right)$.

Example

Find $f_{y}(1,3)$ for $f(x, y)=x^{2}+y^{2} / 4$.
Solution:

- $f(1, y)=1+y^{2} / 4 ;$
- $f_{y}(1, y)=y / 2$;
- $f_{y}(1,3)=3 / 2$.

To compute $f_{y}(x, y)$ derivate $f(x, y)$ keeping x constant.

Geometrical meaning of partial derivatives.

$f_{x}\left(x_{0}, y_{0}\right)$ is the slope of the line tangent to the graph of $f(x, y)$ containing the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and belonging to a plane parallel to the $z x$-plane.

Geometrical meaning of partial derivatives.

$f_{x}\left(x_{0}, y_{0}\right)$ is the slope of the line tangent to the graph of $f(x, y)$ containing the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and belonging to a plane parallel to the $z x$-plane.

Geometrical meaning of partial derivatives.

$f_{x}\left(x_{0}, y_{0}\right)$ is the slope of the line tangent to the graph of $f(x, y)$ containing the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and belonging to a plane parallel to the $z x$-plane.

$f_{y}\left(x_{0}, y_{0}\right)$ is the slope of the line tangent to the graph of $f(x, y)$ containing the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and belonging to a plane parallel to the $z y$-plane.

Partial derivatives can be computed on any point in D.

Example

Find the partial derivatives of $f(x, y)=\frac{2 x-y}{x+2 y}$.

Partial derivatives can be computed on any point in D.

Example

Find the partial derivatives of $f(x, y)=\frac{2 x-y}{x+2 y}$.

Solution:

$$
f_{x}(x, y)=\frac{2(x+2 y)-(2 x-y)}{(x+2 y)^{2}} \Rightarrow f_{x}(x, y)=\frac{5 y}{(x+2 y)^{2}}
$$

Partial derivatives can be computed on any point in D.

Example

Find the partial derivatives of $f(x, y)=\frac{2 x-y}{x+2 y}$.
Solution:

$$
\begin{aligned}
& f_{x}(x, y)=\frac{2(x+2 y)-(2 x-y)}{(x+2 y)^{2}} \Rightarrow \quad f_{x}(x, y)=\frac{5 y}{(x+2 y)^{2}} . \\
& f_{y}(x, y)=\frac{(-1)(x+2 y)-(2 x-y)(2)}{(x+2 y)^{2}} \Rightarrow f_{y}(x, y)=-\frac{5 x}{(x+2 y)^{2}} .
\end{aligned}
$$

The derivative of a function is a new function.

Recall: The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is itself a function.

The derivative of a function is a new function.

Recall: The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is itself a function.
Example
The derivative of function $f(x)=x^{2}$ at an arbitrary point x is the function $f^{\prime}(x)=2 x$.

The derivative of a function is a new function.

Recall: The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is itself a function.
Example
The derivative of function $f(x)=x^{2}$ at an arbitrary point x is the function $f^{\prime}(x)=2 x$.

The derivative of a function is a new function.

Recall: The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is itself a function.
Example
The derivative of function $f(x)=x^{2}$ at an arbitrary point x is the function $f^{\prime}(x)=2 x$.

The same statement is true for partial derivatives.

The partial derivatives of a function are new functions.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$, the functions partial derivatives of $f(x, y)$ are denoted by $f_{x}(x, y)$ and $f_{y}(x, y)$, and they are given by the expressions

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)] .
\end{aligned}
$$

The partial derivatives of a function are new functions.

Definition

Given a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$, the functions partial derivatives of $f(x, y)$ are denoted by $f_{x}(x, y)$ and $f_{y}(x, y)$, and they are given by the expressions

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)] .
\end{aligned}
$$

Notation:
Partial derivatives of $f(x, y)$ are denoted in several ways:

$$
\begin{array}{lll}
f_{x}(x, y), & \frac{\partial f}{\partial x}(x, y), & \partial_{x} f(x, y) . \\
f_{y}(x, y), & \frac{\partial f}{\partial y}(x, y), & \partial_{y} f(x, y)
\end{array}
$$

The partial derivatives of a paraboloid are planes

Example

Find the functions partial derivatives of $f(x, y)=x^{2}+y^{2}$.

The partial derivatives of a paraboloid are planes

Example

Find the functions partial derivatives of $f(x, y)=x^{2}+y^{2}$.
Solution:

$$
f_{x}(x, y)=2 x \quad \Rightarrow \quad f_{x}(x, y)=2 x
$$

The partial derivatives of a paraboloid are planes

Example

Find the functions partial derivatives of $f(x, y)=x^{2}+y^{2}$.
Solution:

$$
\begin{align*}
& f_{x}(x, y)=2 x \quad \Rightarrow \quad f_{x}(x, y)=2 x \\
& f_{y}(x, y)=0+2 y \quad \Rightarrow \quad f_{y}(x, y)=2 y
\end{align*}
$$

The partial derivatives of a paraboloid are planes

Example

Find the functions partial derivatives of $f(x, y)=x^{2}+y^{2}$.
Solution:

$$
\begin{aligned}
& f_{x}(x, y)=2 x \quad \Rightarrow \quad f_{x}(x, y)=2 x \\
& f_{y}(x, y)=0+2 y \quad \Rightarrow \quad f_{y}(x, y)=2 y
\end{aligned}
$$

The partial derivatives of a paraboloid are planes.

The partial derivatives of a function are new functions.

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.

The partial derivatives of a function are new functions.

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.
Solution:

$$
f_{x}(x, y)=2 x \ln (y)
$$

The partial derivatives of a function are new functions.

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.
Solution:

$$
f_{x}(x, y)=2 x \ln (y), \quad f_{y}(x, y)=\frac{x^{2}}{y} .
$$

The partial derivatives of a function are new functions.

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.
Solution:

$$
f_{x}(x, y)=2 x \ln (y), \quad f_{y}(x, y)=\frac{x^{2}}{y} .
$$

Example
Find the partial derivatives of $f(x, y)=x^{2}+\frac{y^{2}}{4}$.

The partial derivatives of a function are new functions.

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.
Solution:

$$
f_{x}(x, y)=2 x \ln (y), \quad f_{y}(x, y)=\frac{x^{2}}{y} .
$$

Example
Find the partial derivatives of $f(x, y)=x^{2}+\frac{y^{2}}{4}$.
Solution:

$$
f_{x}(x, y)=2 x
$$

The partial derivatives of a function are new functions.

Example

Find the partial derivatives of $f(x, y)=x^{2} \ln (y)$.
Solution:

$$
f_{x}(x, y)=2 x \ln (y), \quad f_{y}(x, y)=\frac{x^{2}}{y}
$$

Example
Find the partial derivatives of $f(x, y)=x^{2}+\frac{y^{2}}{4}$.
Solution:

$$
f_{x}(x, y)=2 x, \quad f_{y}(x, y)=\frac{y}{2} .
$$

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Higher-order partial derivatives.

Remark:
Higher derivatives of a function are partial derivatives of its partial derivatives.

Higher-order partial derivatives.

Remark:
Higher derivatives of a function are partial derivatives of its partial derivatives.
The second partial derivatives of $f(x, y)$ are the following:

$$
\begin{aligned}
& f_{x x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x+h, y)-f_{x}(x, y)\right], \\
& f_{y y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x, y+h)-f_{y}(x, y)\right], \\
& f_{x y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x, y+h)-f_{x}(x, y)\right], \\
& f_{y x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x+h, y)-f_{y}(x, y)\right] .
\end{aligned}
$$

Higher-order partial derivatives.

Remark:
Higher derivatives of a function are partial derivatives of its partial derivatives.
The second partial derivatives of $f(x, y)$ are the following:

$$
\begin{aligned}
& f_{x x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x+h, y)-f_{x}(x, y)\right], \\
& f_{y y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x, y+h)-f_{y}(x, y)\right], \\
& f_{x y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x, y+h)-f_{x}(x, y)\right], \\
& f_{y x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x+h, y)-f_{y}(x, y)\right] .
\end{aligned}
$$

Notation: $f_{x x}, \quad \frac{\partial^{2} f}{\partial x^{2}}, \quad \partial_{x x} f$, and also $f_{x y}, \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \partial_{x y} f$.

Higher-order partial derivatives.

Example

Find all second order derivatives of the function $f(x, y)=x^{3} e^{2 y}+3 y$.

Higher-order partial derivatives.

Example

Find all second order derivatives of the function $f(x, y)=x^{3} e^{2 y}+3 y$.

Solution:

$$
f_{x}(x, y)=3 x^{2} e^{2 y}, \quad f_{y}(x, y)=2 x^{3} e^{2 y}+3 .
$$

Higher-order partial derivatives.

Example

Find all second order derivatives of the function $f(x, y)=x^{3} e^{2 y}+3 y$.

Solution:

$$
\begin{gathered}
f_{x}(x, y)=3 x^{2} e^{2 y}, \quad f_{y}(x, y)=2 x^{3} e^{2 y}+3 . \\
f_{x x}(x, y)=6 x e^{2 y}, \quad f_{y y}(x, y)=4 x^{3} e^{2 y} .
\end{gathered}
$$

Higher-order partial derivatives.

Example

Find all second order derivatives of the function $f(x, y)=x^{3} e^{2 y}+3 y$.

Solution:

$$
\begin{gathered}
f_{x}(x, y)=3 x^{2} e^{2 y}, \quad f_{y}(x, y)=2 x^{3} e^{2 y}+3 . \\
f_{x x}(x, y)=6 x e^{2 y}, \quad f_{y y}(x, y)=4 x^{3} e^{2 y} \\
f_{x y}=6 x^{2} e^{2 y}, \quad f_{y x}=6 x^{2} e^{2 y} .
\end{gathered}
$$

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ of a function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist and all are continuous functions, then holds

$$
f_{x y}=f_{y x}
$$

Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ of a function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist and all are continuous functions, then holds

$$
f_{x y}=f_{y x} .
$$

Example
Find $f_{x y}$ and $f_{y x}$ for $f(x, y)=\cos (x y)$.

Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ of a function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist and all are continuous functions, then holds

$$
f_{x y}=f_{y x} .
$$

Example
Find $f_{x y}$ and $f_{y x}$ for $f(x, y)=\cos (x y)$.
Solution:

$$
f_{x}=-y \sin (x y), \quad f_{x y}=-\sin (x y)-y x \cos (x y)
$$

Higher-order partial derivatives sometimes commute.

Theorem
If the partial derivatives $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ of a function
$f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ exist and all are continuous functions, then holds

$$
f_{x y}=f_{y x} .
$$

Example
Find $f_{x y}$ and $f_{y x}$ for $f(x, y)=\cos (x y)$.
Solution:

$$
\begin{array}{ll}
f_{x}=-y \sin (x y), & f_{x y}=-\sin (x y)-y x \cos (x y) . \\
f_{y}=-x \sin (x y), & f_{y x}=-\sin (x y)-x y \cos (x y) .
\end{array}
$$

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{x} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{x} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution:

$$
y z+x y\left(\partial_{x} z\right)+\frac{2}{y}\left(\partial_{x} z\right) e^{2 z / y}-\left(\partial_{x} z\right) \sin (z)=0
$$

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{x} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.
Solution:

$$
y z+x y\left(\partial_{x} z\right)+\frac{2}{y}\left(\partial_{x} z\right) e^{2 z / y}-\left(\partial_{x} z\right) \sin (z)=0
$$

Compute $\partial_{x} z$ as a function of x, y and $z(x, y)$, as follows,

$$
\left(\partial_{x} z\right)\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]=-y z
$$

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example
Find $\partial_{x} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution:

$$
y z+x y\left(\partial_{x} z\right)+\frac{2}{y}\left(\partial_{x} z\right) e^{2 z / y}-\left(\partial_{x} z\right) \sin (z)=0
$$

Compute $\partial_{x} z$ as a function of x, y and $z(x, y)$, as follows,

$$
\left(\partial_{x} z\right)\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]=-y z
$$

that is, $\left(\partial_{x} z\right)=-\frac{y z}{\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]}$.

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{y} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{y} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution:

$$
x z+x y\left(\partial_{y} z\right)+\left(\frac{2}{y}\left(\partial_{y} z\right)-\frac{2}{y^{2}} z\right) e^{2 z / y}-\left(\partial_{y} z\right) \sin (z)=0 .
$$

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{y} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution:

$$
x z+x y\left(\partial_{y} z\right)+\left(\frac{2}{y}\left(\partial_{y} z\right)-\frac{2}{y^{2}} z\right) e^{2 z / y}-\left(\partial_{y} z\right) \sin (z)=0 .
$$

Compute $\partial_{y} z$ as a function of x, y and $z(x, y)$, as follows,

$$
\left(\partial_{y} z\right)\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]=-x z+\frac{2}{y^{2}} z e^{2 z / y},
$$

Examples of implicit partial differentiation.

Remark: Implicit differentiation rules for partial derivatives are similar to those for functions of one variable.

Example

Find $\partial_{y} z(x, y)$ of the function z defined implicitly by the equation $x y z+e^{2 z / y}+\cos (z)=0$.

Solution:

$$
x z+x y\left(\partial_{y} z\right)+\left(\frac{2}{y}\left(\partial_{y} z\right)-\frac{2}{y^{2}} z\right) e^{2 z / y}-\left(\partial_{y} z\right) \sin (z)=0 .
$$

Compute $\partial_{y} z$ as a function of x, y and $z(x, y)$, as follows,

$$
\left(\partial_{y} z\right)\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]=-x z+\frac{2}{y^{2}} z e^{2 z / y}
$$

that is, $\left(\partial_{y} z\right)=\frac{\left[-x z+\frac{2}{y^{2}} z e^{2 z / y}\right]}{\left[x y+\frac{2}{y} e^{2 z / y}-\sin (z)\right]}$.

Partial derivatives and differentiability (Sect. 14.3).

- Partial derivatives of $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- Higher-order partial derivatives.
- The Mixed Derivative Theorem.
- Examples of implicit partial differentiation.
- Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, the partial derivative of $f\left(x_{1}, \cdots, x_{n}\right)$ with respect to x_{i}, with $i=1, \cdots, n$, at a point $\left(x_{1}, \cdots, x_{n}\right) \in D$ is given by

$$
f_{x_{i}}=\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right)\right] .
$$

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, the partial
derivative of $f\left(x_{1}, \cdots, x_{n}\right)$ with respect to x_{i}, with $i=1, \cdots, n$, at a point $\left(x_{1}, \cdots, x_{n}\right) \in D$ is given by

$$
f_{x_{i}}=\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right)\right] .
$$

Remark: To compute $f_{x_{i}}$ derivate f with respect to x_{i} keeping all other variables x_{j} constant.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition

Given a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n \in \mathbb{N}$, the partial derivative of $f\left(x_{1}, \cdots, x_{n}\right)$ with respect to x_{i}, with $i=1, \cdots, n$, at a point $\left(x_{1}, \cdots, x_{n}\right) \in D$ is given by

$$
f_{x_{i}}=\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x_{1}, \cdots, x_{i}+h, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, x_{n}\right)\right] .
$$

Remark: To compute $f_{x_{i}}$ derivate f with respect to x_{i} keeping all other variables x_{j} constant.

Notation: $f_{x_{i}}, \quad f_{i}, \quad \frac{\partial f}{\partial x_{i}}, \quad \partial_{x_{i}} f, \quad \partial_{i} f$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example

Compute all first partial derivatives of the function
$\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example

Compute all first partial derivatives of the function
$\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
Solution:

$$
\phi_{x}=-\frac{1}{2} \frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \Rightarrow \phi_{x}=-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
$$

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example

Compute all first partial derivatives of the function
$\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
Solution:

$$
\phi_{x}=-\frac{1}{2} \frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad \Rightarrow \quad \phi_{x}=-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

Analogously, the other partial derivatives are given by

$$
\phi_{y}=-\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad \phi_{z}=-\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
$$

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation : $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$,

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\phi_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\phi_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $\phi_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $\phi_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$.

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\phi_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $\phi_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $\phi_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
\phi_{x x}+\phi_{y y}+\phi_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}
$$

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\phi_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $\phi_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $\phi_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
\phi_{x x}+\phi_{y y}+\phi_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=-\frac{3}{r^{3}}+\frac{3 r^{2}}{r^{5}} .
$$

Partial derivatives of $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example
Verify that $\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ satisfies the Laplace equation: $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

Solution: Recall: $\phi_{x}=-x /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$. Then,
$\phi_{x x}=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$.
Denote $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\phi_{x x}=-\frac{1}{r^{3}}+\frac{3 x^{2}}{r^{5}}$.
Analogously, $\phi_{y y}=-\frac{1}{r^{3}}+\frac{3 y^{2}}{r^{5}}$, and $\phi_{z z}=-\frac{1}{r^{3}}+\frac{3 z^{2}}{r^{5}}$. Then,

$$
\phi_{x x}+\phi_{y y}+\phi_{z z}=-\frac{3}{r^{3}}+\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=-\frac{3}{r^{3}}+\frac{3 r^{2}}{r^{5}} .
$$

We conclude that $\phi_{x x}+\phi_{y y}+\phi_{z z}=0$.

