Review for Exam 1.

Sections 12.1-12.6.
50 minutes.
5 or 6 problems, similar to homework problems.

No calculators, no notes, no books, no phones.

vV v. v v Y

No green book needed.



Example
Consider the vectorsv=2i—2j +kandw=i+2j —k.

1. Compute v - w.



Example
Consider the vectorsv=2i—2j +kandw=i+4+2j — k.

1. Compute v - w.

Solution:
veow=(2,-21)-(1,2,-1)=2-4-1 = v-w= -3
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Example
Consider the vectorsv=2i—2j +kandw=i+4+2j — k.

1. Compute v - w.
Solution:
vow=(2,-21)-(1,2,-1)=2-4-1 = v-w=-3

<

2. Find the cosine of the angle between v and w.



Example
Consider the vectorsv=2i—2j +kandw=i+4+2j — k.

1. Compute v - w.

Solution:
vow=(2,-21)-(1,2,-1)=2-4-1 = v-w=-3

<
2. Find the cosine of the angle between v and w.

Solution:

V| =vV4+4+1=3, |w=vVI+4+1=16.

vV-w -3

o) = fuTTw] ~ 3v%




Example
Consider the vectorsv=2i—2j +kandw=i+4+2j — k.

1. Compute v - w.

Solution:
veow=(2,-21)-(1,2,-1)=2-4-1 = v-w= -3

<
2. Find the cosine of the angle between v and w.

Solution:

V| =vV4+4+1=3, |w=vVI+4+1=16.

vV-w -3

o) = fuTTw] ~ 3v%

= cos(f) = —

Bl



Example

1. Find a unit vector in the direction of v=1i—2j + k.



Example

1. Find a unit vector in the direction of v=1i—2j + k.

Solution:
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1. Find a unit vector in the direction of v=1i—2j + k.

Solution:
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Example

1. Find a unit vector in the direction of v=1i—2j + k.

Solution:

\")
u= v =vVI+4+1=16,

u= (1,-2,1).

Sil-



Example

1. Find a unit vector in the direction of v=1i—2j + k.

Solution:

\")
u= v =vVI+4+1=16,

1
u= %(1,—2, 1).

2. Find |u—2v|, whereu=3i+2j +k, v=i—2j + k.



Example

1. Find a unit vector in the direction of v=1i—2j + k.

Solution:

\")
u=—, |v/=Vvi+4+1=16,

v|’
1
u=—(1,-21).
\@< )
2. Find |u—2v|, whereu=3i+2j +k, v=i—2j + k.

Solution: First: u —2v = (1,6,—1).



Example

1. Find a unit vector in the direction of v=1i—2j + k.

Solution:

\")
u=—, |v/=Vvi+4+1=16,

v|’
1
u=—(1,-21).
\@< )
2. Find |u—2v|, whereu=3i+2j +k, v=i—2j + k.

Solution: First: u—2v = (1,6,—1). Then,

lu—2v|=+v1+36+1.



Example

1. Find a unit vector in the direction of v=1i—2j + k.

Solution:

\")
u=—, |v/=Vvi+4+1=16,

v|’
1
u=—(1,-21).
\@< )
2. Find |u—2v|, whereu=3i+2j +k, v=i—2j + k.

Solution: First: u—2v = (1,6,—1). Then,

lu—2v|=v1+36+1. = |u—2v|=138



Example

Find a unit vector u normal to both v = (6,2, —3) and
w=(—2,21).



Example
Find a unit vector u normal to both v = (6,2, —3) and
w=(—2,21).

Solution:
i j k

vxw=|6 2 —-3=(2+6)i—(6—6)j +(12+4)k = (8,0, 16).
-2 2 1



Example

Find a unit vector u normal to both v = (6,2, —3) and
w=(—2,21).

Solution:
i j k

vxw=|6 2 —-3=(2+6)i—(6—6)j +(12+4)k = (8,0, 16).
-2 2 1

Since we look for a unit vector, the calculation is simpler with
(1,0,2) instead of (8,0,16).



Example

Find a unit vector u normal to both v = (6,2, —3) and
w=(—2,21).

Solution:
i j k

vxw=|6 2 —-3=(2+6)i—(6—6)j +(12+4)k = (8,0, 16).
-2 2 1

Since we look for a unit vector, the calculation is simpler with
(1,0,2) instead of (8,0,16).

(1,0,2)

U= ————
(1,0,2)]



Example

Find a unit vector u normal to both v = (6,2, —3) and
w=(—2,21).

Solution:
i j k

vxw=|6 2 —-3=(2+6)i—(6—6)j +(12+4)k = (8,0, 16).
-2 2 1

Since we look for a unit vector, the calculation is simpler with
(1,0,2) instead of (8,0,16).

(1,0,2)

= — —N u=
(1,0,2)]

u (1,0,2).
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Example
Find the area of the parallelogram formed by v and w above.



Example
Find the area of the parallelogram formed by v and w above.

Solution:
Since v x w = (8,0, 16), then

A=|vxw|=][(8016)| = /82 + 162 = ,/82(1 + 4).



Example
Find the area of the parallelogram formed by v and w above.

Solution:
Since v x w = (8,0, 16), then

A=|vxw|=][(8016)| = /82 + 162 = ,/82(1 + 4).

A = 8/5.



Example

Find the volume of the parallelepiped determined by the vectors
u=(6,3,-1), v=(0,1,2), and w = (4, —2,5).



Example

Find the volume of the parallelepiped determined by the vectors
u=(6,3,-1), v=(0,1,2), and w = (4, —2,5).

Solution: We need to compute the triple product u - (v x w).



Example

Find the volume of the parallelepiped determined by the vectors
u=(6,3,-1), v=(0,1,2), and w = (4, —2,5).

Solution: We need to compute the triple product u - (v x w).
We must start with the cross product.

i
vxw=1|0 1

k
2 =((5+4),—(0-8),(0-4))
4 -2 5

We obtain v x w = (9,8, —4).



Example
Find the volume of the parallelepiped determined by the vectors
u=(6,3,-1), v=(0,1,2), and w = (4, —2,5).

Solution: We need to compute the triple product u - (v x w).
We must start with the cross product.

i j k
vxw=0 1 2[=(5+4),—(0-8),(0—4)
4 -2 5
We obtain v x w = (9,8, —4). The triple product is

u-(vxw)=(6,3-1)-(9,8,—4) =54 +24+4 =32



Example

Find the volume of the parallelepiped determined by the vectors
u=(6,3,-1), v=(0,1,2), and w = (4, —2,5).

Solution: We need to compute the triple product u - (v x w).
We must start with the cross product.

i j k
vxw=0 1 2[=(5+4),—(0-8),(0—4)
4 -2 5
We obtain v x w = (9,8, —4). The triple product is
u-(vxw)=(63—1) (9,8 —4) =54 + 24 + 4 = 82.

Since V = |u- (v X w)|, we obtain V = 82.



Example

Does the line given by r(t) = (0,1,1) 4 (1,2, 3)t intersects the
plane given by 2x + y — z = 17 If the answer is yes, then find the
intersection point.



Example

Does the line given by r(t) = (0,1,1) 4 (1,2, 3)t intersects the
plane given by 2x + y — z = 17 If the answer is yes, then find the
intersection point.

Solution: The line with parametric equation
x=t, y=1+2t z=1+43t,

intersect the plane 2x + y — z = 1 iff there is a solution t for the

equation
2t+(1+2t)— (1+3t)=1.



Example

Does the line given by r(t) = (0,1,1) 4 (1,2, 3)t intersects the
plane given by 2x + y — z = 17 If the answer is yes, then find the
intersection point.

Solution: The line with parametric equation
x=t, y=1+2t z=1+43t,

intersect the plane 2x + y — z = 1 iff there is a solution t for the

equation
2t+(1+2t)— (1+3t)=1.

There is a solution given by t = 1. Therefore, the point of
intersection has coordinates x =1, y = 3, z = 4, then

P =(1,3,4).



Example

Find the equation for the plane that contains the point
Po=(1,2,3) and the line x = —2+t, y=t, z=—1+2t.



Example
Find the equation for the plane that contains the point
Po=(1,2,3) and the line x = —2+t, y=t, z=—1+2t.

Solution:

The vector equation of the line is

r(t) =(—=2,0,—1) + (1,1,2)t. \



Example
Find the equation for the plane that contains the point
Po=(1,2,3) and the line x = —2+t, y=t, z=—1+2t.

Solution:

The vector equation of the line is

r(t) =(—=2,0,—1) + (1,1,2)t. \

A vector tangent to the line, and so to the plane, is v = (1,1, 2).



Example
Find the equation for the plane that contains the point
Po=(1,2,3) and the line x = —2+t, y=t, z=—1+2t.

Solution:

The vector equation of the line is

r(t) = (-2,0,-1) + (1,1,2)t. \

A vector tangent to the line, and so to the plane, is v = (1,1, 2).
The point Py = (1,2,3) is in the plane. A second point in the
plane is any point in the line, for example P; corresponding to the
terminal point of r(0) = (—2,0,—1).



Example
Find the equation for the plane that contains the point
Po=(1,2,3) and the line x = —2+t, y=t, z=—1+2t.

Solution:

The vector equation of the line is

r(t) = (-2,0,-1) + (1,1,2)t. \

A vector tangent to the line, and so to the plane, is v = (1,1, 2).
The point Py = (1,2,3) is in the plane. A second point in the
plane is any point in the line, for example P; corresponding to the
terminal point of r(0) = (—2,0,—1).

. T
Then a second vector tangent to the plane is P1Py = (3,2,4).



Example

Find the equation for the plane that contains the point
Po=1(1,2,3) and the line x = —-2+t, y =t, z= -1+ 2t.



Example

Find the equation for the plane that contains the point
Po=1(1,2,3) and the line x = —-2+t, y =t, z= -1+ 2t.
Solution:

The vector equation of the line is ;

r(t) = (=2,0,—1) + (1,1, 2)t,

and a second vector tangent to
4

the plane is P1Py = (3,2,4).




Example

Find the equation for the plane that contains the point
Po=1(1,2,3) and the line x = —-2+t, y =t, z= -1+ 2t.
Solution:

The vector equation of the line is ;

r(t) = (=2,0,—1) + (1,1, 2)t,

and a second vector tangent to
4

the plane is P1Py = (3,2,4).

Then, a normal to the plane is given by
i j k

n=1[11 2/=(4-4),-(4-6),(2—-3)) = n=(0,2,-1).
3 2 4

So, the equation of the plane is

O(x—1)+2(y—-2)—(z—3)=0, = 2y—z=1.



Example

Find an equation for the plane that passes through the points
(1,1,1), (1,-1,1), and (0,0, 2).



Example
Find an equation for the plane that passes through the points
(1,1,1), (1,-1,1), and (0,0, 2).

Solution: Denote P = (1,1,1), Q = (1,—1,1), and R = (0,0, 2).



Example

Find an equation for the plane that passes through the points
(1,1,1), (1,-1,1), and (0,0, 2).

Solution: Denote P = (1,1,1), Q = (1,—1,1), and R = (0,0, 2).

Then,
PQ =(0,-2,0), PR=(-1,-1,1),



Example

Find an equation for the plane that passes through the points
(1,1,1), (1,-1,1), and (0,0, 2).

Solution: Denote P = (1,1,1), Q = (1,—1,1), and R = (0,0, 2).
Then,
PQ =(0,-2,0), PR=(-1,-1,1),

i k
PQxPR=[0 -2 0
-1 -1 1

(=2 —0)i — (0 — 0)j + (0 — 2)k,

that is, PQ x PR = (—2,0,—2). Take n = (2,0,2).



Example

Find an equation for the plane that passes through the points
(1,1,1), (1,-1,1), and (0,0, 2).

Solution: Denote P = (1,1,1), Q = (1,—1,1), and R = (0,0, 2).
Then,
PQ =(0,-2,0), PR=(-1,-1,1),

i k
PQxPR=[0 -2 0
-1 -1 1

(=2 —0)i — (0 — 0)j + (0 — 2)k,

that is, PQ x PR = (—2,0,—2). Take n = (2,0,2).
With n = (2,0,2) and a point R = (0,0, 2), the equation of the
plane is

2(x—0)+0(y—0)+2(z—2)=0



Example

Find an equation for the plane that passes through the points
(1,1,1), (1,-1,1), and (0,0, 2).

Solution: Denote P = (1,1,1), Q = (1,—1,1), and R = (0,0, 2).
Then,
PQ =(0,-2,0), PR=(-1,-1,1),

i k
PQxPR=[0 -2 0
-1 -1 1

(=2 —0)i — (0 — 0)j + (0 — 2)k,

that is, PQ x PR = (—2,0,—2). Take n = (2,0,2).
With n = (2,0,2) and a point R = (0,0, 2), the equation of the
plane is

2(x—0)+0(y—0)+2(z—2)=0 = x+z=2.



Example
Find the equation of the plane that is parallel to the plane
x — 2y + 3z =1 and passes through the center of the sphere

x2 4+ 2x +y?+ 22 -2z =0.



Example

Find the equation of the plane that is parallel to the plane

x — 2y + 3z =1 and passes through the center of the sphere
X+ 2x 4+ y?>+ 2> —2z=0.

Solution: The plane is parallel to the plane x — 2y +3z =1, so
their normal vectors are parallel. We choose n = (1, -2, 3).



Example
Find the equation of the plane that is parallel to the plane
x — 2y + 3z =1 and passes through the center of the sphere

x2 4+ 2x +y?+ 22 -2z =0.

Solution: The plane is parallel to the plane x — 2y +3z =1, so
their normal vectors are parallel. We choose n = (1, -2, 3).
We need to find the center of the sphere. We complete squares:

0=x2+2x+y?>+2%> -2z
=(x*+2x+1)—1+y*+(22-2z+1)-1=0
=(x+1)2+y’+(z-1)2 -2



Example
Find the equation of the plane that is parallel to the plane
x — 2y + 3z =1 and passes through the center of the sphere

x2 4+ 2x +y?+ 22 -2z =0.
Solution: The plane is parallel to the plane x — 2y +3z =1, so
their normal vectors are parallel. We choose n = (1, -2, 3).
We need to find the center of the sphere. We complete squares:
0=x2+2x+y?>+2%> -2z
=(x*+2x+1)—1+y*+(22-2z+1)-1=0
=(x+1)2+y’+(z-1)2 -2

Therefore, the center of the sphere is at Py = (—1,0,1).



Example

Find the equation of the plane that is parallel to the plane
x — 2y + 3z =1 and passes through the center of the sphere
x2 4+ 2x +y?+ 22 -2z =0.

Solution: The plane is parallel to the plane x — 2y +3z =1, so
their normal vectors are parallel. We choose n = (1, -2, 3).
We need to find the center of the sphere. We complete squares:
0=x2+2x+y?>+2%> -2z
=(x*+2x+1)—1+y*+(22-2z+1)-1=0
=(x+1)2+y’+(z-1)2 -2

Therefore, the center of the sphere is at Py = (—1,0,1).
The equation of the plane is

(x+1)—2(y—-0)+3(z—-1)=0 = x—-2y+3z=2.



Example

Find the angle between the planes 2x — 3y + 2z =1 and
X+ 2y +2z=05.



Example
Find the angle between the planes 2x — 3y + 2z =1 and
X+ 2y +2z=05.

Solution: The angle between the planes is the angle between their
normal vectors.



Example
Find the angle between the planes 2x — 3y + 2z =1 and
X+ 2y +2z=05.

Solution: The angle between the planes is the angle between their

normal vectors.
The normal vectors are n = (2, —3,2), N = (1,2, 2).



Example
Find the angle between the planes 2x — 3y + 2z =1 and
X+ 2y +2z=05.

Solution: The angle between the planes is the angle between their

normal vectors.
The normal vectors are n = (2, —3,2), N = (1,2, 2).
The cosine of the angle 8 between these vectors is

n-N

cos(f) = IR




Example
Find the angle between the planes 2x — 3y + 2z =1 and
X+ 2y +2z=05.

Solution: The angle between the planes is the angle between their
normal vectors.

The normal vectors are n = (2, —3,2), N = (1,2, 2).

The cosine of the angle 8 between these vectors is

n-N

cos(f) = IR

Sincen-N=2-64+4=0,



Example
Find the angle between the planes 2x — 3y + 2z =1 and
X+ 2y +2z=05.

Solution: The angle between the planes is the angle between their
normal vectors.

The normal vectors are n = (2, —3,2), N = (1,2, 2).

The cosine of the angle 8 between these vectors is

n-N

cos(f) = IR

Sincen-N=2-6-+4 =0, we conclude that n L N.



Example

Find the angle between the planes 2x — 3y + 2z =1 and

x4+ 2y +2z=5.

Solution: The angle between the planes is the angle between their

normal vectors.
The normal vectors are n = (2, —3,2), N = (1,2, 2).
The cosine of the angle 8 between these vectors is

_ n-N
In| N[’

cos(0)

Sincen-N=2-6-+4 =0, we conclude that n L N.
The angle 0 is 0 = /2. <



Example

Find the vector equation for the line of intersection of the planes
2x — 3y +2z=1and x+ 2y + 2z =5.



Example
Find the vector equation for the line of intersection of the planes
2x — 3y +2z=1and x+ 2y + 2z =5.

Solution: We first find the vector tangent to the line. This is a
vector v that belongs to both planes.



Example
Find the vector equation for the line of intersection of the planes
2x — 3y +2z=1and x+ 2y + 2z =5.

Solution: We first find the vector tangent to the line. This is a

vector v that belongs to both planes.
This means that v is perpendicular to both normal vectors

n=(2,-3,2) and N = (1,2,2).



Example

Find the vector equation for the line of intersection of the planes
2x — 3y +2z=1and x+ 2y + 2z =5.

Solution: We first find the vector tangent to the line. This is a
vector v that belongs to both planes.

This means that v is perpendicular to both normal vectors
n=(2,-3,2) and N = (1,2,2).

One such vector is

i k
v=nxN=2 -3 2/=(-6—-4),—(4—-2),(4+3)).
1 2



Example
Find the vector equation for the line of intersection of the planes
2x — 3y +2z=1and x+ 2y + 2z =5.

Solution: We first find the vector tangent to the line. This is a
vector v that belongs to both planes.

This means that v is perpendicular to both normal vectors
n=(2,-3,2) and N = (1,2,2).

One such vector is

i k
v=nxN=2 -3 2/=(-6—-4),—(4—-2),(4+3)).
1 2

So, v=(—10,-2,7).



Example

Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.



Example

Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.

Solution: Recall v = (—=10,—2,7). Now we need a point in the
intersection of the planes.



Example
Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.

Solution: Recall v = (—=10,—2,7). Now we need a point in the
intersection of the planes. From the first plane we compute z as
follows: 2z =1 — 2x + 3y.



Example
Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.

Solution: Recall v = (—=10,—2,7). Now we need a point in the
intersection of the planes. From the first plane we compute z as
follows: 2z =1 — 2x + 3y.

We introduce this equation for 2z into the second plane:

x+2y+(1-2x+3y)=5 = —x+5by=4



Example
Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.

Solution: Recall v = (—=10,—2,7). Now we need a point in the
intersection of the planes. From the first plane we compute z as
follows: 2z =1 — 2x + 3y.

We introduce this equation for 2z into the second plane:

x+2y+(1-2x+3y)=5 = —x+5by=4

We need just one solution, so we choose: y = 0, then x = —4, and
this implies z = 9/2.



Example
Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.

Solution: Recall v = (—=10,—2,7). Now we need a point in the
intersection of the planes. From the first plane we compute z as
follows: 2z =1 — 2x + 3y.

We introduce this equation for 2z into the second plane:

x+2y+(1-2x+3y)=5 = —x+5by=4

We need just one solution, so we choose: y = 0, then x = —4, and
this implies z = 9/2. A point in the intersection of the planes is
PO = (_4a Oa 9/2)



Example
Find the vector equation for the line of intersection of the planes
2x —3y+2z=1and x+2y +2z=>5.

Solution: Recall v = (—=10,—2,7). Now we need a point in the
intersection of the planes. From the first plane we compute z as
follows: 2z =1 — 2x + 3y.

We introduce this equation for 2z into the second plane:

x+2y+(1-2x+3y)=5 = —x+5by=4

We need just one solution, so we choose: y = 0, then x = —4, and
this implies z = 9/2. A point in the intersection of the planes is
Py = (—4,0,9/2). The vector equation of the line is:

r(t) = (—4,-0,9/2) + (~10,-2,7) t.



Example
Sketch the surface 36x2 + 4y? + 92z = 36.



Example
Sketch the surface 36x2 + 4y? + 92z = 36.

Solution: We first rewrite the equation above in the standard form

4 9 y2  Z?
2 2 2 2
- —~ == 1 -y - = 1.
x 36 Y 36 X 32 22



Example
Sketch the surface 36x2 + 4y? + 92z = 36.

Solution: We first rewrite the equation above in the standard form

4 9 y2  Z
2 2 2 2
— —z=1 < =4+ =1
XT3y T3 ST
This is the equation of an ellipsoid with principal radius of length

1, 3, and 2 on the x, y and z axis, respectively.



Example
Sketch the surface 36x2 + 4y? + 92z = 36.

Solution: We first rewrite the equation above in the standard form

4 9 y2  Z
2 2 2 2
— —z=1 < =4+ =1
XT3y T3 ST
This is the equation of an ellipsoid with principal radius of length

1, 3, and 2 on the x, y and z axis, respectively. Therefore




Vector functions (Sect. 13.1).

Definition of vector functions: r: R — R3.
Limits and continuity of vector functions.
Derivatives and motion.

Differentiation rules.

vV v v vY

Integrals of vector functions.



Motion in space motivates to define vector functions.

Definition
A function r: | — R”, with n =2, 3,
is called a vector function, where the

interval /| C R is called the domain
of the function.



Motion in space motivates to define vector functions.

Definition
A function r: | — R”, with n =2, 3,
is called a vector function, where the

interval /| C R is called the domain
of the function.

Remark: Given Cartesian coordinates in R3, the values of a vector
function can be written in components as follows:

r(t) = (x(8),y(¢),2(2)),  tel,

where x(t), y(t), and z(t) are the values of three scalar functions.



Motion in space motivates to define vector functions.

Remarks:

» There is a natural association between a curve in R” and the
vector function values r(t).




Motion in space motivates to define vector functions.

Remarks:

» There is a natural association between a curve in R” and the
vector function values r(t).

» The curve is determined by the terminal points of the vector
function values r(t).



Motion in space motivates to define vector functions.

Remarks:

» There is a natural association between a curve in R” and the
vector function values r(t).

» The curve is determined by the terminal points of the vector
function values r(t).

» The independent variable t is called the parameter of the
curve.



Vector functions.

Example
Graph the vector function r(t) = (cos(t),sin(t), t).



Vector functions.

Example
Graph the vector function r(t) = (cos(t),sin(t), t).

Solution:

The curve given by r(t) lies on a
vertical cylinder with radius one, since

x% 4 y? = cos?(t) + sin?(t) = 1.



Vector functions.

Example
Graph the vector function r(t) = (cos(t),sin(t), t).

Solution:

The curve given by r(t) lies on a
vertical cylinder with radius one, since

x% 4 y? = cos?(t) + sin?(t) = 1.

The z(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves up on the cylinder surface
when t increases.



Vector functions.

Example
Graph the vector function r(t) = (cos(t),sin(t), t).

Solution:

The curve given by r(t) lies on a
vertical cylinder with radius one, since

x% 4 y? = cos?(t) + sin?(t) = 1.

The z(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves up on the cylinder surface
when t increases. <




Vector functions.

Example
Graph the vector function r(t) = (sin(t), t, cos(t)).



Vector functions.

Example
Graph the vector function r(t) = (sin(t), t, cos(t)).

Solution:

The curve given by r(t) lies on a
horizontal cylinder with radius one, since

x? 4 22 = sin?(t) + cos*(t) = 1.



Vector functions.

Example
Graph the vector function r(t) = (sin(t), t, cos(t)).

Solution:

The curve given by r(t) lies on a
horizontal cylinder with radius one, since

x? 4 22 = sin?(t) + cos*(t) = 1.

The y(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves to the right on the cylinder
surface when t increases.



Vector functions.

Example
Graph the vector function r(t) = (sin(t), t, cos(t)).

Solution:

The curve given by r(t) lies on a
horizontal cylinder with radius one, since

x? 4 22 = sin?(t) + cos*(t) = 1.

The y(t) coordinate of the curve
increases with t, so the terminal point
r(t) moves to the right on the cylinder
surface when t increases. <




Vector functions (Sect. 13.1).

Definition of vector functions: r: R — R3.
Limits and continuity of vector functions.
Derivatives and motion.

Differentiation rules.

vV v v vY

Integrals of vector functions.



Limits and continuity of vector functions.

Definition

The vector function r: | — R", with n = 2,3, has a limit given by
the vector L when t approaches ty, denoted as limq_¢ r(t) = L, iff
the following holds: For every number ¢ > 0 there exists a number

6 > 0 such that

[t—t <o = |r(t)—L|<e



Limits and continuity of vector functions.

Definition

The vector function r: | — R", with n = 2,3, has a limit given by
the vector L when t approaches ty, denoted as limq_¢ r(t) = L, iff
the following holds: For every number ¢ > 0 there exists a number

6 > 0 such that

[t—t <o = |r(t)—L|<e

Remark:

» The limit of r(t) = (x(

t),y(t),z(t)) as t — to is the limit of
its components x(t), y(t

), z(t) in Cartesian coordinates.



Limits and continuity of vector functions.

Definition

The vector function r: | — R", with n = 2,3, has a limit given by
the vector L when t approaches ty, denoted as limq_¢ r(t) = L, iff
the following holds: For every number ¢ > 0 there exists a number

6 > 0 such that

[t—t <o = |r(t)—L|<e

Remark:
» The limit of r(t) = (x(t
its components x(t), y(

» That is:
|imt_)t0 I’(t) = <|im1_-_>t0 X(t), |imt_,t0 y(t), |imt_,t0 Z(t)>

), ¥(t), z(t)) as t — to is the limit of
t), z(t) in Cartesian coordinates.



|imt_,t0 r(t) — <Iimt_>t0 X(t), |imt_>t0 _y(t)7 |imt_)t0 Z(t)>

Example
Given r(t) = (cos(t),sin(t)/t, t> + 2), compute lim;_or(t).



|imt_,t0 I’(t) — <Iimt_>t0 X(t), |imtﬁt0 _y(t)7 |imt_>t0 Z(t)>

Example
Given r(t) = (cos(t),sin(t)/t, t> + 2), compute lim;_or(t).
Solution:

Notice that the vector function r is not defined at t = 0, however
its limit at t = 0 exists.



|imt_,t0 I’(t) — <Iimt_>t0 X(t), |imtﬁt0 _y(t-)7 |imt_>t0 Z(t)>

Example
Given r(t) = (cos(t),sin(t)/t, t> + 2), compute lim;_or(t).

Solution:
Notice that the vector function r is not defined at t = 0, however
its limit at t = 0 exists. Indeed,

lim r(t) = tli_r)rb<cos(t), sint(t)’ t2 4 2>

t—0 .
= <Iim cos(t), lim sin(t)

t—0 t—0 t

m(e+2)
=(1,1,2).

We conclude that limqr(t) = (1,1,2). <



Limits and continuity of vector functions.

Definition

A vector function r : | — R", with n = 2, 3, is continuous at

t = to € 1 iff holds lim¢—¢, r(t) = r(to). The function r: /| — R" is
continuous if it is continuous at every t in its domain interval /.



Limits and continuity of vector functions.

Definition

A vector function r : | — R", with n = 2, 3, is continuous at

t = to € 1 iff holds lim¢—¢, r(t) = r(to). The function r: /| — R" is
continuous if it is continuous at every t in its domain interval /.

Remark: A vector function with Cartesian components
r = (x,y, z) is continuous iff each component is continuous.



Limits and continuity of vector functions.

Definition

A vector function r : | — R", with n = 2, 3, is continuous at

t = to € 1 iff holds lim¢—¢, r(t) = r(to). The function r: /| — R" is
continuous if it is continuous at every t in its domain interval /.

Remark: A vector function with Cartesian components
r = (x,y, z) is continuous iff each component is continuous.

Example
The function r(t) = (sin(t), t,cos(t)) is continuous for t € R. <



Limits and continuity of vector functions.

Definition

A vector function r : | — R", with n = 2, 3, is continuous at

t = to € 1 iff holds lim¢—¢, r(t) = r(to). The function r: /| — R" is
continuous if it is continuous at every t in its domain interval /.

Remark: A vector function with Cartesian components
r = (x,y, z) is continuous iff each component is continuous.

Example
The function r(t) = (sin(t), t,cos(t)) is continuous for t € R. <

Remark: Having the idea of limit, one can introduce the idea of a
derivative of a vector valued function.



Vector functions (Sect. 13.1).

Definition of vector functions: r : R — R3.
Limits and continuity of vector functions.
Derivatives and motion.

Differentiation rules.

vV v v vY

Integrals of vector functions.



Derivatives and motion.

Definition
The vector function r : | — R", with n = 2, 3, is differentiable at

dr . o
t = tp, denoted as r'(t) or e iff the following limit exists,



Derivatives and motion.
Definition
The vector function r : | — R", with n = 2, 3, is differentiable at

dr . o
t = tp, denoted as r'(t) or e iff the following limit exists,

Remarks:

» A vector function r: | — R" is differentiable if it is
differentiable for each t € /.



Derivatives and motion.
Definition
The vector function r : | — R", with n = 2, 3, is differentiable at

dr . o
t = tp, denoted as r'(t) or e iff the following limit exists,

/(1) = ,!i_rf‘o r(t+ h/)7 —r(t)

Remarks:

» A vector function r: | — R" is differentiable if it is
differentiable for each t € /.

» If a vector function with Cartesian components r = (x, y, z) is
differentiable, then

F(t) = (<(1),y'(1). (1)),



Derivatives and motion.

Theorem
If a vector function with Cartesian components v = (x,y, z) is
differentiable, then ¥'(t) = (X'(t),y'(t), Z/(t)).



Derivatives and motion.

Theorem

If a vector function with Cartesian components v = (x,y, z) is
differentiable, then ¥'(t) = (X'(t),y'(t), Z/(t)).

Proof.
¢(t) = }7@0 r(t+ h/)7 — r(t)’
— lim <X(t—|— h) —x(t) y(t+h)—y(t) z(t+ h) - z(t)>
h—0 h ’ h ’ h
_ <,im Xt Eh) x() | y(tt ) y(t) |t h) z(t)>
h—0 h " h—0 h " h—0

O



Derivatives and motion.

Example

Find the derivative of the vector function
r(t) = (cos(t),sin(t), (t% + 3t — 1)).



Derivatives and motion.

Example

Find the derivative of the vector function
r(t) = (cos(t),sin(t), (t% + 3t — 1)).

Solution: We differentiate each component of r, that is,

r'(t) = (—sin(t), cos(t), (2t + 3)).



Derivatives and motion.

Example

Find the derivative of the vector function
r(t) = (cos(t),sin(t), (t% + 3t — 1)).

Solution: We differentiate each component of r, that is,

r'(t) = (—sin(t), cos(t), (2t + 3)).

Example
Find the derivative of the vector function r(t) = (cos(2t), e3¢, 1/t).



Derivatives and motion.

Example

Find the derivative of the vector function
r(t) = (cos(t),sin(t), (t% + 3t — 1)).

Solution: We differentiate each component of r, that is,

r'(t) = (—sin(t), cos(t), (2t + 3)).

Example
Find the derivative of the vector function r(t) = (cos(2t), e3¢, 1/t).

Solution: We differentiate each component of r, that is,

r(t) = (—2sin(2t),3e3, —1/t).



Geometrical property of the derivative.

z r ()
Remark: The vector r’(t) is e
tangent to the curve given by r
) r(t)
at the point r(t). r(t+2h)

y



Geometrical property of the derivative.

z re
Remark: The vector ¥'(t) is r(t+h)
tangent to the curve given by r
at the point r(t). 0 r(t+2h)
y

X

Remark: If r(t) represents the vector position of a particle, then:



Geometrical property of the derivative.

z re
Remark: The vector ¥'(t) is r(t+h)
tangent to the curve given by r
at the point r(t). 0 r(t+2h)
y

X

Remark: If r(t) represents the vector position of a particle, then:

» The derivative of the position function is the velocity function,
v(t) = r(t). The speed is |v(t)].



Geometrical property of the derivative.

z r'()
Remark: The vector ¥'(t) is r(t+h)
tangent to the curve given by r
; r(t)
at the point r(t). r(t+2h)

y

X

Remark: If r(t) represents the vector position of a particle, then:
» The derivative of the position function is the velocity function,
v(t) = r(t). The speed is |v(t)].
» The derivative of the velocity function is the acceleration
function, a(t) = v/(t) = r"(t).



Derivatives and motion.

Example

Compute the derivative of the position function

r(t) = (cos(t),sin(t),0). Graph the curve given by r, and explicitly
show the position vector r(0) and velocity vector v(0).



Derivatives and motion.

Example

Compute the derivative of the position function
r(t) = (cos(t),sin(t),0). Graph the curve given by r, and explicitly
show the position vector r(0) and velocity vector v(0).

Solution:

The derivative of r is:

v(t) = (—sin(t), cos(t),0).



Derivatives and motion.

Example

Compute the derivative of the position function
r(t) = (cos(t),sin(t),0). Graph the curve given by r, and explicitly
show the position vector r(0) and velocity vector v(0).

Solution:

The derivative of r is:
v(t) = (—sin(t), cos(t),0).

r(0) = (1,0,0), v(0) = (0,1,0).



Derivatives and motion.

Example

Compute the derivative of the position function
r(t) = (cos(t),sin(t),0). Graph the curve given by r, and explicitly
show the position vector r(0) and velocity vector v(0).

Solution:

N

The derivative of r is:
v(t)

d
v(t) = (—sin(t), cos(t), 0). 0) W y

K(0) = (1,0,0), v(0) = (0, 1,0). / Vo)



Differentiation rules are the same as for scalar functions

Theorem

If v and w are differentiable vector functions, then holds:
> [v(t) +w(t)] = V/(t) +w(t), (addition);
> [ev(t)] = cV/(2), (product rule);
> [v(f(t))] =V (F(2))f'(t), (chain rule);

> [F(e)v(D)] = F'(t)v(t) + F(t)V'(2), (product rule);
> [v(t)-w(t)] =V/(t) - w(t)+v(t) w(t), (dot product);
> [v(t) x w(t)] =V/(t) x w(t) + v(t) x w'(t), (cross product).



Higher derivatives can also be computed.

Remark: The m-derivative of a vector function r is denoted as r("™
and is given by the expression r(™(t) = [rf(m=1)(¢)]'.



Higher derivatives can also be computed.

Remark: The m-derivative of a vector function r is denoted as r("™
and is given by the expression r(™(t) = [rf(m=1)(¢)]'.

Example
Compute the third derivative of r(t) = (cos(t),sin(t), t> + 2t + 1).



Higher derivatives can also be computed.

Remark: The m-derivative of a vector function r is denoted as r("™
and is given by the expression r(™(t) = [rf(m=1)(¢)]'.

Example
Compute the third derivative of r(t) = (cos(t),sin(t), t> + 2t + 1).

Solution:
r'(t) = (—sin(t), cos(t), 2t + 2),
(@ (£) = (/(2)) = (—cos(£), —sin(t), 2),
r®) (1) = ((P(t)) = (sin(t), — cos(t), 0).



Higher derivatives can also be computed.

Remark: The m-derivative of a vector function r is denoted as r("™
and is given by the expression r(™(t) = [rf(m=1)(¢)]'.

Example
Compute the third derivative of r(t) = (cos(t),sin(t), t> + 2t + 1).

Solution:
r'(t) = (—sin(t), cos(t), 2t + 2),

r?(t) = (F(1)) = (= cos(t), —sin(t),2),
r®) (1) = ((P(t)) = (sin(t), — cos(t), 0).

<

Recall: If r(t) is the position of a particle, then v(t) = ¥/(t) is the
velocity and a(t) = r(®)(t) is the acceleration of the particle.



Vector functions (Sect. 13.1).

Definition of vector functions: r : R — R3.
Limits and continuity of vector functions.
Derivatives and motion.

Differentiation rules.

vV v v vY

Integrals of vector functions.



Integrals of vector functions.

Definition
The indefinite integral, also called the antiderivative, of a vector
function v is denoted as [ v (t) dt and given by

/v(t)dt:V(t)+C,

where V/(t) = v(t) and C is a constant vector.



Integrals of vector functions.

Definition
The indefinite integral, also called the antiderivative, of a vector
function v is denoted as [ v (t) dt and given by

/v(t)dt:V(t)+C,

where V/(t) = v(t) and C is a constant vector.

Example

Find the position function r knowing that the velocity function is
v(t) = (2t,cos(t),sin(t)) and the initial position is r(0) = (1,1, 1).



Integrals of vector functions.

Definition
The indefinite integral, also called the antiderivative, of a vector
function v is denoted as [ v (t) dt and given by

/v(t)dt:V(t)+C,

where V'(t) = v (t) and C is a constant vector.

Example

Find the position function r knowing that the velocity function is
v(t) = (2t,cos(t),sin(t)) and the initial position is r(0) = (1,1, 1).
Solution: The position function is the primitive of the velocity
function, r(t) = V(t) + C, that satisfies the initial condition

r(0) = V(0) + C. This initial condition fixes the constant vector C.



Integrals of vector functions.

Example

Find the position function r knowing that the velocity function is
v(t) = (2t,cos(t),sin(t)) and the initial position is r(0) = (1,1, 1).



Integrals of vector functions.

Example
Find the position function r knowing that the velocity function is
v(t) = (2t,cos(t),sin(t)) and the initial position is r(0) = (1,1, 1).

Solution: The position function is a primitive of the velocity,
r(t) = V(t) + C = (t?,sin(t), — cos(t)) + (cx, ¢, €2,

with C = (cx, ¢y, ¢;) a constant vector.



Integrals of vector functions.

Example

Find the position function r knowing that the velocity function is
v(t) = (2t,cos(t),sin(t)) and the initial position is r(0) = (1,1, 1).

Solution: The position function is a primitive of the velocity,
r(t) = V(t) + C = (t?,sin(t), — cos(t)) + (cx, ¢, €2,

with C = (cx, ¢y, ¢;) a constant vector. The initial condition
determines the vector C:

(1,1,1) =r(0) = V(0) + C = (0,0, —1) + (cx, ¢y, Cz),

thatis, cx =1, ¢, =1, ¢; = 2.



Integrals of vector functions.

Example
Find the position function r knowing that the velocity function is
v(t) = (2t,cos(t),sin(t)) and the initial position is r(0) = (1,1, 1).

Solution: The position function is a primitive of the velocity,
r(t) = V(t) + C = (t?,sin(t), — cos(t)) + (cx, ¢, €2,

with C = (cx, ¢y, ¢;) a constant vector. The initial condition
determines the vector C:

(1,1,1) =r(0) = V(0) + C = (0,0, —1) + (cx, ¢y, Cz),

thatis, cx =1, ¢, =1, ¢; = 2.
The position function is r(t) = (t?+1,sin(t) + 1, — cos(t) +2). <



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0, 1).



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0, 1).

Solution: The velocity is v(t) = (vox, voy, (—10t + vp;)).



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0,1).

Solution: The velocity is v(t) = (vox, voy, (—10t + vo;)).

The initial condition implies (0, 1,1) = v(0) = (vox, voy, Voz), that
is Vox = 0, Voy = 1, Voz = 1.



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0,1).

Solution: The velocity is v(t) = (vox, voy, (—10t + vo;)).

The initial condition implies (0, 1,1) = v(0) = (vox, voy, Voz), that
is vox = 0, voy = 1, vo; = 1. The velocity function is

v(t) = (0,1,(—10t + 1)).



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0,1).

Solution: The velocity is v(t) = (vox, voy, (—10t + vo;)).

The initial condition implies (0, 1,1) = v(0) = (vox, voy, Voz), that
is vox = 0, voy = 1, vo; = 1. The velocity function is

v(t) = (0,1,(—10t + 1)).

The position is r(t) = (rox, (t + roy), (=5t + t + roz)).



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0,1).

Solution: The velocity is v(t) = (vox, voy, (—10t + vo;)).

The initial condition implies (0, 1,1) = v(0) = (vox, voy, Voz), that
is vox = 0, voy = 1, vo; = 1. The velocity function is

v(t) = (0,1,(—10t + 1)).

The position is r(t) = (rox, (t + roy), (=5t + t + roz)).
The initial condition implies (1,0,1) = r(0) = (rox, foy, foz), that is
x = ]., ny = 0, hz = 1.



Integrals of vector functions.

Example

Find the position function of a particle with acceleration

a(t) = (0,0,—10) having an initial velocity v(0) = (0,1, 1) and
initial position r(0) = (1,0,1).

Solution: The velocity is v(t) = (vox, voy, (—10t + vo;)).

The initial condition implies (0, 1,1) = v(0) = (vox, voy, Voz), that
is vox = 0, voy = 1, vo; = 1. The velocity function is

v(t) = (0,1, (—10t + 1)).
The position is r(t) = (rox, (t + roy), (=5t + t + roz)).
The initial condition implies (1,0,1) = r(0) = (rox, foy, foz), that is

rox =1, roy = 0, ro = 1. The velocity function is

r(t) = (1,t,(=5t2 + t +1)).



Integrals of vector functions.

Definition
If the components of r(t) = (x(t),y(t),z(t)) are integrable
functions on the interval [a, b], then the definite integral of r is

given by

/ab r(t)dt = </ab x(t)dt, /aby(t)dt,/ab z(t)dt>'



Integrals of vector functions.

Definition
If the components of r(t) = (x(t),y(t),z(t)) are integrable
functions on the interval [a, b], then the definite integral of r is

given by
/ab r(t)dt = </ab x(t)dt, /aby(t)dt,/ab z(t)dt>'

Example
Compute [ r(t) dt for the function r(t) = (cos(t),sin(t), t).



Integrals of vector functions.

Example
Compute [ r(t) dt for the function r(t) = (cos(t),sin(t), t).



Integrals of vector functions.

Example
Compute [ r(t) dt for the function r(t) = (cos(t),sin(t), t).

Solution:

/0” r(t) dt = /W<COS(t) sin(t), t)dt
</O cos(t)dt, /Wsin(t)dt, /07r tdt>,
<5'”(t o Cos (1) ﬂ’tj >
<0’2 2 / 0 2”22>




The arc length of a curve in space (Sect. 13.3).

» The arc length of a curve in space.
» The arc length function.
» Parametrizations of a curve.

» The arc length parametrization of a curve.



The length of a curve is called its arc length.

Definition

The arc length of a continuously
differentiable curve r : [a, b] — R", with
n=2,3, is the number given by

b
Eba:/ ¥'(t)| dt.



The length of a curve is called its arc length.

Definition

The arc length of a continuously 5
differentiable curve r : [a, b] — R", with

n=2,3, is the number given by

(o = / I¥(8)] dt. e

Remark:
» If the curve r is the path traveled by a particle in space, then
' = v is the velocity of the particle.



The length of a curve is called its arc length.

Definition

The arc length of a continuously 5
differentiable curve r : [a, b] — R", with

n=2,3, is the number given by

(o = / I¥(8)] dt. e

Remark:
» If the curve r is the path traveled by a particle in space, then
' = v is the velocity of the particle.

» The arc length is the integral in time of the particle speed

v(t)]



The length of a curve is called its arc length.

Definition

The arc length of a continuously
differentiable curve r : [a, b] — R", with
n=2,3, is the number given by

b
Eba:/ ¥'(£)] dt.

Remark:
» If the curve r is the path traveled by a particle in space, then
' = v is the velocity of the particle.
» The arc length is the integral in time of the particle speed
v(1)].
» Therefore, the arc length of the curve is the distance traveled
by the particle.



The length of a curve is called its arc length.

Recall:
The arc length of a curve r : [a, b] — R3

b
Eba:/ ¥'(t)| dt.




The length of a curve is called its arc length.

Recall:
The arc length of a curve r : [a, b] — R3

b
Eba:/ ¥'()] dt.

Remark:
In Cartesian coordinates the functions r and r" are given by

r(t) = (x(t),y(1),2(1)),  ¥'(t) = (X' (2),y'(1), ().



The length of a curve is called its arc length.

Recall:
The arc length of a curve r : [a, b] — R3

b
Eba:/ ¥'()] dt.

Remark:
In Cartesian coordinates the functions r and r" are given by

r(t) = (x(t),y(1),2(1)),  ¥'(t) = (X' (2),y'(1), ().

Therefore the arc length of the curve is given by the expression

b
eba:/ VIO + (0] + [2(5)] de.



The arc length of a curve in a plane.

Example

Find the arc length of the curve r(t) = (cos(t),sin(t)), for
t € [n/4,3n/4].



The arc length of a curve in a plane.

Example

Find the arc length of the curve r(t) = (cos(t),sin(t)), for
t €[n/4,37/4].

Solution: The derivative vector function is

r'(t) = (—sin(t), cos(t)).



The arc length of a curve in a plane.

Example
Find the arc length of the curve r(t) = (cos(t),sin(t)), for
t € [n/4,3n/4].

Solution: The derivative vector function is
r'(t) = (—sin(t),cos(t)). The arc length formula is

(= /37r/4 \/ — sin( cos(t)]2 dt
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The arc length of a curve in a plane.

Example
Find the arc length of the curve r(t) = (cos(t),sin(t)), for
t € [n/4,3n/4].

Solution: The derivative vector function is
r'(t) = (—sin(t),cos(t)). The arc length formula is

(= /37r/4 \/ — sin( cos(t)]2 dt

3r/4
/4 2

This result is reasonable, since the curve is a circle and we are
computing the length of quarter a circle.



The arc length of a curve in a plane.

Example

Find the arc length of the spiral r(t) = (t cos(t), tsin(t)), for
t € [0, to].



The arc length of a curve in a plane.

Example
Find the arc length of the spiral r(t) = (t cos(t), tsin(t)), for
t € [0, to].

Solution: The derivative vector is

r'(t) = ([—tsin(t) + cos(t)], [t cos(t) + sin(t)] ).

V' (£)[> = [t*sin®(t) + cos?(t) — 2t sin(t) cos(t)]
+ [t2 cos?(t) + sin?(t) + 2t sin(t) cos(t)] = 2 4 1.



The arc length of a curve in a plane.

Example
Find the arc length of the spiral r(t) = (t cos(t), tsin(t)), for
t € [0, to].

Solution: The derivative vector is

r'(t) = ([—tsin(t) + cos(t)], [t cos(t) + sin(t)] ).

V' (£)[> = [t*sin®(t) + cos?(t) — 2t sin(t) cos(t)]
+ [t2 cos?(t) + sin?(t) + 2t sin(t) cos(t)] = 2 4 1.
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The arc length of a curve in a plane.

Example
Find the arc length of the spiral r(t) = (t cos(t), tsin(t)), for
t € [0, to].

Solution: The derivative vector is

r'(t) = ([—tsin(t) + cos(t)], [t cos(t) + sin(t)] ).

V' (£)[> = [t*sin®(t) + cos?(t) — 2t sin(t) cos(t)]
+ [t2 cos?(t) + sin?(t) + 2t sin(t) cos(t)] = 2 4 1.
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The arc length of a curve in a plane.

Example
Find the arc length of the spiral r(t) = (t cos(t), tsin(t)), for
t € [0, to].

Solution: The derivative vector is
r'(t) = ([—tsin(t) + cos(t)], [t cos(t) + sin(t)] ).

V' (£)[> = [t*sin®(t) + cos?(t) — 2t sin(t) cos(t)]
+ [t2 cos?(t) + sin?(t) + 2t sin(t) cos(t)] = 2 4 1.

to "
The arc length is ¢(ty) = / V1t t2dt = In(t + m) ’00_
0

We conclude: £(tg) = In(to + /1 + t3).



The arc length of a curve in space.

Example

Find the arc length of
r(t) = (6 cos(2t),6sin(2t), 5t), for

t € [0,7]. r(0)




The arc length of a curve in space.

Example

Find the arc length of
r(t) = (6 cos(2t),6sin(2t), 5t), for

t € [0,7]. r(0)

Solution: The derivative vector is

r'(t) = (=12sin(2t), 12 cos(2t), 5),
IF'(t)]? = 144 [sin®(2t) + cos?(2t)] + 25 = 169 = (13)°.



The arc length of a curve in space.

Example

Find the arc length of
r(t) = (6 cos(2t),6sin(2t), 5t), for

t € [0,7]. r(0)

Solution: The derivative vector is

r'(t) = (=12sin(2t), 12 cos(2t), 5),
IF'(t)]? = 144 [sin®(2t) + cos?(2t)] + 25 = 169 = (13)°.

The arc length is ¢ = [ 13dt =13 t‘g = (=137.



|dea behind the arc length formula.

The arc length formula can be obtained
as a limit procedure One adds up the
lengths of a polygonal line that
approximates the original curve.

N—-1
EN = Z ‘r(tn'i‘l) - r(tn)’7 {a = tOv t17 R} tN*lv tN = b}')
n=

N—-1 N
o S (st — t) " / ¥(8)) ot
n=0



The arc length of a curve in space (Sect. 13.3).

» The arc length of a curve in space.
» The arc length function.
» Parametrizations of a curve.

» The arc length parametrization of a curve.



The arc length function.

Definition
function. The arc length function of a continuously differentiable
vector function r is given by

(t) = /tt ¥ (7)|dr-



The arc length function.

Definition
function. The arc length function of a continuously differentiable

vector function r is given by
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Remarks:
» The value /(t) of the arc length function represents the length

along the curve r from tj to t.



The arc length function.

Definition
function. The arc length function of a continuously differentiable
vector function r is given by

ot) = /tt ¥(7)]dr.

Remarks:
» The value /(t) of the arc length function represents the length
along the curve r from tj to t.
» If the function r is the position of a moving particle as
function of time, then the arc length ¢(t) is the distance
traveled by the particle from the time ty to t.



The arc length function.

Example
Find the arc length function for the
curve r(t) = (6 cos(2t), 6sin(2t), 5t),

starting at t = 0. 0



The arc length function.

Example
Find the arc length function for the
curve r(t) = (6 cos(2t), 6sin(2t), 5t),

starting at t = 0. 0

Solution: We have found that |r'(t)| = 13. Therefore,

E(t):/0t13dr = ((t)=13¢t.



The arc length function.

Example
Given the position function in time
r(t) = (6 cos(2t),6sin(2t),5t), find the

position vector r(tp) located at a length
lp = 20 from the initial position r(0).




The arc length function.

Example

Given the position function in time

r(t) = (6 cos(2t),6sin(2t),5t), find the
position vector r(tp) located at a length oy
lp = 20 from the initial position r(0).

Solution: We have found that the arc length function for the vector
function r is £(t) = 13 t.



The arc length function.

Example

Given the position function in time

r(t) = (6 cos(2t),6sin(2t),5t), find the
position vector r(tp) located at a length oy
lp = 20 from the initial position r(0).

Solution: We have found that the arc length function for the vector

function r is £(t) = 13 t.
Since t = £/13, the time at £ = {y = 20 is tp = 13/20.



The arc length function.

Example

Given the position function in time

r(t) = (6 cos(2t),6sin(2t),5t), find the ,
position vector r(tp) located at a length oy
lp = 20 from the initial position r(0).

Solution: We have found that the arc length function for the vector

function r is £(t) = 13 t.
Since t = £/13, the time at £ = ¢y = 20 is to = 13/20.
Therefore, the position vector at {5 = 20 is given by

r(to) = (6cos(13/10),65sin(13/10),13/4).



The arc length of a curve in space (Sect. 13.3).

» The arc length of a curve in space.
» The arc length function.
» Parametrizations of a curve.

» The arc length parametrization of a curve.



Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.



Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.

Example
The unit circle in R? is the curve represented by the following
vector functions:

> ri(t) = (cos(t),sin(t));

> ra(t) = (cos(5t),sin(5t));

> r3(t) = (cos(e?),sin(et)).



Parametrizations of a curve.

Remark:
A curve in space can be represented by different vector functions.

Example
The unit circle in R? is the curve represented by the following
vector functions:

> ri(t) = (cos(t),sin(t));

> ra(t) = (cos(5t),sin(5t));

> r3(t) = (cos(e?),sin(et)).
Remark:
The curve in space is the same for all three functions above. The
vector r moves along the curve at different speeds for the different
parametrizations.



Parametrizations of a curve.

Remarks:

» If the vector function r represents the position in space of a
moving particle, then there is a preferred parameter to
describe the motion: The time t.
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» Another parameter that is useful to describe a moving particle
is the distance traveled by the particle, the arc length /.



Parametrizations of a curve.

Remarks:

» If the vector function r represents the position in space of a
moving particle, then there is a preferred parameter to
describe the motion: The time t.

» Another parameter that is useful to describe a moving particle
is the distance traveled by the particle, the arc length /.

» A common problem is the following: Given a vector function
parametrized by the time t, switch the curve parameter to the
arc length /2.



Parametrizations of a curve.

Remarks:

» If the vector function r represents the position in space of a
moving particle, then there is a preferred parameter to
describe the motion: The time t.

» Another parameter that is useful to describe a moving particle
is the distance traveled by the particle, the arc length /.

» A common problem is the following: Given a vector function
parametrized by the time t, switch the curve parameter to the
arc length /2.

» The problem above is called the arc length parametrization of
a curve.



The arc length of a curve in space (Sect. 13.3).

» The arc length of a curve in space.
» The arc length function.
» Parametrizations of a curve.

» The arc length parametrization of a curve.



The arc length parametrization of a curve.

Problem:
Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.



The arc length parametrization of a curve.

Problem:
Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

» With the function values r(t) compute the arc length function
{(t), starting at some t = ty.



The arc length parametrization of a curve.

Problem:

Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

» With the function values r(t) compute the arc length function
{(t), starting at some t = ty.
» Invert the function values ¢(t) to find the function values t(¢).



The arc length parametrization of a curve.

Problem:

Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

» With the function values r(t) compute the arc length function
{(t), starting at some t = ty.

» Invert the function values ¢(t) to find the function values t(¢).
> Example: If £(t) = 3et/?, then t(£) = 2In(¢/3).



The arc length parametrization of a curve.

Problem:

Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

» With the function values r(t) compute the arc length function
{(t), starting at some t = ty.

» Invert the function values ¢(t) to find the function values t(¢).

> Example: If £(t) = 3et/?, then t(£) = 2In(¢/3).

» Compute the composition function r(¢) = r(t(¢)). That is,
replace t by t(¢) in the function values r(t).



The arc length parametrization of a curve.

Problem:

Given vector function r in terms of a parameter t, find the arc
length parametrization of that curve.

Solution:

» With the function values r(t) compute the arc length function
{(t), starting at some t = ty.

» Invert the function values ¢(t) to find the function values t(¢).

> Example: If £(t) = 3et/?, then t(£) = 2In(¢/3).

» Compute the composition function r(¢) = r(t(¢)). That is,
replace t by t(¢) in the function values r(t).

The function values r(¢) are the parametrization of the
function values r(t) using the arc length as the new parameter.



The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = (4cos(t),4sin(t),3t) starting at t = 0.



The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = (4cos(t),4sin(t),3t) starting at t = 0.

Solution: First find the derivative function:

r'(t) = (—4sin(t), 4 cos(t), 3).



The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = (4cos(t),4sin(t),3t) starting at t = 0.

Solution: First find the derivative function:
r'(t) = (—4sin(t), 4 cos(t), 3).

Hence, |F'(t)|? = 4?sin?(t) 4+ 4% cos?(t) + 3% = 16 + 9 = 52.



The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = (4cos(t),4sin(t),3t) starting at t = 0.

Solution: First find the derivative function:
r'(t) = (—4sin(t), 4 cos(t), 3).

Hence, |F'(t)|? = 4?sin?(t) 4+ 4% cos?(t) + 3% = 16 + 9 = 52.
t

Find the arc length function: ¢(t) = / 5dr = ((t) =5t.
0



The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = (4cos(t),4sin(t),3t) starting at t = 0.

Solution: First find the derivative function:
r'(t) = (—4sin(t), 4 cos(t), 3).

Hence, |F'(t)|? = 4?sin?(t) 4+ 4% cos?(t) + 3% = 16 + 9 = 52.
t
Find the arc length function: ¢(t) = / 5dr = ((t) =5t.
0

Invert the equation above: t = //5.



The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function
r(t) = (4cos(t),4sin(t),3t) starting at t = 0.

Solution: First find the derivative function:
r'(t) = (—4sin(t), 4 cos(t), 3).
Hence, |F'(t)|? = 4?sin?(t) 4+ 4% cos?(t) + 3% = 16 + 9 = 52.
t

Find the arc length function: ¢(t) = / 5dr = ((t) =5t.
0

Invert the equation above: t = //5.
Reparametrize the original curve:

r(¢) = (4cos(¢/5),4sin(¢/5),3¢/5).



The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values

d
r(t) is given by u(¥) = d—z where { is the arc length of the curve.



The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values

d
r(t) is given by u(f) = d—z where { is the arc length of the curve.
Proof.
Given the function values r(t), let r(¢) be the reparametrization of
t

r(t) with the arc length function /(t) = / I¥'(7)| dT.
to



The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values

d
r(t) is given by u(f) = d—z where { is the arc length of the curve.

Proof.

Given the function values r(t), let r(¢) be the reparametrization of
t

r(t) with the arc length function £(t) = [ |¥'(7)|dT.
to
dt dt 1
Notice that — = |¢(t)| and — = .
otice that |¥'(t)] an at = o)




The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values

d
r(t) is given by u(f) = d—z where { is the arc length of the curve.

Proof.
Given the function values r(t), let r(¢) be the reparametrization of
t
r(t) with the arc length function £(t) = [ |¥'(7)|dT.
to
el4 dt 1
Notice that — = |¢/(t d — .
otice that |¥'(t)] an i POl

dr(ﬁ) dr(t) dt  ¥(t)
dé ~ dt di )|

Therefore, u(¢) =



The arc length parametrization of a curve.

Theorem
A unit tangent vector to a curve given by the vector function values

d
r(t) is given by u(f) = d—z where { is the arc length of the curve.

Proof.

Given the function values r(t), let r(¢) be the reparametrization of
t

r(t) with the arc length function £(t) = [ |¥'(7)|dT.
to

dt dt 1
Notice that — = |¢(t)| and — .
otice that |¥'(t)] an i POl

dr(0)  de(t) dt  F(t)
Therefore, u(¢) = de — dt dt |r(t)]

We conclude that |u(¢)| = 1. O




The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
r(t) = (4cos(t),4sin(t),3t) for t > 0.



The arc length parametrization of a curve.

Example
Find a unit vector tangent to the curve given by
r(t) = (4cos(t), 4sin(t),3t) for t > 0.

Solution: Reparametrize the curve using the arc length.



The arc length parametrization of a curve.

Example
Find a unit vector tangent to the curve given by
r(t) = (4cos(t), 4sin(t),3t) for t > 0.

Solution: Reparametrize the curve using the arc length. We get

r(¢) = (4 cos(¢/5),4sin(¢/5),3¢/5).



The arc length parametrization of a curve.

Example
Find a unit vector tangent to the curve given by
r(t) = (4cos(t), 4sin(t),3t) for t > 0.

Solution: Reparametrize the curve using the arc length. We get
r(¢) = (4 cos(¢/5),4sin(¢/5),3¢/5).

Therefore, a unit tangent vector is

w0 = o = <*g sin(¢/5), = cos(€/5) >



The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by
r(t) = (4cos(t),4sin(t),3t) for t > 0.

Solution: Reparametrize the curve using the arc length. We get
r(¢) = (4 cos(¢/5),4sin(¢/5),3¢/5).

Therefore, a unit tangent vector is

dr

u(t) = & u(t) = <*g sin(¢/5), = cos(€/5) >

We can verify that this is a unit vector, since

\u(€)|2:(g)2[sin2(€/5)+cos2(€/5)]+<g)2 = u() =1.



