Review for Exam 1.

- Sections 12.1-12.6.
- 50 minutes.
- ▶ 5 or 6 problems, similar to homework problems.
- ▶ No calculators, no notes, no books, no phones.

No green book needed.

Consider the vectors $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

1. Compute $\mathbf{v} \cdot \mathbf{w}$.

Consider the vectors $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

1. Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$\mathbf{v} \cdot \mathbf{w} = \langle 2, -2, 1 \rangle \cdot \langle 1, 2, -1 \rangle = 2 - 4 - 1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w} = -3.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Consider the vectors $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

1. Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$\mathbf{v} \cdot \mathbf{w} = \langle 2, -2, 1 \rangle \cdot \langle 1, 2, -1 \rangle = 2 - 4 - 1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w} = -3.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

2. Find the cosine of the angle between ${\bf v}$ and ${\bf w}.$

Consider the vectors $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

1. Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$\mathbf{v} \cdot \mathbf{w} = \langle 2, -2, 1 \rangle \cdot \langle 1, 2, -1 \rangle = 2 - 4 - 1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w} = -3.$$

Find the cosine of the angle between v and w.
 Solution:

$$|\mathbf{v}| = \sqrt{4+4+1} = 3, \quad |\mathbf{w}| = \sqrt{1+4+1} = \sqrt{6}.$$

 $\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} = \frac{-3}{3\sqrt{6}}$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Consider the vectors $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

1. Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$\mathbf{v} \cdot \mathbf{w} = \langle 2, -2, 1 \rangle \cdot \langle 1, 2, -1 \rangle = 2 - 4 - 1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w} = -3.$$

Find the cosine of the angle between v and w.
 Solution:

$$|\mathbf{v}| = \sqrt{4+4+1} = 3, \quad |\mathbf{w}| = \sqrt{1+4+1} = \sqrt{6}.$$
$$\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} = \frac{-3}{3\sqrt{6}} \quad \Rightarrow \quad \cos(\theta) = -\frac{1}{\sqrt{6}}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|},$$

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$u = \frac{v}{|v|}, \quad |v| = \sqrt{1+4+1} = \sqrt{6},$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$\mathbf{u} = rac{\mathbf{v}}{|\mathbf{v}|}, \quad |\mathbf{v}| = \sqrt{1+4+1} = \sqrt{6},$$
 $\mathbf{u} = rac{1}{\sqrt{6}} \langle 1, -2, 1 \rangle.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$\begin{split} \mathbf{u} &= \frac{\mathbf{v}}{|\mathbf{v}|}, \quad |\mathbf{v}| = \sqrt{1+4+1} = \sqrt{6}, \\ \mathbf{u} &= \frac{1}{\sqrt{6}} \langle 1, -2, 1 \rangle. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

2. Find $|\mathbf{u} - 2\mathbf{v}|$, where $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}, \quad |\mathbf{v}| = \sqrt{1+4+1} = \sqrt{6},$$
$$\mathbf{u} = \frac{1}{\sqrt{6}} \langle 1, -2, 1 \rangle.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2. Find $|\mathbf{u} - 2\mathbf{v}|$, where $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution: First: $\mathbf{u} - 2\mathbf{v} = \langle 1, 6, -1 \rangle$.

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$\begin{split} \mathbf{u} &= \frac{\mathbf{v}}{|\mathbf{v}|}, \quad |\mathbf{v}| = \sqrt{1+4+1} = \sqrt{6}, \\ \mathbf{u} &= \frac{1}{\sqrt{6}} \langle 1, -2, 1 \rangle. \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2. Find $|\mathbf{u} - 2\mathbf{v}|$, where $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution: First: $\mathbf{u} - 2\mathbf{v} = \langle 1, 6, -1 \rangle$. Then,

$$|\mathbf{u}-2\mathbf{v}|=\sqrt{1+36+1}.$$

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$\begin{split} \mathbf{u} &= \frac{\mathbf{v}}{|\mathbf{v}|}, \quad |\mathbf{v}| = \sqrt{1+4+1} = \sqrt{6}, \\ \mathbf{u} &= \frac{1}{\sqrt{6}} \langle 1, -2, 1 \rangle. \end{split}$$

2. Find $|\mathbf{u} - 2\mathbf{v}|$, where $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution: First: $\mathbf{u} - 2\mathbf{v} = \langle 1, 6, -1 \rangle$. Then,

$$|\mathbf{u} - 2\mathbf{v}| = \sqrt{1 + 36 + 1}$$
. \Rightarrow $|\mathbf{u} - 2\mathbf{v}| = \sqrt{38}$.

 \triangleleft

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find a unit vector \bm{u} normal to both $\bm{v}=\langle 6,2,-3\rangle$ and $\bm{w}=\langle -2,2,1\rangle.$

Find a unit vector \bm{u} normal to both $\bm{v}=\langle 6,2,-3\rangle$ and $\bm{w}=\langle -2,2,1\rangle.$

Solution:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1 \end{vmatrix} = (2+6)\mathbf{i} - (6-6)\mathbf{j} + (12+4)\mathbf{k} = \langle 8, 0, 16 \rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find a unit vector \bm{u} normal to both $\bm{v}=\langle 6,2,-3\rangle$ and $\bm{w}=\langle -2,2,1\rangle.$

Solution:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1 \end{vmatrix} = (2+6)\mathbf{i} - (6-6)\mathbf{j} + (12+4)\mathbf{k} = \langle 8, 0, 16 \rangle.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle.$

Find a unit vector \bm{u} normal to both $\bm{v}=\langle 6,2,-3\rangle$ and $\bm{w}=\langle -2,2,1\rangle.$

Solution:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1 \end{vmatrix} = (2+6)\mathbf{i} - (6-6)\mathbf{j} + (12+4)\mathbf{k} = \langle 8, 0, 16 \rangle.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle.$

$$\mathbf{u} = rac{\langle 1, 0, 2
angle}{|\langle 1, 0, 2
angle|}$$

Find a unit vector \bm{u} normal to both $\bm{v}=\langle 6,2,-3\rangle$ and $\bm{w}=\langle -2,2,1\rangle.$

Solution:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1 \end{vmatrix} = (2+6)\mathbf{i} - (6-6)\mathbf{j} + (12+4)\mathbf{k} = \langle 8, 0, 16 \rangle.$$

Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2\rangle$ instead of $\langle 8,0,16\rangle.$

$$\mathbf{u} = rac{\langle \mathbf{1}, \mathbf{0}, \mathbf{2} \rangle}{|\langle \mathbf{1}, \mathbf{0}, \mathbf{2} \rangle|} \quad \Rightarrow \quad \mathbf{u} = rac{1}{\sqrt{5}} \langle \mathbf{1}, \mathbf{0}, \mathbf{2} \rangle.$$

 \triangleleft

うして ふぼう ふほう ふほう しょうく

Find the area of the parallelogram formed by ${\bf v}$ and ${\bf w}$ above.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Find the area of the parallelogram formed by \mathbf{v} and \mathbf{w} above.

Solution:

Since ${\bf v} \times {\bf w} = \langle 8, 0, 16 \rangle$, then

$$|A| = |{f v} imes {f w}| = |\langle 8,0,16
angle| = \sqrt{8^2 + 16^2} = \sqrt{8^2(1+4)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Find the area of the parallelogram formed by \mathbf{v} and \mathbf{w} above.

Solution:

Since ${\bf v} \times {\bf w} = \langle 8,0,16 \rangle$, then

$$egin{aligned} \mathcal{A} = |\mathbf{v} imes \mathbf{w}| = |\langle 8, 0, 16
angle| = \sqrt{8^2 + 16^2} = \sqrt{8^2(1+4)}. \ & \mathcal{A} = 8\sqrt{5}. \end{aligned}$$

 \triangleleft

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = \langle 6, 3, -1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = \langle 6, 3, -1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = \langle 6, 3, -1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$\mathbf{v} imes \mathbf{w} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix} = \langle (5+4), -(0-8), (0-4)
angle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We obtain $\mathbf{v} \times \mathbf{w} = \langle 9, 8, -4 \rangle$.

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = \langle 6, 3, -1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$\mathbf{v} imes \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{vmatrix} = \langle (5+4), -(0-8), (0-4) \rangle$$

We obtain $\mathbf{v}\times\mathbf{w}=\langle9,8,-4\rangle.$ The triple product is

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 6, 3, -1 \rangle \cdot \langle 9, 8, -4 \rangle = 54 + 24 + 4 = 82.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = \langle 6, 3, -1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$\mathbf{v} imes \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{vmatrix} = \langle (5+4), -(0-8), (0-4) \rangle$$

We obtain $\mathbf{v}\times\mathbf{w}=\langle9,8,-4\rangle.$ The triple product is

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 6, 3, -1 \rangle \cdot \langle 9, 8, -4 \rangle = 54 + 24 + 4 = 82.$$

Since $V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$, we obtain V = 82.

Does the line given by $\mathbf{r}(t) = \langle 0, 1, 1 \rangle + \langle 1, 2, 3 \rangle t$ intersects the plane given by 2x + y - z = 1? If the answer is yes, then find the intersection point.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Does the line given by $\mathbf{r}(t) = \langle 0, 1, 1 \rangle + \langle 1, 2, 3 \rangle t$ intersects the plane given by 2x + y - z = 1? If the answer is yes, then find the intersection point.

Solution: The line with parametric equation

$$x = t$$
, $y = 1 + 2t$, $z = 1 + 3t$,

intersect the plane 2x + y - z = 1 iff there is a solution t for the equation

$$2t + (1 + 2t) - (1 + 3t) = 1.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Does the line given by $\mathbf{r}(t) = \langle 0, 1, 1 \rangle + \langle 1, 2, 3 \rangle t$ intersects the plane given by 2x + y - z = 1? If the answer is yes, then find the intersection point.

Solution: The line with parametric equation

$$x = t$$
, $y = 1 + 2t$, $z = 1 + 3t$,

intersect the plane 2x + y - z = 1 iff there is a solution t for the equation

$$2t + (1 + 2t) - (1 + 3t) = 1.$$

There is a solution given by t = 1. Therefore, the point of intersection has coordinates x = 1, y = 3, z = 4, then

P = (1, 3, 4).

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t. Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$.

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t. Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$.

A vector tangent to the line, and so to the plane, is $\mathbf{v} = \langle 1, 1, 2 \rangle$.

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t. Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A vector tangent to the line, and so to the plane, is $\mathbf{v} = \langle 1, 1, 2 \rangle$. The point $P_0 = (1, 2, 3)$ is in the plane. A second point in the plane is any point in the line, for example P_1 corresponding to the terminal point of $\mathbf{r}(0) = \langle -2, 0, -1 \rangle$.

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t. Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t.$

A vector tangent to the line, and so to the plane, is $\mathbf{v} = \langle 1, 1, 2 \rangle$. The point $P_0 = (1, 2, 3)$ is in the plane. A second point in the plane is any point in the line, for example P_1 corresponding to the terminal point of $\mathbf{r}(0) = \langle -2, 0, -1 \rangle$.

Then a second vector tangent to the plane is $\overrightarrow{P_1P_0} = \langle 3, 2, 4 \rangle$.

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t.

(ロ)、(型)、(E)、(E)、 E、 の(の)
Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t.

Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$, and a second vector tangent to the plane is $\overrightarrow{P_1P_0} = \langle 3, 2, 4 \rangle$.

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t.

Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$, and a second vector tangent to the plane is $\overrightarrow{P_1P_0} = \langle 3, 2, 4 \rangle$.

Then, a normal to the plane is given by

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 3 & 2 & 4 \end{vmatrix} = \langle (4-4), -(4-6), (2-3) \rangle \quad \Rightarrow \quad \mathbf{n} = \langle 0, 2, -1 \rangle.$$

So, the equation of the plane is

$$0(x-1)+2(y-2)-(z-3)=0, \Rightarrow 2y-z=1.$$

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

Solution: Denote P = (1, 1, 1), Q = (1, -1, 1), and R = (0, 0, 2).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

Solution: Denote P = (1, 1, 1), Q = (1, -1, 1), and R = (0, 0, 2). Then,

$$ec{PQ}=\langle 0,-2,0
angle, \quad ec{PR}=\langle -1,-1,1
angle,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

Solution: Denote P = (1, 1, 1), Q = (1, -1, 1), and R = (0, 0, 2). Then,

$$ec{PQ}=\langle 0,-2,0
angle, \quad ec{PR}=\langle -1,-1,1
angle,$$

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -2 & 0 \\ -1 & -1 & 1 \end{vmatrix} = (-2 - 0)\mathbf{i} - (0 - 0)\mathbf{j} + (0 - 2)\mathbf{k},$$

that is, $\vec{PQ} \times \vec{PR} = \langle -2, 0, -2 \rangle$. Take $\mathbf{n} = \langle 2, 0, 2 \rangle$.

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

Solution: Denote P = (1, 1, 1), Q = (1, -1, 1), and R = (0, 0, 2). Then,

$$ec{PQ}=\langle 0,-2,0
angle, \quad ec{PR}=\langle -1,-1,1
angle,$$

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -2 & 0 \\ -1 & -1 & 1 \end{vmatrix} = (-2 - 0)\mathbf{i} - (0 - 0)\mathbf{j} + (0 - 2)\mathbf{k},$$

that is, $\vec{PQ} \times \vec{PR} = \langle -2, 0, -2 \rangle$. Take $\mathbf{n} = \langle 2, 0, 2 \rangle$. With $\mathbf{n} = \langle 2, 0, 2 \rangle$ and a point R = (0, 0, 2), the equation of the plane is

$$2(x-0) + 0(y-0) + 2(z-2) = 0$$

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

Solution: Denote P = (1, 1, 1), Q = (1, -1, 1), and R = (0, 0, 2). Then,

$$ec{PQ}=\langle 0,-2,0
angle, \quad ec{PR}=\langle -1,-1,1
angle,$$

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -2 & 0 \\ -1 & -1 & 1 \end{vmatrix} = (-2 - 0)\mathbf{i} - (0 - 0)\mathbf{j} + (0 - 2)\mathbf{k},$$

that is, $\vec{PQ} \times \vec{PR} = \langle -2, 0, -2 \rangle$. Take $\mathbf{n} = \langle 2, 0, 2 \rangle$. With $\mathbf{n} = \langle 2, 0, 2 \rangle$ and a point R = (0, 0, 2), the equation of the plane is

$$2(x-0) + 0(y-0) + 2(z-2) = 0 \implies x+z=2.$$

 \triangleleft

(日) (同) (三) (三) (三) (○) (○)

Find the equation of the plane that is parallel to the plane x - 2y + 3z = 1 and passes through the center of the sphere $x^2 + 2x + y^2 + z^2 - 2z = 0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Find the equation of the plane that is parallel to the plane x - 2y + 3z = 1 and passes through the center of the sphere $x^2 + 2x + y^2 + z^2 - 2z = 0$.

Solution: The plane is parallel to the plane x - 2y + 3z = 1, so their normal vectors are parallel. We choose $\mathbf{n} = \langle 1, -2, 3 \rangle$.

Find the equation of the plane that is parallel to the plane x - 2y + 3z = 1 and passes through the center of the sphere $x^2 + 2x + y^2 + z^2 - 2z = 0$.

Solution: The plane is parallel to the plane x - 2y + 3z = 1, so their normal vectors are parallel. We choose $\mathbf{n} = \langle 1, -2, 3 \rangle$. We need to find the center of the sphere. We complete squares:

$$0 = x^{2} + 2x + y^{2} + z^{2} - 2z$$

= $(x^{2} + 2x + 1) - 1 + y^{2} + (z^{2} - 2z + 1) - 1 = 0$
= $(x + 1)^{2} + y^{2} + (z - 1)^{2} - 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the equation of the plane that is parallel to the plane x - 2y + 3z = 1 and passes through the center of the sphere $x^2 + 2x + y^2 + z^2 - 2z = 0$.

Solution: The plane is parallel to the plane x - 2y + 3z = 1, so their normal vectors are parallel. We choose $\mathbf{n} = \langle 1, -2, 3 \rangle$. We need to find the center of the sphere. We complete squares:

$$0 = x^{2} + 2x + y^{2} + z^{2} - 2z$$

= $(x^{2} + 2x + 1) - 1 + y^{2} + (z^{2} - 2z + 1) - 1 = 0$
= $(x + 1)^{2} + y^{2} + (z - 1)^{2} - 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore, the center of the sphere is at $P_0 = (-1, 0, 1)$.

Find the equation of the plane that is parallel to the plane x - 2y + 3z = 1 and passes through the center of the sphere $x^2 + 2x + y^2 + z^2 - 2z = 0$.

Solution: The plane is parallel to the plane x - 2y + 3z = 1, so their normal vectors are parallel. We choose $\mathbf{n} = \langle 1, -2, 3 \rangle$. We need to find the center of the sphere. We complete squares:

$$0 = x^{2} + 2x + y^{2} + z^{2} - 2z$$

= $(x^{2} + 2x + 1) - 1 + y^{2} + (z^{2} - 2z + 1) - 1 = 0$
= $(x + 1)^{2} + y^{2} + (z - 1)^{2} - 2.$

Therefore, the center of the sphere is at $P_0 = (-1, 0, 1)$. The equation of the plane is

$$(x+1)-2(y-0)+3(z-1)=0 \Rightarrow x-2y+3z=2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ≫ ♀ ()

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

The normal vectors are $\mathbf{n} = \langle 2, -3, 2 \rangle$, $\mathbf{N} = \langle 1, 2, 2 \rangle$.

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

The normal vectors are $\mathbf{n} = \langle 2, -3, 2 \rangle$, $\mathbf{N} = \langle 1, 2, 2 \rangle$.

The cosine of the angle θ between these vectors is

$$\cos(heta) = rac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}| |\mathbf{N}|}.$$

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

The normal vectors are $\mathbf{n} = \langle 2, -3, 2 \rangle$, $\mathbf{N} = \langle 1, 2, 2 \rangle$. The cosine of the angle θ between these vectors is

$$\cos(\theta) = \frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}| |\mathbf{N}|}.$$

Since $\mathbf{n} \cdot \mathbf{N} = 2 - 6 + 4 = 0$,

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

The normal vectors are $\mathbf{n} = \langle 2, -3, 2 \rangle$, $\mathbf{N} = \langle 1, 2, 2 \rangle$. The cosine of the angle θ between these vectors is

$$\cos(\theta) = \frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}| |\mathbf{N}|}.$$

Since $\mathbf{n} \cdot \mathbf{N} = 2 - 6 + 4 = 0$, we conclude that $\mathbf{n} \perp \mathbf{N}$.

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

The normal vectors are $\mathbf{n} = \langle 2, -3, 2 \rangle$, $\mathbf{N} = \langle 1, 2, 2 \rangle$. The cosine of the angle θ between these vectors is

$$\cos(\theta) = \frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}| |\mathbf{N}|}.$$

 \triangleleft

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since $\mathbf{n} \cdot \mathbf{N} = 2 - 6 + 4 = 0$, we conclude that $\mathbf{n} \perp \mathbf{N}$. The angle θ is $\theta = \pi/2$.

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.

This means that \bm{v} is perpendicular to both normal vectors $\bm{n}=\langle 2,-3,2\rangle$ and $\bm{N}=\langle 1,2,2\rangle.$

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.

This means that **v** is perpendicular to both normal vectors $\mathbf{n} = \langle 2, -3, 2 \rangle$ and $\mathbf{N} = \langle 1, 2, 2 \rangle$. One such vector is

$$\mathbf{v} = \mathbf{n} \times \mathbf{N} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 2 \\ 1 & 2 & 2 \end{vmatrix} = \langle (-6-4), -(4-2), (4+3) \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.

This means that **v** is perpendicular to both normal vectors $\mathbf{n} = \langle 2, -3, 2 \rangle$ and $\mathbf{N} = \langle 1, 2, 2 \rangle$. One such vector is

$$\mathbf{v} = \mathbf{n} \times \mathbf{N} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 2 \\ 1 & 2 & 2 \end{vmatrix} = \langle (-6 - 4), -(4 - 2), (4 + 3) \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, $\mathbf{v} = \langle -10, -2, 7 \rangle$.

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: 2z = 1 - 2x + 3y.

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: 2z = 1 - 2x + 3y.

We introduce this equation for 2z into the second plane:

$$x+2y+(1-2x+3y)=5 \quad \Rightarrow \quad -x+5y=4.$$

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: 2z = 1 - 2x + 3y.

We introduce this equation for 2z into the second plane:

$$x+2y+(1-2x+3y)=5 \quad \Rightarrow \quad -x+5y=4.$$

We need just one solution, so we choose: y = 0, then x = -4, and this implies z = 9/2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: 2z = 1 - 2x + 3y.

We introduce this equation for 2z into the second plane:

$$x+2y+(1-2x+3y)=5 \quad \Rightarrow \quad -x+5y=4.$$

We need just one solution, so we choose: y = 0, then x = -4, and this implies z = 9/2. A point in the intersection of the planes is $P_0 = (-4, 0, 9/2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: 2z = 1 - 2x + 3y.

We introduce this equation for 2z into the second plane:

$$x+2y+(1-2x+3y)=5 \quad \Rightarrow \quad -x+5y=4.$$

We need just one solution, so we choose: y = 0, then x = -4, and this implies z = 9/2. A point in the intersection of the planes is $P_0 = (-4, 0, 9/2)$. The vector equation of the line is:

$$\mathbf{r}(t) = \langle -4, -0, 9/2 \rangle + \langle -10, -2, 7 \rangle t.$$

Sketch the surface $36x^2 + 4y^2 + 9z^2 = 36$.

<□ > < @ > < E > < E > E のQ @

Sketch the surface $36x^2 + 4y^2 + 9z^2 = 36$.

Solution: We first rewrite the equation above in the standard form

$$x^{2} + \frac{4}{36}y^{2} + \frac{9}{36}z^{2} = 1 \quad \Leftrightarrow \quad x^{2} + \frac{y^{2}}{3^{2}} + \frac{z^{2}}{2^{2}} = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Sketch the surface $36x^2 + 4y^2 + 9z^2 = 36$.

Solution: We first rewrite the equation above in the standard form

$$x^{2} + \frac{4}{36}y^{2} + \frac{9}{36}z^{2} = 1 \quad \Leftrightarrow \quad x^{2} + \frac{y^{2}}{3^{2}} + \frac{z^{2}}{2^{2}} = 1.$$

This is the equation of an ellipsoid with principal radius of length 1, 3, and 2 on the x, y and z axis, respectively.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sketch the surface $36x^2 + 4y^2 + 9z^2 = 36$.

Solution: We first rewrite the equation above in the standard form

$$x^{2} + \frac{4}{36}y^{2} + \frac{9}{36}z^{2} = 1 \quad \Leftrightarrow \quad x^{2} + \frac{y^{2}}{3^{2}} + \frac{z^{2}}{2^{2}} = 1.$$

This is the equation of an ellipsoid with principal radius of length 1, 3, and 2 on the x, y and z axis, respectively. Therefore

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$.
- Limits and continuity of vector functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Definition

A function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is called a *vector function*, where the interval $I \subset \mathbb{R}$ is called the *domain* of the function.

Definition

A function $\mathbf{r}: I \to \mathbb{R}^n$, with n = 2, 3, is called a *vector function*, where the interval $I \subset \mathbb{R}$ is called the *domain* of the function.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: Given Cartesian coordinates in \mathbb{R}^3 , the values of a vector function can be written in components as follows:

 $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \qquad t \in I,$

where x(t), y(t), and z(t) are the values of three scalar functions.

Remarks:

► There is a natural association between a curve in ℝⁿ and the vector function values r(t).

Remarks:

► There is a natural association between a curve in ℝⁿ and the vector function values r(t).

The curve is determined by the terminal points of the vector function values r(t).

Remarks:

► There is a natural association between a curve in ℝⁿ and the vector function values r(t).

The curve is determined by the terminal points of the vector function values r(t).

The independent variable t is called the parameter of the curve.

Example

Graph the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Graph the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$x^2 + y^2 = \cos^2(t) + \sin^2(t) = 1.$$

Example

Graph the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$x^{2} + y^{2} = \cos^{2}(t) + \sin^{2}(t) = 1.$$

The z(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.

Example

Graph the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$x^{2} + y^{2} = \cos^{2}(t) + \sin^{2}(t) = 1.$$

The z(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.

Example

Graph the vector function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Graph the vector function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$x^{2} + z^{2} = \sin^{2}(t) + \cos^{2}(t) = 1.$$

Example

Graph the vector function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$x^{2} + z^{2} = \sin^{2}(t) + \cos^{2}(t) = 1.$$

The y(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the cylinder surface when t increases.

Example

Graph the vector function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$x^2 + z^2 = \sin^2(t) + \cos^2(t) = 1.$$

The y(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the cylinder surface when t increases.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$.
- Limits and continuity of vector functions.

- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Definition

The vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n = 2, 3, has a *limit* given by the vector \mathbf{L} when t approaches t_0 , denoted as $\lim_{t\to t_0} \mathbf{r}(t) = \mathbf{L}$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that

 $|t-t_0| < \delta \quad \Rightarrow \quad |\mathbf{r}(t) - \mathbf{L}| < \epsilon.$

Definition

The vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n = 2, 3, has a *limit* given by the vector \mathbf{L} when t approaches t_0 , denoted as $\lim_{t\to t_0} \mathbf{r}(t) = \mathbf{L}$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that

$$|t-t_0| < \delta \quad \Rightarrow \quad |\mathbf{r}(t) - \mathbf{L}| < \epsilon.$$

Remark:

The limit of r(t) = ⟨x(t), y(t), z(t)⟩ as t → t₀ is the limit of its components x(t), y(t), z(t) in Cartesian coordinates.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

The vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n = 2, 3, has a *limit* given by the vector \mathbf{L} when t approaches t_0 , denoted as $\lim_{t\to t_0} \mathbf{r}(t) = \mathbf{L}$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that

$$|t-t_0| < \delta \quad \Rightarrow \quad |\mathbf{r}(t) - \mathbf{L}| < \epsilon.$$

Remark:

The limit of r(t) = ⟨x(t), y(t), z(t)⟩ as t → t₀ is the limit of its components x(t), y(t), z(t) in Cartesian coordinates.

► That is:

 $\lim_{t\to t_0} \mathbf{r}(t) = \langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \rangle.$

 $\lim_{t\to t_0} \mathbf{r}(t) = \left\langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \right\rangle.$

Example

Given $\mathbf{r}(t) = \langle \cos(t), \sin(t)/t, t^2 + 2 \rangle$, compute $\lim_{t \to 0} \mathbf{r}(t)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 $\lim_{t\to t_0} \mathbf{r}(t) = \left\langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \right\rangle.$

Example

Given
$$\mathbf{r}(t) = \langle \cos(t), \sin(t)/t, t^2 + 2 \rangle$$
, compute $\lim_{t \to 0} \mathbf{r}(t)$.

Solution:

Notice that the vector function **r** is not defined at t = 0, however its limit at t = 0 exists.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\lim_{t\to t_0} \mathbf{r}(t) = \left\langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \right\rangle.$

Example

Given
$$\mathbf{r}(t) = \langle \cos(t), \sin(t)/t, t^2 + 2 \rangle$$
, compute $\lim_{t \to 0} \mathbf{r}(t)$.

Solution:

Notice that the vector function **r** is not defined at t = 0, however its limit at t = 0 exists. Indeed,

$$\begin{split} \lim_{t \to 0} \mathbf{r}(t) &= \lim_{t \to 0} \left\langle \cos(t), \frac{\sin(t)}{t}, t^2 + 2 \right\rangle \\ &= \left\langle \lim_{t \to 0} \cos(t), \lim_{t \to 0} \frac{\sin(t)}{t}, \lim_{t \to 0} (t^2 + 2) \right\rangle \\ &= \langle 1, 1, 2 \rangle. \end{split}$$

<1

We conclude that $\lim_{t\to 0} \mathbf{r}(t) = \langle 1, 1, 2 \rangle$.

Definition

A vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is *continuous at* $t = t_0 \in I$ iff holds $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$. The function $\mathbf{r} : I \to \mathbb{R}^n$ is *continuous* if it is continuous at every t in its domain interval I.

Definition

A vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is *continuous at* $t = t_0 \in I$ iff holds $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$. The function $\mathbf{r} : I \to \mathbb{R}^n$ is *continuous* if it is continuous at every t in its domain interval I.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: A vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is continuous iff each component is continuous.

Definition

A vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is *continuous at* $t = t_0 \in I$ iff holds $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$. The function $\mathbf{r} : I \to \mathbb{R}^n$ is *continuous* if it is continuous at every t in its domain interval I.

Remark: A vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is continuous iff each component is continuous.

Example

The function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$ is continuous for $t \in \mathbb{R}$. \lhd

Definition

A vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is *continuous at* $t = t_0 \in I$ iff holds $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$. The function $\mathbf{r} : I \to \mathbb{R}^n$ is *continuous* if it is continuous at every t in its domain interval I.

Remark: A vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is continuous iff each component is continuous.

Example

The function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$ is continuous for $t \in \mathbb{R}$. \lhd

Remark: Having the idea of limit, one can introduce the idea of a derivative of a vector valued function.

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$.
- Limits and continuity of vector functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Definition

The vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is differentiable at $t = t_0$, denoted as $\mathbf{r}'(t)$ or $\frac{d\mathbf{r}}{dt}$, iff the following limit exists,

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}.$$

Definition

The vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is differentiable at $t = t_0$, denoted as $\mathbf{r}'(t)$ or $\frac{d\mathbf{r}}{dt}$, iff the following limit exists,

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remarks:

► A vector function $\mathbf{r} : I \to \mathbb{R}^n$ is *differentiable* if it is differentiable for each $t \in I$.

Definition

The vector function $\mathbf{r} : I \to \mathbb{R}^n$, with n = 2, 3, is differentiable at $t = t_0$, denoted as $\mathbf{r}'(t)$ or $\frac{d\mathbf{r}}{dt}$, iff the following limit exists,

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

Remarks:

- A vector function r : I → ℝⁿ is differentiable if it is differentiable for each t ∈ I.
- ► If a vector function with Cartesian components r = ⟨x, y, z⟩ is differentiable, then

 $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$

Theorem

If a vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is differentiable, then $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$.

Theorem

If a vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is differentiable, then $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$.

Proof.

$$\begin{aligned} \mathbf{r}'(t) &= \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}, \\ &= \lim_{h \to 0} \left\langle \frac{x(t+h) - x(t)}{h}, \frac{y(t+h) - y(t)}{h}, \frac{z(t+h) - z(t)}{h} \right\rangle \\ &= \left\langle \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}, \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}, \lim_{h \to 0} \frac{z(t+h) - z(t)}{h} \right\rangle \\ &= \langle x'(t), y'(t), z'(t) \rangle. \end{aligned}$$

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), (t^2 + 3t - 1) \rangle$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), (t^2 + 3t - 1) \rangle$.

Solution: We differentiate each component of \mathbf{r} , that is,

```
\mathbf{r}'(t) = \langle -\sin(t), \cos(t), (2t+3) \rangle.
```

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), (t^2 + 3t - 1) \rangle$.

Solution: We differentiate each component of \mathbf{r} , that is,

```
\mathbf{r}'(t) = \langle -\sin(t), \cos(t), (2t+3) \rangle.
```

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(2t), e^{3t}, 1/t \rangle$.

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), (t^2 + 3t - 1) \rangle$.

Solution: We differentiate each component of \mathbf{r} , that is,

```
\mathbf{r}'(t) = \langle -\sin(t), \cos(t), (2t+3) \rangle.
```

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(2t), e^{3t}, 1/t \rangle$. Solution: We differentiate each component of \mathbf{r} , that is,

$$\mathbf{r}'(t) = \langle -2\sin(2t), 3e^{3t}, -1/t^2 \rangle.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}'(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}'(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}'(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

• The derivative of the position function is the velocity function, $\mathbf{v}(t) = \mathbf{r}'(t)$. The speed is $|\mathbf{v}(t)|$.

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}'(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.

Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

- The derivative of the position function is the velocity function, $\mathbf{v}(t) = \mathbf{r}'(t)$. The speed is $|\mathbf{v}(t)|$.
- ► The derivative of the velocity function is the acceleration function, a(t) = v'(t) = r''(t).

Example

Compute the derivative of the position function $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$. Graph the curve given by \mathbf{r} , and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Compute the derivative of the position function $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$. Graph the curve given by \mathbf{r} , and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution:

The derivative of r is:

 $\mathbf{v}(t) = \langle -\sin(t), \cos(t), 0 \rangle.$

Example

Compute the derivative of the position function $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$. Graph the curve given by \mathbf{r} , and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution:

The derivative of r is:

 $\mathbf{v}(t) = \langle -\sin(t), \cos(t), 0 \rangle.$

 $\mathbf{r}(0)=\langle 1,0,0
angle$, $\mathbf{v}(0)=\langle 0,1,0
angle$.

Example

Compute the derivative of the position function $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$. Graph the curve given by \mathbf{r} , and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Solution:

The derivative of r is:

 $\mathbf{v}(t) = \langle -\sin(t), \cos(t), 0 \rangle.$

 $\mathbf{r}(0)=\langle 1,0,0
angle$, $\mathbf{v}(0)=\langle 0,1,0
angle.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Differentiation rules are the same as for scalar functions

Theorem

If \boldsymbol{v} and \boldsymbol{w} are differentiable vector functions, then holds:

Remark: The *m*-derivative of a vector function **r** is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t) = [\mathbf{r}^{(m-1)}(t)]'$.

Remark: The *m*-derivative of a vector function **r** is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t) = [\mathbf{r}^{(m-1)}(t)]'$.

Example

Compute the third derivative of $\mathbf{r}(t) = \langle \cos(t), \sin(t), t^2 + 2t + 1 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Remark: The *m*-derivative of a vector function **r** is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t) = [\mathbf{r}^{(m-1)}(t)]'$.

Example

Compute the third derivative of $\mathbf{r}(t) = \langle \cos(t), \sin(t), t^2 + 2t + 1 \rangle$. Solution:

$$\begin{split} \mathbf{r}'(t) &= \langle -\sin(t), \cos(t), 2t+2 \rangle, \\ \mathbf{r}^{(2)}(t) &= (\mathbf{r}'(t))' = \langle -\cos(t), -\sin(t), 2 \rangle, \\ \mathbf{r}^{(3)}(t) &= (\mathbf{r}^{(2)}(t))' = \langle \sin(t), -\cos(t), 0 \rangle. \end{split}$$

_	•
_	
-	
_	
_	

Remark: The *m*-derivative of a vector function **r** is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t) = [\mathbf{r}^{(m-1)}(t)]'$.

Example

Compute the third derivative of $\mathbf{r}(t) = \langle \cos(t), \sin(t), t^2 + 2t + 1 \rangle$. Solution:

$$\begin{aligned} \mathbf{r}'(t) &= \langle -\sin(t), \cos(t), 2t+2 \rangle, \\ \mathbf{r}^{(2)}(t) &= (\mathbf{r}'(t))' = \langle -\cos(t), -\sin(t), 2 \rangle, \\ \mathbf{r}^{(3)}(t) &= (\mathbf{r}^{(2)}(t))' = \langle \sin(t), -\cos(t), 0 \rangle. \end{aligned}$$

 \triangleleft

Recall: If $\mathbf{r}(t)$ is the position of a particle, then $\mathbf{v}(t) = \mathbf{r}'(t)$ is the velocity and $\mathbf{a}(t) = \mathbf{r}^{(2)}(t)$ is the acceleration of the particle.

Vector functions (Sect. 13.1).

- Definition of vector functions: $\mathbf{r} : \mathbb{R} \to \mathbb{R}^3$.
- Limits and continuity of vector functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Derivatives and motion.
- Differentiation rules.
- Integrals of vector functions.

Definition

The *indefinite integral*, also called the *antiderivative*, of a vector function **v** is denoted as $\int \mathbf{v}(t) dt$ and given by

$$\int \mathbf{v}(t) \, dt = \mathbf{V}(t) + \mathbf{C},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathbf{V}'(t) = \mathbf{v}(t)$ and **C** is a constant vector.

Definition

The *indefinite integral*, also called the *antiderivative*, of a vector function **v** is denoted as $\int \mathbf{v}(t) dt$ and given by

$$\int \mathbf{v}(t) \, dt = \mathbf{V}(t) + \mathbf{C},$$

where $\mathbf{V}'(t) = \mathbf{v}(t)$ and \mathbf{C} is a constant vector.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Definition

The *indefinite integral*, also called the *antiderivative*, of a vector function \mathbf{v} is denoted as $\int \mathbf{v}(t) dt$ and given by

$$\int \mathbf{v}(t) \, dt = \mathbf{V}(t) + \mathbf{C},$$

where $\mathbf{V}'(t) = \mathbf{v}(t)$ and \mathbf{C} is a constant vector.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$. Solution: The position function is the primitive of the velocity function, $\mathbf{r}(t) = \mathbf{V}(t) + \mathbf{C}$, that satisfies the initial condition $\mathbf{r}(0) = \mathbf{V}(0) + \mathbf{C}$. This initial condition fixes the constant vector **C**.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Solution: The position function is a primitive of the velocity,

$$\mathbf{r}(t) = \mathbf{V}(t) + \mathbf{C} = \langle t^2, \sin(t), -\cos(t) \rangle + \langle c_x, c_y, c_z \rangle,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $\mathbf{C} = \langle c_x, c_y, c_z \rangle$ a constant vector.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Solution: The position function is a primitive of the velocity,

$$\mathbf{r}(t) = \mathbf{V}(t) + \mathbf{C} = \langle t^2, \sin(t), -\cos(t) \rangle + \langle c_x, c_y, c_z \rangle,$$

with $\mathbf{C} = \langle c_x, c_y, c_z \rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$\langle 1,1,1\rangle = \mathbf{r}(0) = \mathbf{V}(0) + \mathbf{C} = \langle 0,0,-1\rangle + \langle c_x,c_y,c_z\rangle,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

that is, $c_x = 1$, $c_y = 1$, $c_z = 2$.

Example

Find the position function **r** knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Solution: The position function is a primitive of the velocity,

$$\mathbf{r}(t) = \mathbf{V}(t) + \mathbf{C} = \langle t^2, \sin(t), -\cos(t) \rangle + \langle c_x, c_y, c_z \rangle,$$

with $\mathbf{C} = \langle c_x, c_y, c_z \rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$\langle 1,1,1\rangle = \mathbf{r}(0) = \mathbf{V}(0) + \mathbf{C} = \langle 0,0,-1\rangle + \langle c_x,c_y,c_z\rangle,$$

that is, $c_x = 1$, $c_y = 1$, $c_z = 2$. The position function is $\mathbf{r}(t) = \langle t^2 + 1, \sin(t) + 1, -\cos(t) + 2 \rangle$.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

・ロト・日本・日本・日本・日本・今日・

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$. The initial condition implies $\langle 0, 1, 1 \rangle = \mathbf{v}(0) = \langle v_{0x}, v_{0y}, v_{0z} \rangle$, that is $v_{0x} = 0$, $v_{0y} = 1$, $v_{0z} = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$. The initial condition implies $\langle 0, 1, 1 \rangle = \mathbf{v}(0) = \langle v_{0x}, v_{0y}, v_{0z} \rangle$, that is $v_{0x} = 0$, $v_{0y} = 1$, $v_{0z} = 1$. The velocity function is

 $\mathbf{v}(t) = \langle 0, 1, (-10t+1) \rangle.$

(日) (同) (三) (三) (三) (○) (○)

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$. The initial condition implies $\langle 0, 1, 1 \rangle = \mathbf{v}(0) = \langle v_{0x}, v_{0y}, v_{0z} \rangle$, that is $v_{0x} = 0$, $v_{0y} = 1$, $v_{0z} = 1$. The velocity function is

 $\mathbf{v}(t) = \langle 0, 1, (-10t+1) \rangle.$

(日) (同) (三) (三) (三) (○) (○)

The position is $\mathbf{r}(t) = \langle r_{0x}, (t + r_{0y}), (-5t^2 + t + r_{0z}) \rangle$.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$. The initial condition implies $\langle 0, 1, 1 \rangle = \mathbf{v}(0) = \langle v_{0x}, v_{0y}, v_{0z} \rangle$, that is $v_{0x} = 0$, $v_{0y} = 1$, $v_{0z} = 1$. The velocity function is

 $\mathbf{v}(t) = \langle 0, 1, (-10t+1)
angle.$

The position is $\mathbf{r}(t) = \langle r_{0x}, (t + r_{0y}), (-5t^2 + t + r_{0z}) \rangle$. The initial condition implies $\langle 1, 0, 1 \rangle = \mathbf{r}(0) = \langle r_{0x}, r_{0y}, r_{0z} \rangle$, that is $r_{0x} = 1$, $r_{0y} = 0$, $r_{0z} = 1$.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$. The initial condition implies $\langle 0, 1, 1 \rangle = \mathbf{v}(0) = \langle v_{0x}, v_{0y}, v_{0z} \rangle$, that is $v_{0x} = 0$, $v_{0y} = 1$, $v_{0z} = 1$. The velocity function is

 $\mathbf{v}(t) = \langle 0, 1, (-10t+1)
angle.$

The position is $\mathbf{r}(t) = \langle r_{0x}, (t + r_{0y}), (-5t^2 + t + r_{0z}) \rangle$. The initial condition implies $\langle 1, 0, 1 \rangle = \mathbf{r}(0) = \langle r_{0x}, r_{0y}, r_{0z} \rangle$, that is $r_{0x} = 1$, $r_{0y} = 0$, $r_{0z} = 1$. The velocity function is

$$\mathbf{r}(t) = \langle 1, t, (-5t^2 + t + 1) \rangle.$$

↓ □ → ↓ 個 → ↓ ■ → ↓

Definition

If the components of $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$ are integrable functions on the interval [a, b], then the *definite integral* of \mathbf{r} is given by

$$\int_{a}^{b} \mathbf{r}(t) dt = \Big\langle \int_{a}^{b} x(t) dt, \int_{a}^{b} y(t) dt, \int_{a}^{b} z(t) dt \Big\rangle.$$

Definition

If the components of $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$ are integrable functions on the interval [a, b], then the *definite integral* of \mathbf{r} is given by

$$\int_{a}^{b} \mathbf{r}(t) dt = \left\langle \int_{a}^{b} x(t) dt, \int_{a}^{b} y(t) dt, \int_{a}^{b} z(t) dt \right\rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Example Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$. Solution:

$$\int_0^{\pi} \mathbf{r}(t) dt = \int_0^{\pi} \langle \cos(t), \sin(t), t \rangle dt$$
$$= \left\langle \int_0^{\pi} \cos(t) dt, \int_0^{\pi} \sin(t) dt, \int_0^{\pi} t dt \right\rangle,$$
$$= \left\langle \sin(t) \Big|_0^{\pi}, -\cos(t) \Big|_0^{\pi}, \frac{t^2}{2} \Big|_0^{\pi}, \right\rangle$$
$$= \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle, \quad \Rightarrow \quad \int_0^{\pi} \mathbf{r}(t) dt = \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

 \triangleleft

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

Definition

The arc length of a continuously differentiable curve $\mathbf{r} : [a, b] \to \mathbb{R}^n$, with n=2,3, is the number given by

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| \, dt.$$

(日) (同) (日) (日)

Definition

The arc length of a continuously differentiable curve $\mathbf{r} : [a, b] \to \mathbb{R}^n$, with n=2,3, is the number given by

$$\ell_{ba} = \int_{a}^{b} \left| \mathbf{r}'(t) \right| \, dt.$$

Remark:

▶ If the curve **r** is the path traveled by a particle in space, then $\mathbf{r}' = \mathbf{v}$ is the velocity of the particle.

Definition

The arc length of a continuously differentiable curve $\mathbf{r} : [a, b] \to \mathbb{R}^n$, with n=2,3, is the number given by

$$\ell_{ba} = \int_{a}^{b} \left| \mathbf{r}'(t) \right| \, dt.$$

Remark:

- ▶ If the curve **r** is the path traveled by a particle in space, then $\mathbf{r}' = \mathbf{v}$ is the velocity of the particle.
- ► The arc length is the integral in time of the particle speed |v(t)|.

Definition

The arc length of a continuously differentiable curve $\mathbf{r} : [a, b] \to \mathbb{R}^n$, with n=2,3, is the number given by

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| \, dt.$$

Remark:

- ▶ If the curve **r** is the path traveled by a particle in space, then $\mathbf{r}' = \mathbf{v}$ is the velocity of the particle.
- ► The arc length is the integral in time of the particle speed |v(t)|.
- Therefore, the arc length of the curve is the distance traveled by the particle.
The length of a curve is called its arc length.

Recall:

The arc length of a curve $\mathbf{r} : [a, b] \to \mathbb{R}^3$

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| \, dt.$$

(日) (同) (日) (日)

The length of a curve is called its arc length.

Recall:

The arc length of a curve $\mathbf{r} : [a, b] \to \mathbb{R}^3$

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| \, dt.$$

(日) (雪) (日) (日) (日)

Remark:

In Cartesian coordinates the functions ${\bf r}$ and ${\bf r}'$ are given by

 $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \qquad \mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$

The length of a curve is called its arc length.

Recall:

The arc length of a curve $\mathbf{r} : [a, b] \to \mathbb{R}^3$

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| \, dt.$$

・ロト ・ 一下・ ・ ヨト・

Remark:

In Cartesian coordinates the functions \mathbf{r} and \mathbf{r}' are given by

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \qquad \mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

Therefore the arc length of the curve is given by the expression

$$\ell_{ba} = \int_{a}^{b} \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2} + \left[z'(t)\right]^{2}} dt$$

Example

Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$, for $t \in [\pi/4, 3\pi/4]$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$, for $t \in [\pi/4, 3\pi/4]$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution: The derivative vector function is $\mathbf{r}'(t) = \langle -\sin(t), \cos(t) \rangle$.

Example

Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$, for $t \in [\pi/4, 3\pi/4]$.

Solution: The derivative vector function is $\mathbf{r}'(t) = \langle -\sin(t), \cos(t) \rangle$. The arc length formula is

$$\ell = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2} dt$$
$$= \int_{\pi/4}^{3\pi/4} dt \quad \Rightarrow \quad \ell = \frac{\pi}{2}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$, for $t \in [\pi/4, 3\pi/4]$.

Solution: The derivative vector function is $\mathbf{r}'(t) = \langle -\sin(t), \cos(t) \rangle$. The arc length formula is

$$\ell = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2} dt$$
$$= \int_{\pi/4}^{3\pi/4} dt \quad \Rightarrow \quad \ell = \frac{\pi}{2}.$$

This result is reasonable, since the curve is a circle and we are computing the length of quarter a circle.

<1

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the arc length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the arc length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \big\langle \big[-t\sin(t) + \cos(t) \big], \big[t\cos(t) + \sin(t) \big] \big\rangle.$$

$$\begin{aligned} |\mathbf{r}'(t)|^2 &= \left[t^2 \sin^2(t) + \cos^2(t) - 2t \sin(t) \cos(t)\right] \\ &+ \left[t^2 \cos^2(t) + \sin^2(t) + 2t \sin(t) \cos(t)\right] = t^2 + 1. \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Example

Find the arc length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \big\langle \big[-t\sin(t) + \cos(t) \big], \big[t\cos(t) + \sin(t) \big] \big\rangle.$$

$$\begin{aligned} |\mathbf{r}'(t)|^2 &= \left[t^2 \sin^2(t) + \cos^2(t) - 2t \sin(t) \cos(t)\right] \\ &+ \left[t^2 \cos^2(t) + \sin^2(t) + 2t \sin(t) \cos(t)\right] = t^2 + 1. \end{aligned}$$

The arc length is $\ell(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt$

Example

Find the arc length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \big\langle \big[-t\sin(t) + \cos(t) \big], \big[t\cos(t) + \sin(t) \big] \big\rangle.$$

$$\begin{aligned} |\mathbf{r}'(t)|^2 &= \left[t^2 \sin^2(t) + \cos^2(t) - 2t \sin(t) \cos(t)\right] \\ &+ \left[t^2 \cos^2(t) + \sin^2(t) + 2t \sin(t) \cos(t)\right] = t^2 + 1. \end{aligned}$$

The arc length is $\ell(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt = \ln(t+\sqrt{1+t^2}) \Big|_0^{t_0}$.

Example

Find the arc length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \big\langle \big[-t\sin(t) + \cos(t) \big], \big[t\cos(t) + \sin(t) \big] \big\rangle.$$

$$\begin{aligned} |\mathbf{r}'(t)|^2 &= \left[t^2 \sin^2(t) + \cos^2(t) - 2t \sin(t) \cos(t)\right] \\ &+ \left[t^2 \cos^2(t) + \sin^2(t) + 2t \sin(t) \cos(t)\right] = t^2 + 1. \end{aligned}$$

The arc length is $\ell(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt = \ln(t+\sqrt{1+t^2}) \Big|_0^{t_0}.$ We conclude: $\ell(t_0) = \ln(t_0 + \sqrt{1+t_0^2}).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the arc length of $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, for $t \in [0, \pi]$.

イロト イポト イヨト イヨト

Example

Find the arc length of $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, for $t \in [0, \pi]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \langle -12\sin(2t), 12\cos(2t), 5 \rangle,$$

$$|\mathbf{r}'(t)|^2 = 144[\sin^2(2t) + \cos^2(2t)] + 25 = 169 = (13)^2.$$

Example

Find the arc length of $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, for $t \in [0, \pi]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \langle -12\sin(2t), 12\cos(2t), 5 \rangle,$$

$$|\mathbf{r}'(t)|^2 = 144 [\sin^2(2t) + \cos^2(2t)] + 25 = 169 = (13)^2.$$

The arc length is $\ell = \int_0^{\pi} 13 \, dt = 13 \, t \big|_0^{\pi} \quad \Rightarrow \quad \ell = 13\pi.$

Idea behind the arc length formula.

The arc length formula can be obtained as a limit procedure One adds up the lengths of a polygonal line that approximates the original curve.

$$\ell_N = \sum_{n=0}^{N-1} |\mathbf{r}(t_{n+1}) - \mathbf{r}(t_n)|, \qquad \{a = t_0, t_1, \cdots, t_{N-1}, t_N = b\},\\ \simeq \sum_{n=0}^{N-1} |\mathbf{r}'(t_n)| (t_{n+1} - t_n) \xrightarrow{N \to \infty} \int_a^b |\mathbf{r}'(t)| dt$$

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

Definition

function. The arc *length function* of a continuously differentiable vector function ${\bf r}$ is given by

$$\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d au.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition

function. The arc *length function* of a continuously differentiable vector function \mathbf{r} is given by

$$\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d au.$$

Remarks:

► The value $\ell(t)$ of the arc length function represents the length along the curve **r** from t_0 to t.

Definition

function. The arc *length function* of a continuously differentiable vector function \mathbf{r} is given by

$$\ell(t) = \int_{t_0}^t |\mathbf{r}'(au)| d au.$$

Remarks:

- ► The value $\ell(t)$ of the arc length function represents the length along the curve **r** from t_0 to t.
- If the function r is the position of a moving particle as function of time, then the arc length ℓ(t) is the distance traveled by the particle from the time t₀ to t.

Example

Find the arc length function for the curve $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, starting at t = 0.

Example

Find the arc length function for the curve $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, starting at t = 0.

Solution: We have found that $|\mathbf{r}'(t)| = 13$. Therefore,

$$\ell(t) = \int_0^t 13 \, d\tau \quad \Rightarrow \quad \ell(t) = 13 \, t.$$

Example

Given the position function in time $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, find the position vector $\mathbf{r}(t_0)$ located at a length $\ell_0 = 20$ from the initial position $\mathbf{r}(0)$.

Example

Given the position function in time $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, find the position vector $\mathbf{r}(t_0)$ located at a length $\ell_0 = 20$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the arc length function for the vector function **r** is $\ell(t) = 13 t$.

Example

Given the position function in time $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, find the position vector $\mathbf{r}(t_0)$ located at a length $\ell_0 = 20$ from the initial position $\mathbf{r}(0)$.

Solution: We have found that the arc length function for the vector function **r** is $\ell(t) = 13 t$. Since $t = \ell/13$, the time at $\ell = \ell_0 = 20$ is $t_0 = 13/20$.

Example

Given the position function in time $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, find the position vector $\mathbf{r}(t_0)$ located at a length $\ell_0 = 20$ from the initial position $\mathbf{r}(0)$.

・ロト ・ 雪 ト ・ ヨ ト

Solution: We have found that the arc length function for the vector function **r** is $\ell(t) = 13 t$. Since $t = \ell/13$, the time at $\ell = \ell_0 = 20$ is $t_0 = 13/20$. Therefore, the position vector at $\ell_0 = 20$ is given by

 $\mathbf{r}(t_0) = \langle 6\cos(13/10), 6\sin(13/10), 13/4 \rangle.$

 \triangleleft

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

Remark:

A curve in space can be represented by different vector functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remark:

A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^2 is the curve represented by the following vector functions:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $\mathbf{r}_1(t) = \langle \cos(t), \sin(t) \rangle;$
- $\mathbf{r}_2(t) = \langle \cos(5t), \sin(5t) \rangle;$
- $\blacktriangleright \mathbf{r}_3(t) = \langle \cos(e^t), \sin(e^t) \rangle.$

Remark:

A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^2 is the curve represented by the following vector functions:

- $\blacktriangleright \mathbf{r}_1(t) = \langle \cos(t), \sin(t) \rangle;$
- $\mathbf{r}_2(t) = \langle \cos(5t), \sin(5t) \rangle;$
- $\blacktriangleright \mathbf{r}_3(t) = \langle \cos(e^t), \sin(e^t) \rangle.$

Remark:

The curve in space is the same for all three functions above. The vector \mathbf{r} moves along the curve at different speeds for the different parametrizations.

Remarks:

If the vector function r represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Remarks:

- If the vector function r represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.
- ► Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length *l*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remarks:

- If the vector function r represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.
- ► Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length *l*.
- ► A common problem is the following: Given a vector function parametrized by the time t, switch the curve parameter to the arc length l.

Remarks:

- If the vector function r represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time t.
- ► Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length *l*.
- ► A common problem is the following: Given a vector function parametrized by the time t, switch the curve parameter to the arc length l.
- The problem above is called the arc length parametrization of a curve.

The arc length of a curve in space (Sect. 13.3).

- The arc length of a curve in space.
- The arc length function.
- Parametrizations of a curve.
- The arc length parametrization of a curve.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ
Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

• With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- ▶ With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- ▶ With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Example: If $\ell(t) = 3e^{t/2}$, then $t(\ell) = 2\ln(\ell/3)$.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- ▶ With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- Example: If $\ell(t) = 3e^{t/2}$, then $t(\ell) = 2\ln(\ell/3)$.
- Compute the composition function r(ℓ) = r(t(ℓ)). That is, replace t by t(ℓ) in the function values r(t).

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- ▶ With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.
- Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- Example: If $\ell(t) = 3e^{t/2}$, then $t(\ell) = 2\ln(\ell/3)$.
- Compute the composition function r(ℓ) = r(t(ℓ)). That is, replace t by t(ℓ) in the function values r(t).

The function values $\mathbf{r}(\ell)$ are the parametrization of the function values $\mathbf{r}(t)$ using the arc length as the new parameter.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

Solution: First find the derivative function:

$$\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3
angle.$$

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

Solution: First find the derivative function:

$$\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3 \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence, $|\mathbf{r}'(t)|^2 = 4^2 \sin^2(t) + 4^2 \cos^2(t) + 3^2 = 16 + 9 = 5^2$.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

Solution: First find the derivative function:

$$\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3 \rangle.$$

Hence, $|\mathbf{r}'(t)|^2 = 4^2 \sin^2(t) + 4^2 \cos^2(t) + 3^2 = 16 + 9 = 5^2$. Find the arc length function: $\ell(t) = \int_0^t 5 \, d\tau \quad \Rightarrow \quad \ell(t) = 5t$.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

Solution: First find the derivative function:

$$\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3 \rangle.$$

Hence, $|\mathbf{r}'(t)|^2 = 4^2 \sin^2(t) + 4^2 \cos^2(t) + 3^2 = 16 + 9 = 5^2$. Find the arc length function: $\ell(t) = \int_0^t 5 d\tau \Rightarrow \ell(t) = 5t$. Invert the equation above: $t = \ell/5$.

(日) (同) (三) (三) (三) (○) (○)

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

Solution: First find the derivative function:

$$\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3 \rangle.$$

Hence, $|\mathbf{r}'(t)|^2 = 4^2 \sin^2(t) + 4^2 \cos^2(t) + 3^2 = 16 + 9 = 5^2$. Find the arc length function: $\ell(t) = \int_0^t 5 d\tau \implies \ell(t) = 5t$. Invert the equation above: $t = \ell/5$. Reparametrize the original curve:

$$\mathbf{r}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$$

(日) (同) (三) (三) (三) (○) (○)

Theorem

A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell}$, where ℓ is the arc length of the curve.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell}$, where ℓ is the arc length of the curve.

Proof.

Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d\tau$.

Theorem

A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell}$, where ℓ is the arc length of the curve.

Proof.

Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d\tau$. Notice that $\frac{d\ell}{dt} = |\mathbf{r}'(t)|$ and $\frac{dt}{d\ell} = \frac{1}{|\mathbf{r}'(t)|}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell}$, where ℓ is the arc length of the curve.

Proof.

Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d\tau$. Notice that $\frac{d\ell}{dt} = |\mathbf{r}'(t)|$ and $\frac{dt}{d\ell} = \frac{1}{|\mathbf{r}'(t)|}$. Therefore, $\mathbf{u}(\ell) = \frac{d\mathbf{r}(\ell)}{d\ell} = \frac{d\mathbf{r}(t)}{dt} \frac{dt}{d\ell} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$.

Theorem

A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell}$, where ℓ is the arc length of the curve.

Proof.

Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| d\tau$. Notice that $\frac{d\ell}{dt} = |\mathbf{r}'(t)|$ and $\frac{dt}{d\ell} = \frac{1}{|\mathbf{r}'(t)|}$. Therefore, $\mathbf{u}(\ell) = \frac{d\mathbf{r}(\ell)}{d\ell} = \frac{d\mathbf{r}(t)}{dt} \frac{dt}{d\ell} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$. We conclude that $|\mathbf{u}(\ell)| = 1$.

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \ge 0$.

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \ge 0$.

Solution: Reparametrize the curve using the arc length.

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \ge 0$.

Solution: Reparametrize the curve using the arc length. We get

 $\mathbf{r}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \ge 0$.

Solution: Reparametrize the curve using the arc length. We get

$$\mathbf{r}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$$

Therefore, a unit tangent vector is

$$\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell} \quad \Rightarrow \quad \mathbf{u}(\ell) = \left\langle -\frac{4}{5}\sin(\ell/5), \frac{4}{5}\cos(\ell/5), \frac{3}{5} \right\rangle.$$

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \ge 0$.

Solution: Reparametrize the curve using the arc length. We get

$$\mathbf{r}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$$

Therefore, a unit tangent vector is

$$\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell} \quad \Rightarrow \quad \mathbf{u}(\ell) = \left\langle -\frac{4}{5}\sin(\ell/5), \frac{4}{5}\cos(\ell/5), \frac{3}{5} \right\rangle.$$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can verify that this is a unit vector, since

$$|\mathbf{u}(\ell)|^2 = \left(\frac{4}{5}\right)^2 \left[\sin^2(\ell/5) + \cos^2(\ell/5)\right] + \left(\frac{3}{5}\right)^2 \quad \Rightarrow \quad |\mathbf{u}(\ell)| = 1.$$