
Review for Exam 1.

I Sections 12.1-12.6.

I 50 minutes.

I 5 or 6 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.



Example

Consider the vectors v = 2 i− 2 j + k and w = i + 2 j − k.

1. Compute v ·w.

Solution:

v ·w = 〈2,−2, 1〉 · 〈1, 2,−1〉 = 2− 4− 1 ⇒ v ·w = −3.

C

2. Find the cosine of the angle between v and w.

Solution:

|v| =
√

4 + 4 + 1 = 3, |w| =
√

1 + 4 + 1 =
√

6.

cos(θ) =
v ·w
|v| |w|

=
−3

3
√

6
⇒ cos(θ) = − 1√

6
.

C
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Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
,

|v| =
√

1 + 4 + 1 =
√

6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉.

Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1.

⇒ |u− 2v| =
√

38.

C



Example

1. Find a unit vector in the direction of v = i− 2 j + k.

Solution:

u =
v

|v|
, |v| =

√
1 + 4 + 1 =

√
6,

u =
1√
6
〈1,−2, 1〉.

2. Find |u− 2v|, where u = 3 i + 2 j + k, v = i− 2 j + k.

Solution: First: u− 2v = 〈1, 6,−1〉. Then,

|u− 2v| =
√

1 + 36 + 1. ⇒ |u− 2v| =
√

38.

C



Example

Find a unit vector u normal to both v = 〈6, 2,−3〉 and
w = 〈−2, 2, 1〉.

Solution:

v×w =

∣∣∣∣∣∣
i j k
6 2 −3
−2 2 1

∣∣∣∣∣∣ = (2+6)i− (6−6)j +(12+4)k = 〈8, 0, 16〉.

Since we look for a unit vector, the calculation is simpler with
〈1, 0, 2〉 instead of 〈8, 0, 16〉.

u =
〈1, 0, 2〉
|〈1, 0, 2〉|

⇒ u =
1√
5
〈1, 0, 2〉.

C
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Example

Find the area of the parallelogram formed by v and w above.

Solution:
Since v×w = 〈8, 0, 16〉, then

A = |v×w| = |〈8, 0, 16〉| =
√

82 + 162 =
√

82(1 + 4).

A = 8
√

5.

C
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Example

Find the volume of the parallelepiped determined by the vectors
u = 〈6, 3,−1〉, v = 〈0, 1, 2〉, and w = 〈4,−2, 5〉.

Solution: We need to compute the triple product u · (v×w).
We must start with the cross product.

v×w =

∣∣∣∣∣∣
i j k
0 1 2
4 −2 5

∣∣∣∣∣∣ = 〈(5 + 4),−(0− 8), (0− 4)〉

We obtain v×w = 〈9, 8,−4〉. The triple product is

u · (v×w) = 〈6, 3,−1〉 · 〈9, 8,−4〉 = 54 + 24 + 4 = 82.

Since V = |u · (v×w)|, we obtain V = 82.
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Example

Does the line given by r(t) = 〈0, 1, 1〉+ 〈1, 2, 3〉t intersects the
plane given by 2x + y − z = 1? If the answer is yes, then find the
intersection point.

Solution: The line with parametric equation

x = t, y = 1 + 2t, z = 1 + 3t,

intersect the plane 2x + y − z = 1 iff there is a solution t for the
equation

2t + (1 + 2t)− (1 + 3t) = 1.

There is a solution given by t = 1. Therefore, the point of
intersection has coordinates x = 1, y = 3, z = 4, then

P = (1, 3, 4).

C
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Example

Find the equation for the plane that contains the point
P0 = (1, 2, 3) and the line x = −2 + t, y = t, z = −1 + 2t.

Solution:

The vector equation of the line is
r(t) = 〈−2, 0,−1〉+ 〈1, 1, 2〉t.

1

P

V

line

0

P

A vector tangent to the line, and so to the plane, is v = 〈1, 1, 2〉.
The point P0 = (1, 2, 3) is in the plane. A second point in the
plane is any point in the line, for example P1 corresponding to the
terminal point of r(0) = 〈−2, 0,−1〉.
Then a second vector tangent to the plane is

−−−→
P1P0 = 〈3, 2, 4〉.



Example

Find the equation for the plane that contains the point
P0 = (1, 2, 3) and the line x = −2 + t, y = t, z = −1 + 2t.

Solution:

The vector equation of the line is
r(t) = 〈−2, 0,−1〉+ 〈1, 1, 2〉t.

1

P

V

line

0

P

A vector tangent to the line, and so to the plane, is v = 〈1, 1, 2〉.
The point P0 = (1, 2, 3) is in the plane. A second point in the
plane is any point in the line, for example P1 corresponding to the
terminal point of r(0) = 〈−2, 0,−1〉.
Then a second vector tangent to the plane is

−−−→
P1P0 = 〈3, 2, 4〉.



Example

Find the equation for the plane that contains the point
P0 = (1, 2, 3) and the line x = −2 + t, y = t, z = −1 + 2t.

Solution:

The vector equation of the line is
r(t) = 〈−2, 0,−1〉+ 〈1, 1, 2〉t.

1

P

V

line

0

P

A vector tangent to the line, and so to the plane, is v = 〈1, 1, 2〉.

The point P0 = (1, 2, 3) is in the plane. A second point in the
plane is any point in the line, for example P1 corresponding to the
terminal point of r(0) = 〈−2, 0,−1〉.
Then a second vector tangent to the plane is

−−−→
P1P0 = 〈3, 2, 4〉.



Example

Find the equation for the plane that contains the point
P0 = (1, 2, 3) and the line x = −2 + t, y = t, z = −1 + 2t.

Solution:

The vector equation of the line is
r(t) = 〈−2, 0,−1〉+ 〈1, 1, 2〉t.

1

P

V

line

0

P

A vector tangent to the line, and so to the plane, is v = 〈1, 1, 2〉.
The point P0 = (1, 2, 3) is in the plane. A second point in the
plane is any point in the line, for example P1 corresponding to the
terminal point of r(0) = 〈−2, 0,−1〉.

Then a second vector tangent to the plane is
−−−→
P1P0 = 〈3, 2, 4〉.



Example

Find the equation for the plane that contains the point
P0 = (1, 2, 3) and the line x = −2 + t, y = t, z = −1 + 2t.

Solution:

The vector equation of the line is
r(t) = 〈−2, 0,−1〉+ 〈1, 1, 2〉t.

1

P

V

line

0

P

A vector tangent to the line, and so to the plane, is v = 〈1, 1, 2〉.
The point P0 = (1, 2, 3) is in the plane. A second point in the
plane is any point in the line, for example P1 corresponding to the
terminal point of r(0) = 〈−2, 0,−1〉.
Then a second vector tangent to the plane is

−−−→
P1P0 = 〈3, 2, 4〉.



Example

Find the equation for the plane that contains the point
P0 = (1, 2, 3) and the line x = −2 + t, y = t, z = −1 + 2t.

Solution:

The vector equation of the line is
r(t) = 〈−2, 0,−1〉+ 〈1, 1, 2〉t,
and a second vector tangent to

the plane is
−−−→
P1P0 = 〈3, 2, 4〉.

1

P

V

line

0

P
1

P P
0

Then, a normal to the plane is given by
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i j k
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3 2 4

∣∣∣∣∣∣ = 〈(4− 4),−(4− 6), (2− 3)〉 ⇒ n = 〈0, 2,−1〉.

So, the equation of the plane is

0 (x − 1) + 2(y − 2)− (z − 3) = 0, ⇒ 2y − z = 1.
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Example

Find an equation for the plane that passes through the points
(1, 1, 1), (1,−1, 1), and (0, 0, 2).

Solution: Denote P = (1, 1, 1), Q = (1,−1, 1), and R = (0, 0, 2).
Then,

~PQ = 〈0,−2, 0〉, ~PR = 〈−1,−1, 1〉,

~PQ × ~PR =

∣∣∣∣∣∣
i j k
0 −2 0
−1 −1 1

∣∣∣∣∣∣ = (−2− 0)i− (0− 0)j + (0− 2)k,

that is, ~PQ × ~PR = 〈−2, 0,−2〉. Take n = 〈2, 0, 2〉.
With n = 〈2, 0, 2〉 and a point R = (0, 0, 2), the equation of the
plane is

2(x − 0) + 0(y − 0) + 2(z − 2) = 0 ⇒ x + z = 2.
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Example

Find the equation of the plane that is parallel to the plane
x − 2y + 3z = 1 and passes through the center of the sphere
x2 + 2x + y2 + z2 − 2z = 0.

Solution: The plane is parallel to the plane x − 2y + 3z = 1, so
their normal vectors are parallel. We choose n = 〈1,−2, 3〉.
We need to find the center of the sphere. We complete squares:

0 = x2 + 2x + y2 + z2 − 2z

= (x2 + 2x + 1)− 1 + y2 + (z2 − 2z + 1)− 1 = 0

= (x + 1)2 + y2 + (z − 1)2 − 2.

Therefore, the center of the sphere is at P0 = (−1, 0, 1).
The equation of the plane is

(x + 1)− 2(y − 0) + 3(z − 1) = 0 ⇒ x − 2y + 3z = 2.
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Example

Find the angle between the planes 2x − 3y + 2z = 1 and
x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their
normal vectors.
The normal vectors are n = 〈2,−3, 2〉, N = 〈1, 2, 2〉.
The cosine of the angle θ between these vectors is

cos(θ) =
n ·N
|n| |N|

.

Since n ·N = 2− 6 + 4 = 0, we conclude that n ⊥ N.
The angle θ is θ = π/2. C
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Example

Find the vector equation for the line of intersection of the planes
2x − 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: We first find the vector tangent to the line. This is a
vector v that belongs to both planes.
This means that v is perpendicular to both normal vectors
n = 〈2,−3, 2〉 and N = 〈1, 2, 2〉.
One such vector is

v = n×N =

∣∣∣∣∣∣
i j k
2 −3 2
1 2 2

∣∣∣∣∣∣ = 〈(−6− 4),−(4− 2), (4 + 3)〉.

So, v = 〈−10,−2, 7〉.
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Example

Find the vector equation for the line of intersection of the planes
2x − 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall v = 〈−10,−2, 7〉. Now we need a point in the
intersection of the planes. From the first plane we compute z as
follows: 2z = 1− 2x + 3y .
We introduce this equation for 2z into the second plane:

x + 2y + (1− 2x + 3y) = 5 ⇒ −x + 5y = 4.

We need just one solution, so we choose: y = 0, then x = −4, and
this implies z = 9/2. A point in the intersection of the planes is
P0 = (−4, 0, 9/2). The vector equation of the line is:

r(t) = 〈−4,−0, 9/2〉+ 〈−10,−2, 7〉 t.
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Example

Sketch the surface 36x2 + 4y2 + 9z2 = 36.

Solution: We first rewrite the equation above in the standard form

x2 +
4

36
y2 +

9

36
z2 = 1 ⇔ x2 +

y2

32
+

z2

22
= 1.

This is the equation of an ellipsoid with principal radius of length
1, 3, and 2 on the x , y and z axis, respectively. Therefore

z

1
3

y

x

2
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Vector functions (Sect. 13.1).

I Definition of vector functions: r : R → R3.

I Limits and continuity of vector functions.

I Derivatives and motion.

I Differentiation rules.

I Integrals of vector functions.



Motion in space motivates to define vector functions.

Definition
A function r : I → Rn, with n = 2, 3,
is called a vector function, where the
interval I ⊂ R is called the domain
of the function.

z

r(t)

r(0) y
x

Remark: Given Cartesian coordinates in R3, the values of a vector
function can be written in components as follows:

r(t) = 〈x(t), y(t), z(t)〉, t ∈ I ,

where x(t), y(t), and z(t) are the values of three scalar functions.
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Motion in space motivates to define vector functions.

Remarks:

I There is a natural association between a curve in Rn and the
vector function values r(t).

z

r(t)

r(0) y
x

I The curve is determined by the terminal points of the vector
function values r(t).

I The independent variable t is called the parameter of the
curve.
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Vector functions.

Example

Graph the vector function r(t) = 〈cos(t), sin(t), t〉.

Solution:

The curve given by r(t) lies on a
vertical cylinder with radius one, since

x2 + y2 = cos2(t) + sin2(t) = 1.

The z(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves up on the cylinder surface
when t increases. C

r ( t )

z

y

x

1

r ( 0 )
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Vector functions.

Example
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The curve given by r(t) lies on a
horizontal cylinder with radius one, since
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The y(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves to the right on the cylinder
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Vector functions (Sect. 13.1).

I Definition of vector functions: r : R → R3.

I Limits and continuity of vector functions.

I Derivatives and motion.

I Differentiation rules.

I Integrals of vector functions.



Limits and continuity of vector functions.

Definition
The vector function r : I → Rn, with n = 2, 3, has a limit given by
the vector L when t approaches t0, denoted as limt→t0 r(t) = L, iff
the following holds: For every number ε > 0 there exists a number
δ > 0 such that

|t − t0| < δ ⇒ |r(t)− L| < ε.

Remark:

I The limit of r(t) = 〈x(t), y(t), z(t)〉 as t → t0 is the limit of
its components x(t), y(t), z(t) in Cartesian coordinates.

I That is:
limt→t0 r(t) =

〈
limt→t0 x(t), limt→t0 y(t), limt→t0 z(t)

〉
.
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limt→t0 r(t) =
〈
limt→t0 x(t), limt→t0 y(t), limt→t0 z(t)

〉
.

Example

Given r(t) = 〈cos(t), sin(t)/t, t2 + 2〉, compute limt→0 r(t).

Solution:
Notice that the vector function r is not defined at t = 0, however
its limit at t = 0 exists. Indeed,

lim
t→0

r(t) = lim
t→0

〈
cos(t),

sin(t)

t
, t2 + 2

〉
=

〈
lim
t→0

cos(t), lim
t→0

sin(t)

t
, lim
t→0

(t2 + 2)
〉

= 〈1, 1, 2〉.

We conclude that limt→0 r(t) = 〈1, 1, 2〉. C
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Limits and continuity of vector functions.

Definition
A vector function r : I → Rn, with n = 2, 3, is continuous at
t = t0 ∈ I iff holds limt→t0 r(t) = r(t0). The function r : I → Rn is
continuous if it is continuous at every t in its domain interval I .

Remark: A vector function with Cartesian components
r = 〈x , y , z〉 is continuous iff each component is continuous.

Example

The function r(t) = 〈sin(t), t, cos(t)〉 is continuous for t ∈ R. C

Remark: Having the idea of limit, one can introduce the idea of a
derivative of a vector valued function.



Limits and continuity of vector functions.

Definition
A vector function r : I → Rn, with n = 2, 3, is continuous at
t = t0 ∈ I iff holds limt→t0 r(t) = r(t0). The function r : I → Rn is
continuous if it is continuous at every t in its domain interval I .

Remark: A vector function with Cartesian components
r = 〈x , y , z〉 is continuous iff each component is continuous.

Example

The function r(t) = 〈sin(t), t, cos(t)〉 is continuous for t ∈ R. C

Remark: Having the idea of limit, one can introduce the idea of a
derivative of a vector valued function.



Limits and continuity of vector functions.

Definition
A vector function r : I → Rn, with n = 2, 3, is continuous at
t = t0 ∈ I iff holds limt→t0 r(t) = r(t0). The function r : I → Rn is
continuous if it is continuous at every t in its domain interval I .

Remark: A vector function with Cartesian components
r = 〈x , y , z〉 is continuous iff each component is continuous.

Example

The function r(t) = 〈sin(t), t, cos(t)〉 is continuous for t ∈ R. C

Remark: Having the idea of limit, one can introduce the idea of a
derivative of a vector valued function.



Limits and continuity of vector functions.

Definition
A vector function r : I → Rn, with n = 2, 3, is continuous at
t = t0 ∈ I iff holds limt→t0 r(t) = r(t0). The function r : I → Rn is
continuous if it is continuous at every t in its domain interval I .

Remark: A vector function with Cartesian components
r = 〈x , y , z〉 is continuous iff each component is continuous.

Example

The function r(t) = 〈sin(t), t, cos(t)〉 is continuous for t ∈ R. C

Remark: Having the idea of limit, one can introduce the idea of a
derivative of a vector valued function.



Vector functions (Sect. 13.1).

I Definition of vector functions: r : R → R3.

I Limits and continuity of vector functions.

I Derivatives and motion.

I Differentiation rules.

I Integrals of vector functions.



Derivatives and motion.

Definition
The vector function r : I → Rn, with n = 2, 3, is differentiable at

t = t0, denoted as r′(t) or
dr

dt
, iff the following limit exists,

r′(t) = lim
h→0

r(t + h)− r(t)

h
.

Remarks:

I A vector function r : I → Rn is differentiable if it is
differentiable for each t ∈ I .

I If a vector function with Cartesian components r = 〈x , y , z〉 is
differentiable, then

r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.
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Derivatives and motion.

Theorem
If a vector function with Cartesian components r = 〈x , y , z〉 is
differentiable, then r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.

Proof.

r′(t) = lim
h→0

r(t + h)− r(t)

h
,

= lim
h→0

〈
x(t + h)− x(t)

h
,
y(t + h)− y(t)

h
,
z(t + h)− z(t)

h

〉
=

〈
lim
h→0

x(t + h)− x(t)

h
, lim
h→0

y(t + h)− y(t)

h
, lim
h→0

z(t + h)− z(t)

h

〉
= 〈x ′(t), y ′(t), z ′(t)〉.
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Derivatives and motion.

Example

Find the derivative of the vector function
r(t) = 〈cos(t), sin(t), (t2 + 3t − 1)〉.

Solution: We differentiate each component of r, that is,

r′(t) = 〈− sin(t), cos(t), (2t + 3)〉.

Example

Find the derivative of the vector function r(t) = 〈cos(2t), e3t , 1/t〉.

Solution: We differentiate each component of r, that is,

r′(t) = 〈−2 sin(2t), 3e3t ,−1/t2〉.
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Geometrical property of the derivative.

Remark: The vector r′(t) is
tangent to the curve given by r
at the point r(t).

r(t+2h)

r’(t)

r(t)

z

x

y

r(t+h)

Remark: If r(t) represents the vector position of a particle, then:

I The derivative of the position function is the velocity function,
v(t) = r′(t). The speed is |v(t)|.

I The derivative of the velocity function is the acceleration
function, a(t) = v′(t) = r′′(t).
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Derivatives and motion.

Example

Compute the derivative of the position function
r(t) = 〈cos(t), sin(t), 0〉. Graph the curve given by r, and explicitly
show the position vector r(0) and velocity vector v(0).

Solution:

The derivative of r is:

v(t) = 〈− sin(t), cos(t), 0〉.

r(0) = 〈1, 0, 0〉, v(0) = 〈0, 1, 0〉.
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Differentiation rules are the same as for scalar functions

Theorem
If v and w are differentiable vector functions, then holds:

I [v(t) + w(t)]′ = v′(t) + w′(t), (addition);

I [cv(t)]′ = cv′(t), (product rule);

I [v(f (t))]′ = v′(f (t))f ′(t), (chain rule);

I [f (t)v(t)]′ = f ′(t)v(t) + f (t)v′(t), (product rule);

I [v(t) ·w(t)]′ = v′(t) ·w(t) + v(t) ·w′(t), (dot product);

I [v(t)×w(t)]′ = v′(t)×w(t) + v(t)×w′(t), (cross product).



Higher derivatives can also be computed.

Remark: The m-derivative of a vector function r is denoted as r(m)

and is given by the expression r(m)(t) = [r(m−1)(t)]′.

Example

Compute the third derivative of r(t) = 〈cos(t), sin(t), t2 + 2t + 1〉.

Solution:

r′(t) = 〈− sin(t), cos(t), 2t + 2〉,
r(2)(t) = (r′(t))′ = 〈− cos(t),− sin(t), 2〉,
r(3)(t) = (r(2)(t))′ = 〈sin(t),− cos(t), 0〉.

C

Recall: If r(t) is the position of a particle, then v(t) = r′(t) is the
velocity and a(t) = r(2)(t) is the acceleration of the particle.
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Vector functions (Sect. 13.1).

I Definition of vector functions: r : R → R3.

I Limits and continuity of vector functions.

I Derivatives and motion.

I Differentiation rules.

I Integrals of vector functions.



Integrals of vector functions.

Definition
The indefinite integral, also called the antiderivative, of a vector
function v is denoted as

∫
v (t) dt and given by∫

v (t) dt = V(t) + C,

where V′(t) = v (t) and C is a constant vector.

Example

Find the position function r knowing that the velocity function is
v(t) = 〈2t, cos(t), sin(t)〉 and the initial position is r(0) = 〈1, 1, 1〉.

Solution: The position function is the primitive of the velocity
function, r(t) = V(t) + C, that satisfies the initial condition
r(0) = V(0) + C. This initial condition fixes the constant vector C.
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Integrals of vector functions.

Example
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The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.
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r0x = 1, r0y = 0, r0z = 1. The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Example

Find the position function of a particle with acceleration
a(t) = 〈0, 0,−10〉 having an initial velocity v(0) = 〈0, 1, 1〉 and
initial position r(0) = 〈1, 0, 1〉.

Solution: The velocity is v(t) = 〈v0x , v0y , (−10t + v0z)〉.

The initial condition implies 〈0, 1, 1〉 = v(0) = 〈v0x , v0y , v0z〉, that
is v0x = 0, v0y = 1, v0z = 1. The velocity function is

v(t) = 〈0, 1, (−10t + 1)〉.

The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.
The initial condition implies 〈1, 0, 1〉 = r(0) = 〈r0x , r0y , r0z〉, that is
r0x = 1, r0y = 0, r0z = 1. The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Example

Find the position function of a particle with acceleration
a(t) = 〈0, 0,−10〉 having an initial velocity v(0) = 〈0, 1, 1〉 and
initial position r(0) = 〈1, 0, 1〉.

Solution: The velocity is v(t) = 〈v0x , v0y , (−10t + v0z)〉.
The initial condition implies 〈0, 1, 1〉 = v(0) = 〈v0x , v0y , v0z〉, that
is v0x = 0, v0y = 1, v0z = 1.

The velocity function is

v(t) = 〈0, 1, (−10t + 1)〉.

The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.
The initial condition implies 〈1, 0, 1〉 = r(0) = 〈r0x , r0y , r0z〉, that is
r0x = 1, r0y = 0, r0z = 1. The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Example

Find the position function of a particle with acceleration
a(t) = 〈0, 0,−10〉 having an initial velocity v(0) = 〈0, 1, 1〉 and
initial position r(0) = 〈1, 0, 1〉.

Solution: The velocity is v(t) = 〈v0x , v0y , (−10t + v0z)〉.
The initial condition implies 〈0, 1, 1〉 = v(0) = 〈v0x , v0y , v0z〉, that
is v0x = 0, v0y = 1, v0z = 1. The velocity function is

v(t) = 〈0, 1, (−10t + 1)〉.

The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.
The initial condition implies 〈1, 0, 1〉 = r(0) = 〈r0x , r0y , r0z〉, that is
r0x = 1, r0y = 0, r0z = 1. The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Example

Find the position function of a particle with acceleration
a(t) = 〈0, 0,−10〉 having an initial velocity v(0) = 〈0, 1, 1〉 and
initial position r(0) = 〈1, 0, 1〉.

Solution: The velocity is v(t) = 〈v0x , v0y , (−10t + v0z)〉.
The initial condition implies 〈0, 1, 1〉 = v(0) = 〈v0x , v0y , v0z〉, that
is v0x = 0, v0y = 1, v0z = 1. The velocity function is

v(t) = 〈0, 1, (−10t + 1)〉.

The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.

The initial condition implies 〈1, 0, 1〉 = r(0) = 〈r0x , r0y , r0z〉, that is
r0x = 1, r0y = 0, r0z = 1. The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Example

Find the position function of a particle with acceleration
a(t) = 〈0, 0,−10〉 having an initial velocity v(0) = 〈0, 1, 1〉 and
initial position r(0) = 〈1, 0, 1〉.

Solution: The velocity is v(t) = 〈v0x , v0y , (−10t + v0z)〉.
The initial condition implies 〈0, 1, 1〉 = v(0) = 〈v0x , v0y , v0z〉, that
is v0x = 0, v0y = 1, v0z = 1. The velocity function is

v(t) = 〈0, 1, (−10t + 1)〉.

The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.
The initial condition implies 〈1, 0, 1〉 = r(0) = 〈r0x , r0y , r0z〉, that is
r0x = 1, r0y = 0, r0z = 1.

The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Example

Find the position function of a particle with acceleration
a(t) = 〈0, 0,−10〉 having an initial velocity v(0) = 〈0, 1, 1〉 and
initial position r(0) = 〈1, 0, 1〉.

Solution: The velocity is v(t) = 〈v0x , v0y , (−10t + v0z)〉.
The initial condition implies 〈0, 1, 1〉 = v(0) = 〈v0x , v0y , v0z〉, that
is v0x = 0, v0y = 1, v0z = 1. The velocity function is

v(t) = 〈0, 1, (−10t + 1)〉.

The position is r(t) = 〈r0x , (t + r0y ), (−5t2 + t + r0z)〉.
The initial condition implies 〈1, 0, 1〉 = r(0) = 〈r0x , r0y , r0z〉, that is
r0x = 1, r0y = 0, r0z = 1. The velocity function is

r(t) = 〈1, t, (−5t2 + t + 1)〉.

C



Integrals of vector functions.

Definition
If the components of r(t) = 〈x(t), y(t), z(t)〉 are integrable
functions on the interval [a, b], then the definite integral of r is
given by∫ b

a
r(t)dt =

〈∫ b

a
x(t)dt,

∫ b

a
y(t)dt,

∫ b

a
z(t)dt

〉
.

Example

Compute
∫ π
0 r(t) dt for the function r(t) = 〈cos(t), sin(t), t〉.
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Integrals of vector functions.

Example
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∫ π
0 r(t) dt for the function r(t) = 〈cos(t), sin(t), t〉.

Solution:∫ π

0
r(t) dt =

∫ π

0
〈cos(t), sin(t), t〉dt

=
〈∫ π

0
cos(t)dt,

∫ π

0
sin(t)dt,

∫ π

0
tdt

〉
,

=
〈
sin(t)

∣∣∣π
0
,− cos(t)

∣∣∣π
0
,
t2

2

∣∣∣π
0
,
〉

=
〈
0, 2,

π2

2

〉
, ⇒

∫ π

0
r(t) dt =

〈
0, 2,

π2

2

〉
.
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The arc length of a curve in space (Sect. 13.3).

I The arc length of a curve in space.

I The arc length function.

I Parametrizations of a curve.

I The arc length parametrization of a curve.



The length of a curve is called its arc length.

Definition
The arc length of a continuously
differentiable curve r : [a, b] → Rn, with
n=2,3, is the number given by

`ba =

∫ b

a

∣∣r′(t)∣∣ dt.

z

r(b)

r(a)
y

x

r’(t)

Remark:

I If the curve r is the path traveled by a particle in space, then
r′ = v is the velocity of the particle.

I The arc length is the integral in time of the particle speed
|v(t)|.

I Therefore, the arc length of the curve is the distance traveled
by the particle.
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The length of a curve is called its arc length.

Recall:
The arc length of a curve r : [a, b] → R3

`ba =

∫ b

a

∣∣r′(t)∣∣ dt.

z

r(b)

r(a)
y

x

r’(t)

Remark:
In Cartesian coordinates the functions r and r′ are given by

r(t) = 〈x(t), y(t), z(t)〉, r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.

Therefore the arc length of the curve is given by the expression

`ba =

∫ b

a

√[
x ′(t)

]2
+

[
y ′(t)

]2
+

[
z ′(t)

]2
dt.
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The arc length of a curve in a plane.

Example

Find the arc length of the curve r(t) = 〈cos(t), sin(t)〉, for
t ∈ [π/4, 3π/4].

Solution: The derivative vector function is
r′(t) = 〈− sin(t), cos(t)〉. The arc length formula is

` =

∫ 3π/4

π/4

√[
− sin(t)

]2
+

[
cos(t)

]2
dt

=

∫ 3π/4

π/4
dt ⇒ ` =

π

2
.

This result is reasonable, since the curve is a circle and we are
computing the length of quarter a circle. C
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The arc length of a curve in a plane.

Example

Find the arc length of the spiral r(t) = 〈t cos(t), t sin(t)〉, for
t ∈ [0, t0].

Solution: The derivative vector is

r′(t) =
〈[
−t sin(t) + cos(t)

]
,
[
t cos(t) + sin(t)

]〉
.

|r′(t)|2 =
[
t2 sin2(t) + cos2(t)− 2t sin(t) cos(t)

]
+

[
t2 cos2(t) + sin2(t) + 2t sin(t) cos(t)

]
= t2 + 1.

The arc length is `(t0) =

∫ t0

0

√
1 + t2 dt = ln

(
t +

√
1 + t2

)∣∣∣t0
0
.

We conclude: `(t0) = ln
(
t0 +

√
1 + t2

0

)
. C
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−t sin(t) + cos(t)

]
,
[
t cos(t) + sin(t)

]〉
.

|r′(t)|2 =
[
t2 sin2(t) + cos2(t)− 2t sin(t) cos(t)

]
+

[
t2 cos2(t) + sin2(t) + 2t sin(t) cos(t)

]
= t2 + 1.

The arc length is `(t0) =

∫ t0

0

√
1 + t2 dt = ln

(
t +

√
1 + t2

)∣∣∣t0
0
.

We conclude: `(t0) = ln
(
t0 +

√
1 + t2

0

)
. C



The arc length of a curve in space.

Example

Find the arc length of
r(t) = 〈6 cos(2t), 6 sin(2t), 5t〉, for
t ∈ [0, π].

6

z

y

x

r ( 0 )

r ( t )

Solution: The derivative vector is

r′(t) = 〈−12 sin(2t), 12 cos(2t), 5〉,
|r′(t)|2 = 144

[
sin2(2t) + cos2(2t)

]
+ 25 = 169 = (13)2.

The arc length is ` =
∫ π
0 13 dt = 13 t

∣∣π
0

⇒ ` = 13π. C
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Idea behind the arc length formula.

The arc length formula can be obtained
as a limit procedure One adds up the
lengths of a polygonal line that
approximates the original curve.

y

r(t)

r

r
r

r

1
2

3

0

z

x

`N =
N−1∑
n=0

|r(tn+1)− r(tn)|, {a = t0, t1, · · · , tN−1, tN = b},

'
N−1∑
n=0

|r′(tn)| (tn+1 − tn)
N→∞−→

∫ b

a
|r′(t)| dt



The arc length of a curve in space (Sect. 13.3).

I The arc length of a curve in space.

I The arc length function.

I Parametrizations of a curve.

I The arc length parametrization of a curve.



The arc length function.

Definition
function. The arc length function of a continuously differentiable
vector function r is given by

`(t) =

∫ t

t0

|r′(τ)|dτ.

Remarks:

I The value `(t) of the arc length function represents the length
along the curve r from t0 to t.

I If the function r is the position of a moving particle as
function of time, then the arc length `(t) is the distance
traveled by the particle from the time t0 to t.
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The arc length function.

Example

Find the arc length function for the
curve r(t) = 〈6 cos(2t), 6 sin(2t), 5t〉,
starting at t = 0.

6

z

y

x

r ( 0 )

r ( t )

Solution: We have found that |r′(t)| = 13. Therefore,

`(t) =

∫ t

0
13 dτ ⇒ `(t) = 13 t.
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The arc length function.

Example

Given the position function in time
r(t) = 〈6 cos(2t), 6 sin(2t), 5t〉, find the
position vector r(t0) located at a length
`0 = 20 from the initial position r(0).

6

z

y

x

r ( 0 )

r ( t )

Solution: We have found that the arc length function for the vector
function r is `(t) = 13 t.
Since t = `/13, the time at ` = `0 = 20 is t0 = 13/20.
Therefore, the position vector at `0 = 20 is given by

r(t0) = 〈6 cos(13/10), 6 sin(13/10), 13/4〉.

C
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The arc length of a curve in space (Sect. 13.3).

I The arc length of a curve in space.

I The arc length function.

I Parametrizations of a curve.

I The arc length parametrization of a curve.



Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.

Example

The unit circle in R2 is the curve represented by the following
vector functions:

I r1(t) = 〈cos(t), sin(t)〉;
I r2(t) = 〈cos(5t), sin(5t)〉;
I r3(t) = 〈cos(et), sin(et)〉.

Remark:
The curve in space is the same for all three functions above. The
vector r moves along the curve at different speeds for the different
parametrizations.
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Parametrizations of a curve.

Remarks:

I If the vector function r represents the position in space of a
moving particle, then there is a preferred parameter to
describe the motion: The time t.

I Another parameter that is useful to describe a moving particle
is the distance traveled by the particle, the arc length `.

I A common problem is the following: Given a vector function
parametrized by the time t, switch the curve parameter to the
arc length `.

I The problem above is called the arc length parametrization of
a curve.
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The arc length of a curve in space (Sect. 13.3).

I The arc length of a curve in space.
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The arc length parametrization of a curve.

Problem:
Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

I With the function values r(t) compute the arc length function
`(t), starting at some t = t0.

I Invert the function values `(t) to find the function values t(`).

I Example: If `(t) = 3et/2, then t(`) = 2 ln(`/3).

I Compute the composition function r(`) = r(t(`)). That is,
replace t by t(`) in the function values r(t).

The function values r(`) are the parametrization of the
function values r(t) using the arc length as the new parameter.
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The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = 〈4 cos(t), 4 sin(t), 3t〉 starting at t = 0.

Solution: First find the derivative function:

r′(t) = 〈−4 sin(t), 4 cos(t), 3〉.

Hence, |r′(t)|2 = 42 sin2(t) + 42 cos2(t) + 32 = 16 + 9 = 52.

Find the arc length function: `(t) =

∫ t

0
5 dτ ⇒ `(t) = 5t.

Invert the equation above: t = `/5.
Reparametrize the original curve:

r(`) = 〈4 cos(`/5), 4 sin(`/5), 3`/5〉.
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The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values

r(t) is given by u(`) =
dr

d`
, where ` is the arc length of the curve.

Proof.
Given the function values r(t), let r(`) be the reparametrization of

r(t) with the arc length function `(t) =

∫ t

t0

|r′(τ)| dτ .

Notice that
d`

dt
= |r′(t)| and

dt

d`
=

1

|r′(t)|
.

Therefore, u(`) =
dr(`)

d`
=

dr(t)

dt

dt

d`
=

r′(t)

|r′(t)|
.

We conclude that |u(`)| = 1.
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The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
r(t) = 〈4 cos(t), 4 sin(t), 3t〉 for t > 0.

Solution: Reparametrize the curve using the arc length. We get

r(`) = 〈4 cos(`/5), 4 sin(`/5), 3`/5〉.

Therefore, a unit tangent vector is

u(`) =
dr

d`
⇒ u(`) =

〈
−4

5
sin(`/5),

4

5
cos(`/5),

3

5

〉
.

C

We can verify that this is a unit vector, since

|u(`)|2 =
(4

5

)2[
sin2(`/5) + cos2(`/5)

]
+

(3

5

)2
⇒ |u(`)| = 1.
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Therefore, a unit tangent vector is

u(`) =
dr
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〉
.
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We can verify that this is a unit vector, since

|u(`)|2 =
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)2[
sin2(`/5) + cos2(`/5)

]
+

(3

5

)2
⇒ |u(`)| = 1.
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