Review for Exam 1.

- Sections 12.1-12.6.
- 50 minutes.
- 5 or 6 problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Example
Consider the vectors $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

1. Compute v•w.

Example
Consider the vectors $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

1. Compute v•w.

Solution:

$$
\mathbf{v} \cdot \mathbf{w}=\langle 2,-2,1\rangle \cdot\langle 1,2,-1\rangle=2-4-1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w}=-3 .
$$

Example
Consider the vectors $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

1. Compute v•w.

Solution:

$$
\mathbf{v} \cdot \mathbf{w}=\langle 2,-2,1\rangle \cdot\langle 1,2,-1\rangle=2-4-1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w}=-3 .
$$

2. Find the cosine of the angle between \mathbf{v} and \mathbf{w}.

Example
Consider the vectors $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

1. Compute v•w.

Solution:

$$
\mathbf{v} \cdot \mathbf{w}=\langle 2,-2,1\rangle \cdot\langle 1,2,-1\rangle=2-4-1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w}=-3 .
$$

2. Find the cosine of the angle between \mathbf{v} and \mathbf{w}.

Solution:

$$
\begin{aligned}
& |\mathbf{v}|=\sqrt{4+4+1}=3, \quad|\mathbf{w}|=\sqrt{1+4+1}=\sqrt{6} \\
& \cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}=\frac{-3}{3 \sqrt{6}}
\end{aligned}
$$

Example
Consider the vectors $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

1. Compute vow.

Solution:

$$
\mathbf{v} \cdot \mathbf{w}=\langle 2,-2,1\rangle \cdot\langle 1,2,-1\rangle=2-4-1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w}=-3 .
$$

2. Find the cosine of the angle between \mathbf{v} and \mathbf{w}.

Solution:

$$
\begin{aligned}
& |\mathbf{v}|=\sqrt{4+4+1}=3, \quad|\mathbf{w}|=\sqrt{1+4+1}=\sqrt{6} \\
& \cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}=\frac{-3}{3 \sqrt{6}} \quad \Rightarrow \quad \cos (\theta)=-\frac{1}{\sqrt{6}}
\end{aligned}
$$

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}, \quad|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6}
$$

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\begin{gathered}
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}, \quad|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6} \\
\mathbf{u}=\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle .
\end{gathered}
$$

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\begin{gathered}
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}, \quad|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6} \\
\mathbf{u}=\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle .
\end{gathered}
$$

2. Find $|\mathbf{u}-2 \mathbf{v}|$, where $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\begin{gathered}
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}, \quad|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6} \\
\mathbf{u}=\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle .
\end{gathered}
$$

2. Find $|\mathbf{u}-2 \mathbf{v}|$, where $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution: First: $\mathbf{u}-2 \mathbf{v}=\langle 1,6,-1\rangle$.

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\begin{gathered}
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}, \quad|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6} \\
\mathbf{u}=\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle .
\end{gathered}
$$

2. Find $|\mathbf{u}-2 \mathbf{v}|$, where $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution: First: $\mathbf{u}-2 \mathbf{v}=\langle 1,6,-1\rangle$. Then,

$$
|\mathbf{u}-2 \mathbf{v}|=\sqrt{1+36+1}
$$

Example

1. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution:

$$
\begin{gathered}
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}, \quad|\mathbf{v}|=\sqrt{1+4+1}=\sqrt{6} \\
\mathbf{u}=\frac{1}{\sqrt{6}}\langle 1,-2,1\rangle .
\end{gathered}
$$

2. Find $|\mathbf{u}-2 \mathbf{v}|$, where $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Solution: First: $\mathbf{u}-2 \mathbf{v}=\langle 1,6,-1\rangle$. Then,

$$
|\mathbf{u}-2 \mathbf{v}|=\sqrt{1+36+1} . \quad \Rightarrow \quad|\mathbf{u}-2 \mathbf{v}|=\sqrt{38}
$$

Example

Find a unit vector \mathbf{u} normal to both $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$.

Example

Find a unit vector \mathbf{u} normal to both $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$.

Solution:
$\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1\end{array}\right|=(2+6) \mathbf{i}-(6-6) \mathbf{j}+(12+4) \mathbf{k}=\langle 8,0,16\rangle$.

Example

Find a unit vector \mathbf{u} normal to both $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$.
Solution:
$\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1\end{array}\right|=(2+6) \mathbf{i}-(6-6) \mathbf{j}+(12+4) \mathbf{k}=\langle 8,0,16\rangle$.
Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle$.

Example

Find a unit vector \mathbf{u} normal to both $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$.
Solution:
$\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1\end{array}\right|=(2+6) \mathbf{i}-(6-6) \mathbf{j}+(12+4) \mathbf{k}=\langle 8,0,16\rangle$.
Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle$.

$$
\mathbf{u}=\frac{\langle 1,0,2\rangle}{|\langle 1,0,2\rangle|}
$$

Example

Find a unit vector \mathbf{u} normal to both $\mathbf{v}=\langle 6,2,-3\rangle$ and $\mathbf{w}=\langle-2,2,1\rangle$.
Solution:
$\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1\end{array}\right|=(2+6) \mathbf{i}-(6-6) \mathbf{j}+(12+4) \mathbf{k}=\langle 8,0,16\rangle$.
Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle$.

$$
\mathbf{u}=\frac{\langle 1,0,2\rangle}{|\langle 1,0,2\rangle|} \Rightarrow \mathbf{u}=\frac{1}{\sqrt{5}}\langle 1,0,2\rangle
$$

Example

Find the area of the parallelogram formed by \mathbf{v} and \mathbf{w} above.

Example

Find the area of the parallelogram formed by \mathbf{v} and \mathbf{w} above.
Solution:
Since $\mathbf{v} \times \mathbf{w}=\langle 8,0,16\rangle$, then

$$
A=|\mathbf{v} \times \mathbf{w}|=|\langle 8,0,16\rangle|=\sqrt{8^{2}+16^{2}}=\sqrt{8^{2}(1+4)} .
$$

Example

Find the area of the parallelogram formed by \mathbf{v} and \mathbf{w} above.
Solution:
Since $\mathbf{v} \times \mathbf{w}=\langle 8,0,16\rangle$, then

$$
\begin{gathered}
A=|\mathbf{v} \times \mathbf{w}|=|\langle 8,0,16\rangle|=\sqrt{8^{2}+16^{2}}=\sqrt{8^{2}(1+4)} . \\
A=8 \sqrt{5} .
\end{gathered}
$$

Example

Find the volume of the parallelepiped determined by the vectors
$\mathbf{u}=\langle 6,3,-1\rangle, \mathbf{v}=\langle 0,1,2\rangle$, and $\mathbf{w}=\langle 4,-2,5\rangle$.

Example

Find the volume of the parallelepiped determined by the vectors
$\mathbf{u}=\langle 6,3,-1\rangle, \mathbf{v}=\langle 0,1,2\rangle$, and $\mathbf{w}=\langle 4,-2,5\rangle$.
Solution: We need to compute the triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.

Example

Find the volume of the parallelepiped determined by the vectors $\mathbf{u}=\langle 6,3,-1\rangle, \mathbf{v}=\langle 0,1,2\rangle$, and $\mathbf{w}=\langle 4,-2,5\rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 2 \\
4 & -2 & 5
\end{array}\right|=\langle(5+4),-(0-8),(0-4)\rangle
$$

We obtain $\mathbf{v} \times \mathbf{w}=\langle 9,8,-4\rangle$.

Example

Find the volume of the parallelepiped determined by the vectors $\mathbf{u}=\langle 6,3,-1\rangle, \mathbf{v}=\langle 0,1,2\rangle$, and $\mathbf{w}=\langle 4,-2,5\rangle$.
Solution: We need to compute the triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 2 \\
4 & -2 & 5
\end{array}\right|=\langle(5+4),-(0-8),(0-4)\rangle
$$

We obtain $\mathbf{v} \times \mathbf{w}=\langle 9,8,-4\rangle$. The triple product is

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\langle 6,3,-1\rangle \cdot\langle 9,8,-4\rangle=54+24+4=82
$$

Example

Find the volume of the parallelepiped determined by the vectors $\mathbf{u}=\langle 6,3,-1\rangle, \mathbf{v}=\langle 0,1,2\rangle$, and $\mathbf{w}=\langle 4,-2,5\rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 2 \\
4 & -2 & 5
\end{array}\right|=\langle(5+4),-(0-8),(0-4)\rangle
$$

We obtain $\mathbf{v} \times \mathbf{w}=\langle 9,8,-4\rangle$. The triple product is

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\langle 6,3,-1\rangle \cdot\langle 9,8,-4\rangle=54+24+4=82
$$

Since $V=|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$, we obtain $V=82$.

Example

Does the line given by $\mathbf{r}(t)=\langle 0,1,1\rangle+\langle 1,2,3\rangle t$ intersects the plane given by $2 x+y-z=1$? If the answer is yes, then find the intersection point.

Example

Does the line given by $\mathbf{r}(t)=\langle 0,1,1\rangle+\langle 1,2,3\rangle t$ intersects the plane given by $2 x+y-z=1$? If the answer is yes, then find the intersection point.

Solution: The line with parametric equation

$$
x=t, \quad y=1+2 t, \quad z=1+3 t
$$

intersect the plane $2 x+y-z=1$ iff there is a solution t for the equation

$$
2 t+(1+2 t)-(1+3 t)=1
$$

Example

Does the line given by $\mathbf{r}(t)=\langle 0,1,1\rangle+\langle 1,2,3\rangle t$ intersects the plane given by $2 x+y-z=1$? If the answer is yes, then find the intersection point.

Solution: The line with parametric equation

$$
x=t, \quad y=1+2 t, \quad z=1+3 t
$$

intersect the plane $2 x+y-z=1$ iff there is a solution t for the equation

$$
2 t+(1+2 t)-(1+3 t)=1
$$

There is a solution given by $t=1$. Therefore, the point of intersection has coordinates $x=1, y=3, z=4$, then

$$
P=(1,3,4)
$$

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.
Solution:

The vector equation of the line is
$\mathbf{r}(t)=\langle-2,0,-1\rangle+\langle 1,1,2\rangle t$.

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.
Solution:

The vector equation of the line is
$\mathbf{r}(t)=\langle-2,0,-1\rangle+\langle 1,1,2\rangle t$.

A vector tangent to the line, and so to the plane, is $\mathbf{v}=\langle 1,1,2\rangle$.

Example

Find the equation for the plane that contains the point $P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.

Solution:

The vector equation of the line is
$\mathbf{r}(t)=\langle-2,0,-1\rangle+\langle 1,1,2\rangle t$.

A vector tangent to the line, and so to the plane, is $\mathbf{v}=\langle 1,1,2\rangle$. The point $P_{0}=(1,2,3)$ is in the plane. A second point in the plane is any point in the line, for example P_{1} corresponding to the terminal point of $\mathbf{r}(0)=\langle-2,0,-1\rangle$.

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.
Solution:

The vector equation of the line is
$\mathbf{r}(t)=\langle-2,0,-1\rangle+\langle 1,1,2\rangle t$.

A vector tangent to the line, and so to the plane, is $\mathbf{v}=\langle 1,1,2\rangle$.
The point $P_{0}=(1,2,3)$ is in the plane. A second point in the plane is any point in the line, for example P_{1} corresponding to the terminal point of $\mathbf{r}(0)=\langle-2,0,-1\rangle$.
Then a second vector tangent to the plane is $\overrightarrow{P_{1} P_{0}}=\langle 3,2,4\rangle$.

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.

Example

Find the equation for the plane that contains the point $P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.

Solution:
The vector equation of the line is $\mathbf{r}(t)=\langle-2,0,-1\rangle+\langle 1,1,2\rangle t$, and a second vector tangent to the plane is $\overrightarrow{P_{1} P_{0}}=\langle 3,2,4\rangle$.

Example

Find the equation for the plane that contains the point
$P_{0}=(1,2,3)$ and the line $x=-2+t, y=t, z=-1+2 t$.
Solution:
The vector equation of the line is
$\mathbf{r}(t)=\langle-2,0,-1\rangle+\langle 1,1,2\rangle t$, and a second vector tangent to the plane is $\overrightarrow{P_{1} P_{0}}=\langle 3,2,4\rangle$.

Then, a normal to the plane is given by

$$
\mathbf{n}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 \\
3 & 2 & 4
\end{array}\right|=\langle(4-4),-(4-6),(2-3)\rangle \quad \Rightarrow \quad \mathbf{n}=\langle 0,2,-1\rangle
$$

So, the equation of the plane is

$$
0(x-1)+2(y-2)-(z-3)=0, \quad \Rightarrow \quad 2 y-z=1
$$

Example

Find an equation for the plane that passes through the points $(1,1,1),(1,-1,1)$, and ($0,0,2$).

Example

Find an equation for the plane that passes through the points $(1,1,1),(1,-1,1)$, and $(0,0,2)$.
Solution: Denote $P=(1,1,1), Q=(1,-1,1)$, and $R=(0,0,2)$.

Example

Find an equation for the plane that passes through the points $(1,1,1),(1,-1,1)$, and $(0,0,2)$.
Solution: Denote $P=(1,1,1), Q=(1,-1,1)$, and $R=(0,0,2)$. Then,

$$
\overrightarrow{P Q}=\langle 0,-2,0\rangle, \quad \overrightarrow{P R}=\langle-1,-1,1\rangle,
$$

Example

Find an equation for the plane that passes through the points $(1,1,1),(1,-1,1)$, and $(0,0,2)$.

Solution: Denote $P=(1,1,1), Q=(1,-1,1)$, and $R=(0,0,2)$. Then,

$$
\begin{gathered}
\overrightarrow{P Q}=\langle 0,-2,0\rangle, \quad \overrightarrow{P R}=\langle-1,-1,1\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -2 & 0 \\
-1 & -1 & 1
\end{array}\right|=(-2-0) \mathbf{i}-(0-0) \mathbf{j}+(0-2) \mathbf{k},
\end{gathered}
$$

that is, $\overrightarrow{P Q} \times \overrightarrow{P R}=\langle-2,0,-2\rangle$. Take $\mathbf{n}=\langle 2,0,2\rangle$.

Example

Find an equation for the plane that passes through the points $(1,1,1),(1,-1,1)$, and $(0,0,2)$.

Solution: Denote $P=(1,1,1), Q=(1,-1,1)$, and $R=(0,0,2)$. Then,

$$
\begin{gathered}
\overrightarrow{P Q}=\langle 0,-2,0\rangle, \quad \overrightarrow{P R}=\langle-1,-1,1\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -2 & 0 \\
-1 & -1 & 1
\end{array}\right|=(-2-0) \mathbf{i}-(0-0) \mathbf{j}+(0-2) \mathbf{k},
\end{gathered}
$$

that is, $\overrightarrow{P Q} \times \overrightarrow{P R}=\langle-2,0,-2\rangle$. Take $\mathbf{n}=\langle 2,0,2\rangle$.
With $\mathbf{n}=\langle 2,0,2\rangle$ and a point $R=(0,0,2)$, the equation of the plane is

$$
2(x-0)+0(y-0)+2(z-2)=0
$$

Example

Find an equation for the plane that passes through the points $(1,1,1),(1,-1,1)$, and $(0,0,2)$.

Solution: Denote $P=(1,1,1), Q=(1,-1,1)$, and $R=(0,0,2)$. Then,

$$
\begin{gathered}
\overrightarrow{P Q}=\langle 0,-2,0\rangle, \quad \overrightarrow{P R}=\langle-1,-1,1\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -2 & 0 \\
-1 & -1 & 1
\end{array}\right|=(-2-0) \mathbf{i}-(0-0) \mathbf{j}+(0-2) \mathbf{k},
\end{gathered}
$$

that is, $\overrightarrow{P Q} \times \overrightarrow{P R}=\langle-2,0,-2\rangle$. Take $\mathbf{n}=\langle 2,0,2\rangle$.
With $\mathbf{n}=\langle 2,0,2\rangle$ and a point $R=(0,0,2)$, the equation of the plane is

$$
2(x-0)+0(y-0)+2(z-2)=0 \quad \Rightarrow \quad x+z=2
$$

Example

Find the equation of the plane that is parallel to the plane $x-2 y+3 z=1$ and passes through the center of the sphere $x^{2}+2 x+y^{2}+z^{2}-2 z=0$.

Example

Find the equation of the plane that is parallel to the plane $x-2 y+3 z=1$ and passes through the center of the sphere $x^{2}+2 x+y^{2}+z^{2}-2 z=0$.

Solution: The plane is parallel to the plane $x-2 y+3 z=1$, so their normal vectors are parallel. We choose $\mathbf{n}=\langle 1,-2,3\rangle$.

Example

Find the equation of the plane that is parallel to the plane $x-2 y+3 z=1$ and passes through the center of the sphere $x^{2}+2 x+y^{2}+z^{2}-2 z=0$.

Solution: The plane is parallel to the plane $x-2 y+3 z=1$, so their normal vectors are parallel. We choose $\mathbf{n}=\langle 1,-2,3\rangle$.
We need to find the center of the sphere. We complete squares:

$$
\begin{aligned}
0 & =x^{2}+2 x+y^{2}+z^{2}-2 z \\
& =\left(x^{2}+2 x+1\right)-1+y^{2}+\left(z^{2}-2 z+1\right)-1=0 \\
& =(x+1)^{2}+y^{2}+(z-1)^{2}-2 .
\end{aligned}
$$

Example

Find the equation of the plane that is parallel to the plane $x-2 y+3 z=1$ and passes through the center of the sphere $x^{2}+2 x+y^{2}+z^{2}-2 z=0$.

Solution: The plane is parallel to the plane $x-2 y+3 z=1$, so their normal vectors are parallel. We choose $\mathbf{n}=\langle 1,-2,3\rangle$.
We need to find the center of the sphere. We complete squares:

$$
\begin{aligned}
0 & =x^{2}+2 x+y^{2}+z^{2}-2 z \\
& =\left(x^{2}+2 x+1\right)-1+y^{2}+\left(z^{2}-2 z+1\right)-1=0 \\
& =(x+1)^{2}+y^{2}+(z-1)^{2}-2 .
\end{aligned}
$$

Therefore, the center of the sphere is at $P_{0}=(-1,0,1)$.

Example

Find the equation of the plane that is parallel to the plane $x-2 y+3 z=1$ and passes through the center of the sphere $x^{2}+2 x+y^{2}+z^{2}-2 z=0$.

Solution: The plane is parallel to the plane $x-2 y+3 z=1$, so their normal vectors are parallel. We choose $\mathbf{n}=\langle 1,-2,3\rangle$.
We need to find the center of the sphere. We complete squares:

$$
\begin{aligned}
0 & =x^{2}+2 x+y^{2}+z^{2}-2 z \\
& =\left(x^{2}+2 x+1\right)-1+y^{2}+\left(z^{2}-2 z+1\right)-1=0 \\
& =(x+1)^{2}+y^{2}+(z-1)^{2}-2
\end{aligned}
$$

Therefore, the center of the sphere is at $P_{0}=(-1,0,1)$.
The equation of the plane is

$$
(x+1)-2(y-0)+3(z-1)=0 \quad \Rightarrow \quad x-2 y+3 z=2
$$

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between the planes is the angle between their normal vectors.

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between the planes is the angle between their normal vectors.
The normal vectors are $\mathbf{n}=\langle 2,-3,2\rangle, \mathbf{N}=\langle 1,2,2\rangle$.

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between the planes is the angle between their normal vectors.
The normal vectors are $\mathbf{n}=\langle 2,-3,2\rangle, \mathbf{N}=\langle 1,2,2\rangle$.
The cosine of the angle θ between these vectors is

$$
\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}
$$

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between the planes is the angle between their normal vectors.
The normal vectors are $\mathbf{n}=\langle 2,-3,2\rangle, \mathbf{N}=\langle 1,2,2\rangle$.
The cosine of the angle θ between these vectors is

$$
\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}
$$

Since $\mathbf{n} \cdot \mathbf{N}=2-6+4=0$,

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between the planes is the angle between their normal vectors.
The normal vectors are $\mathbf{n}=\langle 2,-3,2\rangle, \mathbf{N}=\langle 1,2,2\rangle$.
The cosine of the angle θ between these vectors is

$$
\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|} .
$$

Since $\mathbf{n} \cdot \mathbf{N}=2-6+4=0$, we conclude that $\mathbf{n} \perp \mathbf{N}$.

Example

Find the angle between the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: The angle between the planes is the angle between their normal vectors.
The normal vectors are $\mathbf{n}=\langle 2,-3,2\rangle, \mathbf{N}=\langle 1,2,2\rangle$.
The cosine of the angle θ between these vectors is

$$
\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}
$$

Since $\mathbf{n} \cdot \mathbf{N}=2-6+4=0$, we conclude that $\mathbf{n} \perp \mathbf{N}$.
The angle θ is $\theta=\pi / 2$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.
Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.
This means that \mathbf{v} is perpendicular to both normal vectors $\mathbf{n}=\langle 2,-3,2\rangle$ and $\mathbf{N}=\langle 1,2,2\rangle$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.
This means that \mathbf{v} is perpendicular to both normal vectors $\mathbf{n}=\langle 2,-3,2\rangle$ and $\mathbf{N}=\langle 1,2,2\rangle$.
One such vector is

$$
\mathbf{v}=\mathbf{n} \times \mathbf{N}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -3 & 2 \\
1 & 2 & 2
\end{array}\right|=\langle(-6-4),-(4-2),(4+3)\rangle .
$$

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.
This means that \mathbf{v} is perpendicular to both normal vectors $\mathbf{n}=\langle 2,-3,2\rangle$ and $\mathbf{N}=\langle 1,2,2\rangle$.
One such vector is

$$
\mathbf{v}=\mathbf{n} \times \mathbf{N}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -3 & 2 \\
1 & 2 & 2
\end{array}\right|=\langle(-6-4),-(4-2),(4+3)\rangle .
$$

So, $\mathbf{v}=\langle-10,-2,7\rangle$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now we need a point in the intersection of the planes.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: $2 z=1-2 x+3 y$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: $2 z=1-2 x+3 y$.
We introduce this equation for $2 z$ into the second plane:

$$
x+2 y+(1-2 x+3 y)=5 \quad \Rightarrow \quad-x+5 y=4
$$

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: $2 z=1-2 x+3 y$.
We introduce this equation for $2 z$ into the second plane:

$$
x+2 y+(1-2 x+3 y)=5 \quad \Rightarrow \quad-x+5 y=4
$$

We need just one solution, so we choose: $y=0$, then $x=-4$, and this implies $z=9 / 2$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: $2 z=1-2 x+3 y$.
We introduce this equation for $2 z$ into the second plane:

$$
x+2 y+(1-2 x+3 y)=5 \quad \Rightarrow \quad-x+5 y=4
$$

We need just one solution, so we choose: $y=0$, then $x=-4$, and this implies $z=9 / 2$. A point in the intersection of the planes is $P_{0}=(-4,0,9 / 2)$.

Example

Find the vector equation for the line of intersection of the planes $2 x-3 y+2 z=1$ and $x+2 y+2 z=5$.

Solution: Recall $\mathbf{v}=\langle-10,-2,7\rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: $2 z=1-2 x+3 y$.
We introduce this equation for $2 z$ into the second plane:

$$
x+2 y+(1-2 x+3 y)=5 \quad \Rightarrow \quad-x+5 y=4
$$

We need just one solution, so we choose: $y=0$, then $x=-4$, and this implies $z=9 / 2$. A point in the intersection of the planes is $P_{0}=(-4,0,9 / 2)$. The vector equation of the line is:

$$
\mathbf{r}(t)=\langle-4,-0,9 / 2\rangle+\langle-10,-2,7\rangle t
$$

Example

Sketch the surface $36 x^{2}+4 y^{2}+9 z^{2}=36$.

Example

Sketch the surface $36 x^{2}+4 y^{2}+9 z^{2}=36$.
Solution: We first rewrite the equation above in the standard form

$$
x^{2}+\frac{4}{36} y^{2}+\frac{9}{36} z^{2}=1 \quad \Leftrightarrow \quad x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1
$$

Example

Sketch the surface $36 x^{2}+4 y^{2}+9 z^{2}=36$.
Solution: We first rewrite the equation above in the standard form

$$
x^{2}+\frac{4}{36} y^{2}+\frac{9}{36} z^{2}=1 \quad \Leftrightarrow \quad x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1
$$

This is the equation of an ellipsoid with principal radius of length 1,3 , and 2 on the x, y and z axis, respectively.

Example

Sketch the surface $36 x^{2}+4 y^{2}+9 z^{2}=36$.
Solution: We first rewrite the equation above in the standard form

$$
x^{2}+\frac{4}{36} y^{2}+\frac{9}{36} z^{2}=1 \quad \Leftrightarrow \quad x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1
$$

This is the equation of an ellipsoid with principal radius of length 1,3 , and 2 on the x, y and z axis, respectively. Therefore

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Motion in space motivates to define vector functions.

Definition
A function $\mathbf{r}: l \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is called a vector function, where the interval $I \subset \mathbb{R}$ is called the domain of the function.

Motion in space motivates to define vector functions.

Definition

A function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is called a vector function, where the interval $I \subset \mathbb{R}$ is called the domain of the function.

Remark: Given Cartesian coordinates in \mathbb{R}^{3}, the values of a vector function can be written in components as follows:

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad t \in I,
$$

where $x(t), y(t)$, and $z(t)$ are the values of three scalar functions.

Motion in space motivates to define vector functions.

Remarks:

- There is a natural association between a curve in \mathbb{R}^{n} and the vector function values $\mathbf{r}(t)$.

Motion in space motivates to define vector functions.

Remarks:

- There is a natural association between a curve in \mathbb{R}^{n} and the vector function values $\mathbf{r}(t)$.

- The curve is determined by the terminal points of the vector function values $\mathbf{r}(t)$.

Motion in space motivates to define vector functions.

Remarks:

- There is a natural association between a curve in \mathbb{R}^{n} and the vector function values $\mathbf{r}(t)$.

- The curve is determined by the terminal points of the vector function values $\mathbf{r}(t)$.
- The independent variable t is called the parameter of the curve.

Vector functions.

Example

Graph the vector function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Vector functions.

Example

Graph the vector function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$
x^{2}+y^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1
$$

Vector functions.

Example
 Graph the vector function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$
x^{2}+y^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1
$$

The $z(t)$ coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.

Vector functions.

Example

Graph the vector function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$
x^{2}+y^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1 .
$$

The $z(t)$ coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.

Vector functions.

Example

Graph the vector function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$.

Vector functions.

Example

Graph the vector function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$
x^{2}+z^{2}=\sin ^{2}(t)+\cos ^{2}(t)=1
$$

Vector functions.

Example
 Graph the vector function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$
x^{2}+z^{2}=\sin ^{2}(t)+\cos ^{2}(t)=1
$$

The $y(t)$ coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the cylinder surface when t increases.

Vector functions.

Example

Graph the vector function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$
x^{2}+z^{2}=\sin ^{2}(t)+\cos ^{2}(t)=1 .
$$

The $y(t)$ coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the cylinder surface when t increases.

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Limits and continuity of vector functions.

Definition
The vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2$, 3 , has a limit given by the vector \mathbf{L} when t approaches t_{0}, denoted as $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{L}$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\left|t-t_{0}\right|<\delta \quad \Rightarrow \quad|\mathbf{r}(t)-\mathbf{L}|<\epsilon
$$

Limits and continuity of vector functions.

Definition

The vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2$, 3 , has a limit given by the vector \mathbf{L} when t approaches t_{0}, denoted as $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{L}$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\left|t-t_{0}\right|<\delta \quad \Rightarrow \quad|\mathbf{r}(t)-\mathbf{L}|<\epsilon
$$

Remark:

- The limit of $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ as $t \rightarrow t_{0}$ is the limit of its components $x(t), y(t), z(t)$ in Cartesian coordinates.

Limits and continuity of vector functions.

Definition

The vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2$, 3 , has a limit given by the vector \mathbf{L} when t approaches t_{0}, denoted as $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{L}$, iff the following holds: For every number $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\left|t-t_{0}\right|<\delta \quad \Rightarrow \quad|\mathbf{r}(t)-\mathbf{L}|<\epsilon
$$

Remark:

- The limit of $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ as $t \rightarrow t_{0}$ is the limit of its components $x(t), y(t), z(t)$ in Cartesian coordinates.
- That is:
$\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$.
$\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$.

Example

Given $\mathbf{r}(t)=\left\langle\cos (t), \sin (t) / t, t^{2}+2\right\rangle$, compute $\lim _{t \rightarrow 0} \mathbf{r}(t)$.
$\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$.

Example
Given $\mathbf{r}(t)=\left\langle\cos (t), \sin (t) / t, t^{2}+2\right\rangle$, compute $\lim _{t \rightarrow 0} \mathbf{r}(t)$.
Solution:
Notice that the vector function \mathbf{r} is not defined at $t=0$, however its limit at $t=0$ exists.
$\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$.

Example
Given $\mathbf{r}(t)=\left\langle\cos (t), \sin (t) / t, t^{2}+2\right\rangle$, compute $\lim _{t \rightarrow 0} \mathbf{r}(t)$.
Solution:
Notice that the vector function \mathbf{r} is not defined at $t=0$, however its limit at $t=0$ exists. Indeed,

$$
\begin{aligned}
\lim _{t \rightarrow 0} \mathbf{r}(t) & =\lim _{t \rightarrow 0}\left\langle\cos (t), \frac{\sin (t)}{t}, t^{2}+2\right\rangle \\
& =\left\langle\lim _{t \rightarrow 0} \cos (t), \lim _{t \rightarrow 0} \frac{\sin (t)}{t}, \lim _{t \rightarrow 0}\left(t^{2}+2\right)\right\rangle \\
& =\langle 1,1,2\rangle
\end{aligned}
$$

We conclude that $\lim _{t \rightarrow 0} \mathbf{r}(t)=\langle 1,1,2\rangle$.

Limits and continuity of vector functions.

Definition

A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is continuous at $t=t_{0} \in I$ iff holds $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right)$. The function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is continuous if it is continuous at every t in its domain interval l.

Limits and continuity of vector functions.

Definition

A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is continuous at $t=t_{0} \in I$ iff holds $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right)$. The function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is continuous if it is continuous at every t in its domain interval l.

Remark: A vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is continuous iff each component is continuous.

Limits and continuity of vector functions.

Definition

A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is continuous at $t=t_{0} \in I$ iff holds $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right)$. The function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is continuous if it is continuous at every t in its domain interval l.

Remark: A vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is continuous iff each component is continuous.

Example
The function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$ is continuous for $t \in \mathbb{R} . \quad \triangleleft$

Limits and continuity of vector functions.

Definition

A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is continuous at $t=t_{0} \in I$ iff holds $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right)$. The function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is continuous if it is continuous at every t in its domain interval l.

Remark: A vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is continuous iff each component is continuous.

Example
The function $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$ is continuous for $t \in \mathbb{R} . \quad \triangleleft$

Remark: Having the idea of limit, one can introduce the idea of a derivative of a vector valued function.

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Derivatives and motion.

Definition

The vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is differentiable at $t=t_{0}$, denoted as $\mathbf{r}^{\prime}(t)$ or $\frac{d \mathbf{r}}{d t}$, iff the following limit exists,

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} .
$$

Derivatives and motion.

Definition

The vector function $\mathbf{r}: \boldsymbol{I} \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is differentiable at $t=t_{0}$, denoted as $\mathbf{r}^{\prime}(t)$ or $\frac{d \mathbf{r}}{d t}$, iff the following limit exists,

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} .
$$

Remarks:

- A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is differentiable if it is differentiable for each $t \in I$.

Derivatives and motion.

Definition

The vector function $\mathbf{r}: / \rightarrow \mathbb{R}^{n}$, with $n=2,3$, is differentiable at $t=t_{0}$, denoted as $\mathbf{r}^{\prime}(t)$ or $\frac{d \mathbf{r}}{d t}$, iff the following limit exists,

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} .
$$

Remarks:

- A vector function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ is differentiable if it is differentiable for each $t \in I$.
- If a vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is differentiable, then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

Derivatives and motion.

Theorem
If a vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is differentiable, then $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.

Derivatives and motion.

Theorem
If a vector function with Cartesian components $\mathbf{r}=\langle x, y, z\rangle$ is differentiable, then $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.

Proof.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} \\
& =\lim _{h \rightarrow 0}\left\langle\frac{x(t+h)-x(t)}{h}, \frac{y(t+h)-y(t)}{h}, \frac{z(t+h)-z(t)}{h}\right\rangle \\
& =\left\langle\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}, \lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}, \lim _{h \rightarrow 0} \frac{z(t+h)-z(t)}{h}\right\rangle \\
& =\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
\end{aligned}
$$

Derivatives and motion.

Example

Find the derivative of the vector function
$\mathbf{r}(t)=\left\langle\cos (t), \sin (t),\left(t^{2}+3 t-1\right)\right\rangle$.

Derivatives and motion.

Example

Find the derivative of the vector function
$\mathbf{r}(t)=\left\langle\cos (t), \sin (t),\left(t^{2}+3 t-1\right)\right\rangle$.
Solution: We differentiate each component of \mathbf{r}, that is,

$$
\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t),(2 t+3)\rangle
$$

Derivatives and motion.

Example

Find the derivative of the vector function
$\mathbf{r}(t)=\left\langle\cos (t), \sin (t),\left(t^{2}+3 t-1\right)\right\rangle$.
Solution: We differentiate each component of \mathbf{r}, that is,

$$
\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t),(2 t+3)\rangle
$$

Example
Find the derivative of the vector function $\mathbf{r}(t)=\left\langle\cos (2 t), e^{3 t}, 1 / t\right\rangle$.

Derivatives and motion.

Example

Find the derivative of the vector function
$\mathbf{r}(t)=\left\langle\cos (t), \sin (t),\left(t^{2}+3 t-1\right)\right\rangle$.
Solution: We differentiate each component of \mathbf{r}, that is,

$$
\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t),(2 t+3)\rangle
$$

Example
Find the derivative of the vector function $\mathbf{r}(t)=\left\langle\cos (2 t), e^{3 t}, 1 / t\right\rangle$.
Solution: We differentiate each component of \mathbf{r}, that is,

$$
\mathbf{r}^{\prime}(t)=\left\langle-2 \sin (2 t), 3 e^{3 t},-1 / t^{2}\right\rangle
$$

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}^{\prime}(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}^{\prime}(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}^{\prime}(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

- The derivative of the position function is the velocity function, $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$. The speed is $|\mathbf{v}(t)|$.

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}^{\prime}(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

- The derivative of the position function is the velocity function, $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$. The speed is $|\mathbf{v}(t)|$.
- The derivative of the velocity function is the acceleration function, $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.

Derivatives and motion.

Example

Compute the derivative of the position function $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$. Graph the curve given by \mathbf{r}, and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Derivatives and motion.

Example

Compute the derivative of the position function $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$. Graph the curve given by \mathbf{r}, and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Solution:
The derivative of \mathbf{r} is:

$$
\mathbf{v}(t)=\langle-\sin (t), \cos (t), 0\rangle
$$

Derivatives and motion.

Example

Compute the derivative of the position function $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$. Graph the curve given by \mathbf{r}, and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Solution:

The derivative of \mathbf{r} is:

$$
\begin{gathered}
\mathbf{v}(t)=\langle-\sin (t), \cos (t), 0\rangle \\
\mathbf{r}(0)=\langle 1,0,0\rangle, \mathbf{v}(0)=\langle 0,1,0\rangle
\end{gathered}
$$

Derivatives and motion.

Example

Compute the derivative of the position function $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle$. Graph the curve given by \mathbf{r}, and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Solution:

The derivative of \mathbf{r} is:

$$
\begin{gathered}
\mathbf{v}(t)=\langle-\sin (t), \cos (t), 0\rangle \\
\mathbf{r}(0)=\langle 1,0,0\rangle, \mathbf{v}(0)=\langle 0,1,0\rangle
\end{gathered}
$$

Differentiation rules are the same as for scalar functions

Theorem

If \mathbf{v} and \mathbf{w} are differentiable vector functions, then holds:

- $[\mathbf{v}(t)+\mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t)+\mathbf{w}^{\prime}(t)$,
(addition);
- $[c \mathbf{v}(t)]^{\prime}=c \mathbf{v}^{\prime}(t)$, (product rule);
- $[\mathbf{v}(f(t))]^{\prime}=\mathbf{v}^{\prime}(f(t)) f^{\prime}(t)$, (chain rule);
- $[f(t) \mathbf{v}(t)]^{\prime}=f^{\prime}(t) \mathbf{v}(t)+f(t) \mathbf{v}^{\prime}(t)$,
(product rule);
- $[\mathbf{v}(t) \cdot \mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t) \cdot \mathbf{w}(t)+\mathbf{v}(t) \cdot \mathbf{w}^{\prime}(t)$, (dot product);
- $[\mathbf{v}(t) \times \mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t) \times \mathbf{w}(t)+\mathbf{v}(t) \times \mathbf{w}^{\prime}(t)$, (cross product).

Higher derivatives can also be computed.

Remark: The m-derivative of a vector function \mathbf{r} is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t)=\left[\mathbf{r}^{(m-1)}(t)\right]^{\prime}$.

Higher derivatives can also be computed.

Remark: The m-derivative of a vector function \mathbf{r} is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t)=\left[\mathbf{r}^{(m-1)}(t)\right]^{\prime}$.

Example
Compute the third derivative of $\mathbf{r}(t)=\left\langle\cos (t), \sin (t), t^{2}+2 t+1\right\rangle$.

Higher derivatives can also be computed.

Remark: The m-derivative of a vector function \mathbf{r} is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t)=\left[\mathbf{r}^{(m-1)}(t)\right]^{\prime}$.

Example
Compute the third derivative of $\mathbf{r}(t)=\left\langle\cos (t), \sin (t), t^{2}+2 t+1\right\rangle$.
Solution:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-\sin (t), \cos (t), 2 t+2\rangle, \\
\mathbf{r}^{(2)}(t) & =\left(\mathbf{r}^{\prime}(t)\right)^{\prime}=\langle-\cos (t),-\sin (t), 2\rangle, \\
\mathbf{r}^{(3)}(t) & =\left(\mathbf{r}^{(2)}(t)\right)^{\prime}=\langle\sin (t),-\cos (t), 0\rangle .
\end{aligned}
$$

Higher derivatives can also be computed.

Remark: The m-derivative of a vector function \mathbf{r} is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t)=\left[\mathbf{r}^{(m-1)}(t)\right]^{\prime}$.

Example
Compute the third derivative of $\mathbf{r}(t)=\left\langle\cos (t), \sin (t), t^{2}+2 t+1\right\rangle$.
Solution:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-\sin (t), \cos (t), 2 t+2\rangle, \\
\mathbf{r}^{(2)}(t) & =\left(\mathbf{r}^{\prime}(t)\right)^{\prime}=\langle-\cos (t),-\sin (t), 2\rangle, \\
\mathbf{r}^{(3)}(t) & =\left(\mathbf{r}^{(2)}(t)\right)^{\prime}=\langle\sin (t),-\cos (t), 0\rangle .
\end{aligned}
$$

Recall: If $\mathbf{r}(t)$ is the position of a particle, then $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the velocity and $\mathbf{a}(t)=\mathbf{r}^{(2)}(t)$ is the acceleration of the particle.

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Integrals of vector functions.

Definition

The indefinite integral, also called the antiderivative, of a vector function \mathbf{v} is denoted as $\int \mathbf{v}(t) d t$ and given by

$$
\int \mathbf{v}(t) d t=\mathbf{V}(t)+\mathbf{C}
$$

where $\mathbf{V}^{\prime}(t)=\mathbf{v}(t)$ and \mathbf{C} is a constant vector.

Integrals of vector functions.

Definition

The indefinite integral, also called the antiderivative, of a vector function \mathbf{v} is denoted as $\int \mathbf{v}(t) d t$ and given by

$$
\int \mathbf{v}(t) d t=\mathbf{V}(t)+\mathbf{C}
$$

where $\mathbf{V}^{\prime}(t)=\mathbf{v}(t)$ and \mathbf{C} is a constant vector.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.

Integrals of vector functions.

Definition

The indefinite integral, also called the antiderivative, of a vector function \mathbf{v} is denoted as $\int \mathbf{v}(t) d t$ and given by

$$
\int \mathbf{v}(t) d t=\mathbf{V}(t)+\mathbf{C}
$$

where $\mathbf{V}^{\prime}(t)=\mathbf{v}(t)$ and \mathbf{C} is a constant vector.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.
Solution: The position function is the primitive of the velocity function, $\mathbf{r}(t)=\mathbf{V}(t)+\mathbf{C}$, that satisfies the initial condition $\mathbf{r}(0)=\mathbf{V}(0)+\mathbf{C}$. This initial condition fixes the constant vector \mathbf{C}.

Integrals of vector functions.

Example

Find the position function \mathbf{r} knowing that the velocity function is
$\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.

Integrals of vector functions.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.
Solution: The position function is a primitive of the velocity,

$$
\mathbf{r}(t)=\mathbf{V}(t)+\mathbf{C}=\left\langle t^{2}, \sin (t),-\cos (t)\right\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

with $\mathbf{C}=\left\langle c_{x}, c_{y}, c_{z}\right\rangle$ a constant vector.

Integrals of vector functions.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.
Solution: The position function is a primitive of the velocity,

$$
\mathbf{r}(t)=\mathbf{V}(t)+\mathbf{C}=\left\langle t^{2}, \sin (t),-\cos (t)\right\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

with $\mathbf{C}=\left\langle c_{x}, c_{y}, c_{z}\right\rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$
\langle 1,1,1\rangle=\mathbf{r}(0)=\mathbf{V}(0)+\mathbf{C}=\langle 0,0,-1\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

that is, $c_{x}=1, c_{y}=1, c_{z}=2$.

Integrals of vector functions.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t)=\langle 2 t, \cos (t), \sin (t)\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,1,1\rangle$.
Solution: The position function is a primitive of the velocity,

$$
\mathbf{r}(t)=\mathbf{V}(t)+\mathbf{C}=\left\langle t^{2}, \sin (t),-\cos (t)\right\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

with $\mathbf{C}=\left\langle c_{x}, c_{y}, c_{z}\right\rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$
\langle 1,1,1\rangle=\mathbf{r}(0)=\mathbf{V}(0)+\mathbf{C}=\langle 0,0,-1\rangle+\left\langle c_{x}, c_{y}, c_{z}\right\rangle
$$

that is, $c_{x}=1, c_{y}=1, c_{z}=2$.
The position function is $\mathbf{r}(t)=\left\langle t^{2}+1, \sin (t)+1,-\cos (t)+2\right\rangle . \triangleleft$

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.
Solution: The velocity is $\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.
Solution: The velocity is $\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle$. The initial condition implies $\langle 0,1,1\rangle=\mathbf{v}(0)=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$, that is $v_{0 x}=0, v_{0 y}=1, v_{0 z}=1$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.
Solution: The velocity is $\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle$. The initial condition implies $\langle 0,1,1\rangle=\mathbf{v}(0)=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$, that is $v_{0 x}=0, v_{0 y}=1, v_{0 z}=1$. The velocity function is

$$
\mathbf{v}(t)=\langle 0,1,(-10 t+1)\rangle .
$$

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.
Solution: The velocity is $\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle$. The initial condition implies $\langle 0,1,1\rangle=\mathbf{v}(0)=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$, that is $v_{0 x}=0, v_{0 y}=1, v_{0 z}=1$. The velocity function is

$$
\mathbf{v}(t)=\langle 0,1,(-10 t+1)\rangle .
$$

The position is $\mathbf{r}(t)=\left\langle r_{0 x},\left(t+r_{0 y}\right),\left(-5 t^{2}+t+r_{0 z}\right)\right\rangle$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.
Solution: The velocity is $\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle$. The initial condition implies $\langle 0,1,1\rangle=\mathbf{v}(0)=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$, that is $v_{0 x}=0, v_{0 y}=1, v_{0 z}=1$. The velocity function is

$$
\mathbf{v}(t)=\langle 0,1,(-10 t+1)\rangle .
$$

The position is $\mathbf{r}(t)=\left\langle r_{0 x},\left(t+r_{0 y}\right),\left(-5 t^{2}+t+r_{0 z}\right)\right\rangle$. The initial condition implies $\langle 1,0,1\rangle=\mathbf{r}(0)=\left\langle r_{0 x}, r_{0 y}, r_{0 z}\right\rangle$, that is $r_{0 x}=1, r_{0 y}=0, r_{0 z}=1$.

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t)=\langle 0,0,-10\rangle$ having an initial velocity $\mathbf{v}(0)=\langle 0,1,1\rangle$ and initial position $\mathbf{r}(0)=\langle 1,0,1\rangle$.
Solution: The velocity is $\mathbf{v}(t)=\left\langle v_{0 x}, v_{0 y},\left(-10 t+v_{0 z}\right)\right\rangle$. The initial condition implies $\langle 0,1,1\rangle=\mathbf{v}(0)=\left\langle v_{0 x}, v_{0 y}, v_{0 z}\right\rangle$, that is $v_{0 x}=0, v_{0 y}=1, v_{0 z}=1$. The velocity function is

$$
\mathbf{v}(t)=\langle 0,1,(-10 t+1)\rangle .
$$

The position is $\mathbf{r}(t)=\left\langle r_{0 x},\left(t+r_{0 y}\right),\left(-5 t^{2}+t+r_{0 z}\right)\right\rangle$. The initial condition implies $\langle 1,0,1\rangle=\mathbf{r}(0)=\left\langle r_{0 x}, r_{0 y}, r_{0 z}\right\rangle$, that is $r_{0 x}=1, r_{0 y}=0, r_{0 z}=1$. The velocity function is

$$
\mathbf{r}(t)=\left\langle 1, t,\left(-5 t^{2}+t+1\right)\right\rangle
$$

Integrals of vector functions.

Definition

If the components of $\mathbf{r}(t)=\langle\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)\rangle$ are integrable functions on the interval $[a, b]$, then the definite integral of \mathbf{r} is given by

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right\rangle
$$

Integrals of vector functions.

Definition

If the components of $\mathbf{r}(t)=\langle\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)\rangle$ are integrable functions on the interval $[a, b]$, then the definite integral of \mathbf{r} is given by

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right\rangle
$$

Example
Compute $\int_{0}^{\pi} \mathbf{r}(t) d t$ for the function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Integrals of vector functions.

Example

Compute $\int_{0}^{\pi} \mathbf{r}(t) d t$ for the function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$.

Integrals of vector functions.

Example

Compute $\int_{0}^{\pi} \mathbf{r}(t) d t$ for the function $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$. Solution:

$$
\begin{aligned}
\int_{0}^{\pi} \mathbf{r}(t) d t & =\int_{0}^{\pi}\langle\cos (t), \sin (t), t\rangle d t \\
& =\left\langle\int_{0}^{\pi} \cos (t) d t, \int_{0}^{\pi} \sin (t) d t, \int_{0}^{\pi} t d t\right\rangle, \\
& =\left\langle\left.\sin (t)\right|_{0} ^{\pi},-\left.\cos (t)\right|_{0} ^{\pi},\left.\frac{t^{2}}{2}\right|_{0} ^{\pi},\right\rangle \\
& =\left\langle 0,2, \frac{\pi^{2}}{2}\right\rangle, \Rightarrow \int_{0}^{\pi} \mathbf{r}(t) d t=\left\langle 0,2, \frac{\pi^{2}}{2}\right\rangle .
\end{aligned}
$$

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

The length of a curve is called its arc length.

Definition
The arc length of a continuously differentiable curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{n}$, with $\mathrm{n}=2,3$, is the number given by

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

The length of a curve is called its arc length.

Definition

The arc length of a continuously differentiable curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{n}$, with $\mathrm{n}=2,3$, is the number given by

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t .
$$

Remark:

- If the curve \mathbf{r} is the path traveled by a particle in space, then $\mathbf{r}^{\prime}=\mathbf{v}$ is the velocity of the particle.

The length of a curve is called its arc length.

Definition

The arc length of a continuously differentiable curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{n}$, with $\mathrm{n}=2,3$, is the number given by

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Remark:

- If the curve \mathbf{r} is the path traveled by a particle in space, then $\mathbf{r}^{\prime}=\mathbf{v}$ is the velocity of the particle.
- The arc length is the integral in time of the particle speed $|\mathbf{v}(t)|$.

The length of a curve is called its arc length.

Definition

The arc length of a continuously differentiable curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{n}$, with $\mathrm{n}=2,3$, is the number given by

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Remark:

- If the curve \mathbf{r} is the path traveled by a particle in space, then $\mathbf{r}^{\prime}=\mathbf{v}$ is the velocity of the particle.
- The arc length is the integral in time of the particle speed $|\mathbf{v}(t)|$.
- Therefore, the arc length of the curve is the distance traveled by the particle.

The length of a curve is called its arc length.

Recall:
The arc length of a curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

The length of a curve is called its arc length.

Recall:
The arc length of a curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Remark:

In Cartesian coordinates the functions \mathbf{r} and \mathbf{r}^{\prime} are given by

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad \mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle .
$$

The length of a curve is called its arc length.

Recall:
The arc length of a curve $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t .
$$

Remark:
In Cartesian coordinates the functions \mathbf{r} and \mathbf{r}^{\prime} are given by

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad \mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle .
$$

Therefore the arc length of the curve is given by the expression

$$
\ell_{b a}=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

The arc length of a curve in a plane.

Example

Find the arc length of the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$, for $t \in[\pi / 4,3 \pi / 4]$.

The arc length of a curve in a plane.

Example

Find the arc length of the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$, for $t \in[\pi / 4,3 \pi / 4]$.

Solution: The derivative vector function is
$\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle$.

The arc length of a curve in a plane.

Example

Find the arc length of the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$, for $t \in[\pi / 4,3 \pi / 4]$.

Solution: The derivative vector function is $\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle$. The arc length formula is

$$
\begin{aligned}
\ell & =\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-\sin (t)]^{2}+[\cos (t)]^{2}} d t \\
& =\int_{\pi / 4}^{3 \pi / 4} d t \Rightarrow \quad \ell=\frac{\pi}{2}
\end{aligned}
$$

The arc length of a curve in a plane.

Example

Find the arc length of the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle$, for $t \in[\pi / 4,3 \pi / 4]$.

Solution: The derivative vector function is $\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle$. The arc length formula is

$$
\begin{aligned}
\ell & =\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-\sin (t)]^{2}+[\cos (t)]^{2}} d t \\
& =\int_{\pi / 4}^{3 \pi / 4} d t \Rightarrow \quad \ell=\frac{\pi}{2} .
\end{aligned}
$$

This result is reasonable, since the curve is a circle and we are computing the length of quarter a circle.

The arc length of a curve in a plane.

Example

Find the arc length of the spiral $\mathbf{r}(t)=\langle t \cos (t), t \sin (t)\rangle$, for $t \in\left[0, t_{0}\right]$.

The arc length of a curve in a plane.

Example

Find the arc length of the spiral $\mathbf{r}(t)=\langle t \cos (t), t \sin (t)\rangle$, for $t \in\left[0, t_{0}\right]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle[-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]=t^{2}+1
\end{aligned}
$$

The arc length of a curve in a plane.

Example

Find the arc length of the spiral $\mathbf{r}(t)=\langle t \cos (t), t \sin (t)\rangle$, for $t \in\left[0, t_{0}\right]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle[-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]=t^{2}+1 .
\end{aligned}
$$

The arc length is $\ell\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t$

The arc length of a curve in a plane.

Example

Find the arc length of the spiral $\mathbf{r}(t)=\langle t \cos (t), t \sin (t)\rangle$, for $t \in\left[0, t_{0}\right]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle[-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]=t^{2}+1 .
\end{aligned}
$$

The arc length is $\ell\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t=\left.\ln \left(t+\sqrt{1+t^{2}}\right)\right|_{0} ^{t_{0}}$.

The arc length of a curve in a plane.

Example

Find the arc length of the spiral $\mathbf{r}(t)=\langle t \cos (t), t \sin (t)\rangle$, for $t \in\left[0, t_{0}\right]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle[-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]=t^{2}+1 .
\end{aligned}
$$

The arc length is $\ell\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t=\left.\ln \left(t+\sqrt{1+t^{2}}\right)\right|_{0} ^{t_{0}}$.
We conclude: $\ell\left(t_{0}\right)=\ln \left(t_{0}+\sqrt{1+t_{0}^{2}}\right)$.

The arc length of a curve in space.

Example

Find the arc length of
$\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, for
$t \in[0, \pi]$.

The arc length of a curve in space.

Example

Find the arc length of
$\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, for $t \in[0, \pi]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-12 \sin (2 t), 12 \cos (2 t), 5\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =144\left[\sin ^{2}(2 t)+\cos ^{2}(2 t)\right]+25=169=(13)^{2}
\end{aligned}
$$

The arc length of a curve in space.

Example

Find the arc length of
$\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, for $t \in[0, \pi]$.

Solution: The derivative vector is

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-12 \sin (2 t), 12 \cos (2 t), 5\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|^{2} & =144\left[\sin ^{2}(2 t)+\cos ^{2}(2 t)\right]+25=169=(13)^{2}
\end{aligned}
$$

The arc length is $\ell=\int_{0}^{\pi} 13 d t=\left.13 t\right|_{0} ^{\pi} \quad \Rightarrow \quad \ell=13 \pi$.

Idea behind the arc length formula.

The arc length formula can be obtained as a limit procedure One adds up the lengths of a polygonal line that approximates the original curve.

$$
\begin{aligned}
\ell_{N} & =\sum_{n=0}^{N-1}\left|\mathbf{r}\left(t_{n+1}\right)-\mathbf{r}\left(t_{n}\right)\right|, \quad\left\{a=t_{0}, t_{1}, \cdots, t_{N-1}, t_{N}=b\right\} \\
& \simeq \sum_{n=0}^{N-1}\left|\mathbf{r}^{\prime}\left(t_{n}\right)\right|\left(t_{n+1}-t_{n}\right) \xrightarrow{N \rightarrow \infty} \int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
\end{aligned}
$$

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

The arc length function.

Definition
function. The arc length function of a continuously differentiable vector function \mathbf{r} is given by

$$
\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

The arc length function.

Definition

function. The arc length function of a continuously differentiable vector function \mathbf{r} is given by

$$
\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

Remarks:

- The value $\ell(t)$ of the arc length function represents the length along the curve \mathbf{r} from t_{0} to t.

The arc length function.

Definition

function. The arc length function of a continuously differentiable vector function \mathbf{r} is given by

$$
\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

Remarks:

- The value $\ell(t)$ of the arc length function represents the length along the curve \mathbf{r} from t_{0} to t.
- If the function \mathbf{r} is the position of a moving particle as function of time, then the arc length $\ell(t)$ is the distance traveled by the particle from the time t_{0} to t.

The arc length function.

Example

Find the arc length function for the curve $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, starting at $t=0$.

The arc length function.

Example

Find the arc length function for the curve $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, starting at $t=0$.

Solution: We have found that $\left|\mathbf{r}^{\prime}(t)\right|=13$. Therefore,

$$
\ell(t)=\int_{0}^{t} 13 d \tau \quad \Rightarrow \quad \ell(t)=13 t
$$

The arc length function.

Example

Given the position function in time $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, find the position vector $\mathbf{r}\left(t_{0}\right)$ located at a length $\ell_{0}=20$ from the initial position $\mathbf{r}(0)$.

The arc length function.

Example

Given the position function in time $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, find the position vector $\mathbf{r}\left(t_{0}\right)$ located at a length $\ell_{0}=20$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the arc length function for the vector function \mathbf{r} is $\ell(t)=13 t$.

The arc length function.

Example

Given the position function in time $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, find the position vector $\mathbf{r}\left(t_{0}\right)$ located at a length $\ell_{0}=20$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the arc length function for the vector function \mathbf{r} is $\ell(t)=13 t$.
Since $t=\ell / 13$, the time at $\ell=\ell_{0}=20$ is $t_{0}=13 / 20$.

The arc length function.

Example

Given the position function in time $\mathbf{r}(t)=\langle 6 \cos (2 t), 6 \sin (2 t), 5 t\rangle$, find the position vector $\mathbf{r}\left(t_{0}\right)$ located at a length $\ell_{0}=20$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the arc length function for the vector function \mathbf{r} is $\ell(t)=13 t$.
Since $t=\ell / 13$, the time at $\ell=\ell_{0}=20$ is $t_{0}=13 / 20$.
Therefore, the position vector at $\ell_{0}=20$ is given by

$$
\mathbf{r}\left(t_{0}\right)=\langle 6 \cos (13 / 10), 6 \sin (13 / 10), 13 / 4\rangle
$$

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.

Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^{2} is the curve represented by the following vector functions:

- $\mathbf{r}_{1}(t)=\langle\cos (t), \sin (t)\rangle ;$
- $\mathbf{r}_{2}(t)=\langle\cos (5 t), \sin (5 t)\rangle ;$
- $\mathbf{r}_{3}(t)=\left\langle\cos \left(e^{t}\right), \sin \left(e^{t}\right)\right\rangle$.

Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^{2} is the curve represented by the following vector functions:

- $\mathbf{r}_{1}(t)=\langle\cos (t), \sin (t)\rangle ;$
- $\mathbf{r}_{2}(t)=\langle\cos (5 t), \sin (5 t)\rangle ;$
- $\mathbf{r}_{3}(t)=\left\langle\cos \left(e^{t}\right), \sin \left(e^{t}\right)\right\rangle$.

Remark:
The curve in space is the same for all three functions above. The vector \mathbf{r} moves along the curve at different speeds for the different parametrizations.

Parametrizations of a curve.

Remarks:

- If the vector function \mathbf{r} represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.

Parametrizations of a curve.

Remarks:

- If the vector function \mathbf{r} represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.
- Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length ℓ.

Parametrizations of a curve.

Remarks:

- If the vector function \mathbf{r} represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.
- Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length ℓ.
- A common problem is the following: Given a vector function parametrized by the time t, switch the curve parameter to the arc length ℓ.

Parametrizations of a curve.

Remarks:

- If the vector function \mathbf{r} represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.
- Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length ℓ.
- A common problem is the following: Given a vector function parametrized by the time t, switch the curve parameter to the arc length ℓ.
- The problem above is called the arc length parametrization of a curve.

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

The arc length parametrization of a curve.

Problem:
Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t=t_{0}$.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t=t_{0}$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t=t_{0}$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- Example: If $\ell(t)=3 e^{t / 2}$, then $t(\ell)=2 \ln (\ell / 3)$.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t=t_{0}$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- Example: If $\ell(t)=3 e^{t / 2}$, then $t(\ell)=2 \ln (\ell / 3)$.
- Compute the composition function $\mathbf{r}(\ell)=\mathbf{r}(t(\ell))$. That is, replace t by $t(\ell)$ in the function values $\mathbf{r}(t)$.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t=t_{0}$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- Example: If $\ell(t)=3 e^{t / 2}$, then $t(\ell)=2 \ln (\ell / 3)$.
- Compute the composition function $\mathbf{r}(\ell)=\mathbf{r}(t(\ell))$. That is, replace t by $t(\ell)$ in the function values $\mathbf{r}(t)$.

The function values $\mathbf{r}(\ell)$ are the parametrization of the function values $\mathbf{r}(t)$ using the arc length as the new parameter.

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=0$.

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=0$.

Solution: First find the derivative function:

$$
\mathbf{r}^{\prime}(t)=\langle-4 \sin (t), 4 \cos (t), 3\rangle
$$

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=0$.

Solution: First find the derivative function:

$$
\mathbf{r}^{\prime}(t)=\langle-4 \sin (t), 4 \cos (t), 3\rangle
$$

Hence, $\left|\mathbf{r}^{\prime}(t)\right|^{2}=4^{2} \sin ^{2}(t)+4^{2} \cos ^{2}(t)+3^{2}=16+9=5^{2}$.

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=0$.

Solution: First find the derivative function:

$$
\mathbf{r}^{\prime}(t)=\langle-4 \sin (t), 4 \cos (t), 3\rangle
$$

Hence, $\left|\mathbf{r}^{\prime}(t)\right|^{2}=4^{2} \sin ^{2}(t)+4^{2} \cos ^{2}(t)+3^{2}=16+9=5^{2}$.
Find the arc length function: $\ell(t)=\int_{0}^{t} 5 d \tau \quad \Rightarrow \quad \ell(t)=5 t$.

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=0$.

Solution: First find the derivative function:

$$
\mathbf{r}^{\prime}(t)=\langle-4 \sin (t), 4 \cos (t), 3\rangle
$$

Hence, $\left|\mathbf{r}^{\prime}(t)\right|^{2}=4^{2} \sin ^{2}(t)+4^{2} \cos ^{2}(t)+3^{2}=16+9=5^{2}$.
Find the arc length function: $\ell(t)=\int_{0}^{t} 5 d \tau \quad \Rightarrow \quad \ell(t)=5 t$. Invert the equation above: $t=\ell / 5$.

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ starting at $t=0$.

Solution: First find the derivative function:

$$
\mathbf{r}^{\prime}(t)=\langle-4 \sin (t), 4 \cos (t), 3\rangle
$$

Hence, $\left|\mathbf{r}^{\prime}(t)\right|^{2}=4^{2} \sin ^{2}(t)+4^{2} \cos ^{2}(t)+3^{2}=16+9=5^{2}$.
Find the arc length function: $\ell(t)=\int_{0}^{t} 5 d \tau \quad \Rightarrow \quad \ell(t)=5 t$. Invert the equation above: $t=\ell / 5$.
Reparametrize the original curve:

$$
\mathbf{r}(\ell)=\langle 4 \cos (\ell / 5), 4 \sin (\ell / 5), 3 \ell / 5\rangle
$$

The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell}$, where ℓ is the arc length of the curve.

The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell}$, where ℓ is the arc length of the curve.

Proof.
Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau$.

The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell}$, where ℓ is the arc length of the curve.

Proof.
Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau$.
Notice that $\frac{d \ell}{d t}=\left|\mathbf{r}^{\prime}(t)\right|$ and $\frac{d t}{d \ell}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}$.

The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell}$, where ℓ is the arc length of the curve.

Proof.
Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau$.
Notice that $\frac{d \ell}{d t}=\left|\mathbf{r}^{\prime}(t)\right|$ and $\frac{d t}{d \ell}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}$.
Therefore, $\mathbf{u}(\ell)=\frac{d \mathbf{r}(\ell)}{d \ell}=\frac{d \mathbf{r}(t)}{d t} \frac{d t}{d \ell}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.

The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell}$, where ℓ is the arc length of the curve.

Proof.
Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau$.
Notice that $\frac{d \ell}{d t}=\left|\mathbf{r}^{\prime}(t)\right|$ and $\frac{d t}{d \ell}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}$.
Therefore, $\mathbf{u}(\ell)=\frac{d \mathbf{r}(\ell)}{d \ell}=\frac{d \mathbf{r}(t)}{d t} \frac{d t}{d \ell}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.
We conclude that $|\mathbf{u}(\ell)|=1$.

The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
$\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ for $t \geqslant 0$.

The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
$\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ for $t \geqslant 0$.
Solution: Reparametrize the curve using the arc length.

The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
$\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ for $t \geqslant 0$.
Solution: Reparametrize the curve using the arc length. We get

$$
\mathbf{r}(\ell)=\langle 4 \cos (\ell / 5), 4 \sin (\ell / 5), 3 \ell / 5\rangle .
$$

The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
$\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ for $t \geqslant 0$.
Solution: Reparametrize the curve using the arc length. We get

$$
\mathbf{r}(\ell)=\langle 4 \cos (\ell / 5), 4 \sin (\ell / 5), 3 \ell / 5\rangle .
$$

Therefore, a unit tangent vector is

$$
\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell} \Rightarrow \mathbf{u}(\ell)=\left\langle-\frac{4}{5} \sin (\ell / 5), \frac{4}{5} \cos (\ell / 5), \frac{3}{5}\right\rangle .
$$

The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
$\mathbf{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 t\rangle$ for $t \geqslant 0$.
Solution: Reparametrize the curve using the arc length. We get

$$
\mathbf{r}(\ell)=\langle 4 \cos (\ell / 5), 4 \sin (\ell / 5), 3 \ell / 5\rangle .
$$

Therefore, a unit tangent vector is

$$
\mathbf{u}(\ell)=\frac{d \mathbf{r}}{d \ell} \Rightarrow \mathbf{u}(\ell)=\left\langle-\frac{4}{5} \sin (\ell / 5), \frac{4}{5} \cos (\ell / 5), \frac{3}{5}\right\rangle .
$$

We can verify that this is a unit vector, since

$$
|\mathbf{u}(\ell)|^{2}=\left(\frac{4}{5}\right)^{2}\left[\sin ^{2}(\ell / 5)+\cos ^{2}(\ell / 5)\right]+\left(\frac{3}{5}\right)^{2} \Rightarrow|\mathbf{u}(\ell)|=1
$$

