Review for Exam 1.

- ► Sections 12.1-12.6.
- ▶ 50 minutes.
- ▶ 5 or 6 problems, similar to homework problems.
- ▶ No calculators, no notes, no books, no phones.
- ▶ No green book needed.

Example

Consider the vectors $\mathbf{v} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

1. Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$\mathbf{v} \cdot \mathbf{w} = \langle 2, -2, 1 \rangle \cdot \langle 1, 2, -1 \rangle = 2 - 4 - 1 \quad \Rightarrow \quad \mathbf{v} \cdot \mathbf{w} = -3.$$

 \triangleleft

2. Find the cosine of the angle between ${\bf v}$ and ${\bf w}$.

Solution:

$$|\mathbf{v}| = \sqrt{4+4+1} = 3, \quad |\mathbf{w}| = \sqrt{1+4+1} = \sqrt{6}.$$

$$cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} = \frac{-3}{3\sqrt{6}} \quad \Rightarrow \quad cos(\theta) = -\frac{1}{\sqrt{6}}.$$

1. Find a unit vector in the direction of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Solution:

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}, \quad |\mathbf{v}| = \sqrt{1+4+1} = \sqrt{6},$$

$$\mathbf{u} = \frac{1}{\sqrt{6}} \langle 1, -2, 1 \rangle.$$

2. Find $|\mathbf{u} - 2\mathbf{v}|$, where $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

Solution: First: $\mathbf{u} - 2\mathbf{v} = \langle 1, 6, -1 \rangle$. Then,

$$|\mathbf{u} - 2\mathbf{v}| = \sqrt{1 + 36 + 1}.$$
 \Rightarrow $|\mathbf{u} - 2\mathbf{v}| = \sqrt{38}.$

 \triangleleft

Example

Find a unit vector ${\bf u}$ normal to both ${\bf v}=\langle 6,2,-3\rangle$ and ${\bf w}=\langle -2,2,1\rangle.$

Solution:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 2 & -3 \\ -2 & 2 & 1 \end{vmatrix} = (2+6)\mathbf{i} - (6-6)\mathbf{j} + (12+4)\mathbf{k} = \langle 8, 0, 16 \rangle.$$

Since we look for a unit vector, the calculation is simpler with $\langle 1,0,2 \rangle$ instead of $\langle 8,0,16 \rangle$.

$$\mathbf{u} = \frac{\langle 1, 0, 2 \rangle}{|\langle 1, 0, 2 \rangle|} \quad \Rightarrow \quad \mathbf{u} = \frac{1}{\sqrt{5}} \langle 1, 0, 2 \rangle.$$

 \triangleleft

Find the area of the parallelogram formed by \mathbf{v} and \mathbf{w} above.

Solution:

Since $\mathbf{v} \times \mathbf{w} = \langle 8, 0, 16 \rangle$, then

$$A = |\mathbf{v} \times \mathbf{w}| = |\langle 8, 0, 16 \rangle| = \sqrt{8^2 + 16^2} = \sqrt{8^2(1+4)}.$$

$$A = 8\sqrt{5}$$
.

 \triangleleft

Example

Find the volume of the parallelepiped determined by the vectors $\mathbf{u} = \langle 6, 3, -1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

Solution: We need to compute the triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. We must start with the cross product.

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{vmatrix} = \langle (5+4), -(0-8), (0-4) \rangle$$

We obtain $\mathbf{v} \times \mathbf{w} = \langle 9, 8, -4 \rangle$. The triple product is

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 6, 3, -1 \rangle \cdot \langle 9, 8, -4 \rangle = 54 + 24 + 4 = 82.$$

Since $V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$, we obtain V = 82.

Does the line given by $\mathbf{r}(t) = \langle 0, 1, 1 \rangle + \langle 1, 2, 3 \rangle t$ intersects the plane given by 2x + y - z = 1? If the answer is yes, then find the intersection point.

Solution: The line with parametric equation

$$x = t$$
, $y = 1 + 2t$, $z = 1 + 3t$,

intersect the plane 2x + y - z = 1 iff there is a solution t for the equation

$$2t + (1+2t) - (1+3t) = 1.$$

There is a solution given by t = 1. Therefore, the point of intersection has coordinates x = 1, y = 3, z = 4, then

$$P = (1, 3, 4).$$

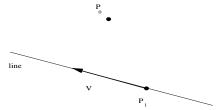
 \triangleleft

Example

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t.

Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$.



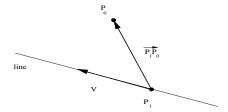
A vector tangent to the line, and so to the plane, is $\mathbf{v} = \langle 1, 1, 2 \rangle$. The point $P_0 = (1, 2, 3)$ is in the plane. A second point in the plane is any point in the line, for example P_1 corresponding to the terminal point of $\mathbf{r}(0) = \langle -2, 0, -1 \rangle$.

Then a second vector tangent to the plane is $\overrightarrow{P_1P_0} = \langle 3, 2, 4 \rangle$.

Find the equation for the plane that contains the point $P_0 = (1, 2, 3)$ and the line x = -2 + t, y = t, z = -1 + 2t.

Solution:

The vector equation of the line is $\mathbf{r}(t) = \langle -2, 0, -1 \rangle + \langle 1, 1, 2 \rangle t$, and a second vector tangent to the plane is $\overrightarrow{P_1P_0} = \langle 3, 2, 4 \rangle$.



Then, a normal to the plane is given by

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 3 & 2 & 4 \end{vmatrix} = \langle (4-4), -(4-6), (2-3) \rangle \quad \Rightarrow \quad \mathbf{n} = \langle 0, 2, -1 \rangle.$$

So, the equation of the plane is

$$0(x-1)+2(y-2)-(z-3)=0, \Rightarrow 2y-z=1.$$

Example

Find an equation for the plane that passes through the points (1,1,1), (1,-1,1), and (0,0,2).

Solution: Denote P = (1, 1, 1), Q = (1, -1, 1), and R = (0, 0, 2). Then,

$$\vec{PQ} = \langle 0, -2, 0 \rangle, \quad \vec{PR} = \langle -1, -1, 1 \rangle,$$

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -2 & 0 \\ -1 & -1 & 1 \end{vmatrix} = (-2 - 0)\mathbf{i} - (0 - 0)\mathbf{j} + (0 - 2)\mathbf{k},$$

that is, $\vec{PQ} \times \vec{PR} = \langle -2, 0, -2 \rangle$. Take $\mathbf{n} = \langle 2, 0, 2 \rangle$. With $\mathbf{n} = \langle 2, 0, 2 \rangle$ and a point R = (0, 0, 2), the equation of the plane is

$$2(x-0) + 0(y-0) + 2(z-2) = 0 \Rightarrow x+z=2.$$

Find the equation of the plane that is parallel to the plane x - 2y + 3z = 1 and passes through the center of the sphere $x^2 + 2x + y^2 + z^2 - 2z = 0$.

Solution: The plane is parallel to the plane x - 2y + 3z = 1, so their normal vectors are parallel. We choose $\mathbf{n} = \langle 1, -2, 3 \rangle$. We need to find the center of the sphere. We complete squares:

$$0 = x^{2} + 2x + y^{2} + z^{2} - 2z$$

$$= (x^{2} + 2x + 1) - 1 + y^{2} + (z^{2} - 2z + 1) - 1 = 0$$

$$= (x + 1)^{2} + y^{2} + (z - 1)^{2} - 2.$$

Therefore, the center of the sphere is at $P_0 = (-1, 0, 1)$. The equation of the plane is

$$(x+1)-2(y-0)+3(z-1)=0 \Rightarrow x-2y+3z=2.$$

 \triangleleft

 \triangleleft

Example

Find the angle between the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: The angle between the planes is the angle between their normal vectors.

The normal vectors are $\mathbf{n} = \langle 2, -3, 2 \rangle$, $\mathbf{N} = \langle 1, 2, 2 \rangle$.

The cosine of the angle θ between these vectors is

$$\cos(\theta) = \frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}| |\mathbf{N}|}.$$

Since $\mathbf{n} \cdot \mathbf{N} = 2 - 6 + 4 = 0$, we conclude that $\mathbf{n} \perp \mathbf{N}$. The angle θ is $\theta = \pi/2$.

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: We first find the vector tangent to the line. This is a vector \mathbf{v} that belongs to both planes.

This means that ${\bf v}$ is perpendicular to both normal vectors ${\bf n}=\langle 2,-3,2\rangle$ and ${\bf N}=\langle 1,2,2\rangle.$

One such vector is

$$\mathbf{v} = \mathbf{n} \times \mathbf{N} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 2 \\ 1 & 2 & 2 \end{vmatrix} = \langle (-6 - 4), -(4 - 2), (4 + 3) \rangle.$$

So, **v** =
$$\langle -10, -2, 7 \rangle$$
.

Example

Find the vector equation for the line of intersection of the planes 2x - 3y + 2z = 1 and x + 2y + 2z = 5.

Solution: Recall $\mathbf{v} = \langle -10, -2, 7 \rangle$. Now we need a point in the intersection of the planes. From the first plane we compute z as follows: 2z = 1 - 2x + 3y.

We introduce this equation for 2z into the second plane:

$$x + 2y + (1 - 2x + 3y) = 5 \implies -x + 5y = 4.$$

We need just one solution, so we choose: y = 0, then x = -4, and this implies z = 9/2. A point in the intersection of the planes is $P_0 = (-4, 0, 9/2)$. The vector equation of the line is:

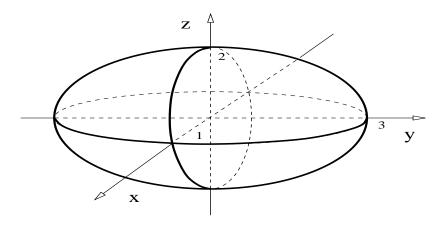
$$\mathbf{r}(t) = \langle -4, -0, 9/2 \rangle + \langle -10, -2, 7 \rangle t.$$

Sketch the surface $36x^2 + 4y^2 + 9z^2 = 36$.

Solution: We first rewrite the equation above in the standard form

$$x^{2} + \frac{4}{36}y^{2} + \frac{9}{36}z^{2} = 1 \quad \Leftrightarrow \quad x^{2} + \frac{y^{2}}{3^{2}} + \frac{z^{2}}{2^{2}} = 1.$$

This is the equation of an ellipsoid with principal radius of length 1, 3, and 2 on the x, y and z axis, respectively. Therefore



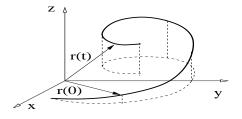
Vector functions (Sect. 13.1).

- ▶ Definition of vector functions: $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$.
- ▶ Limits and continuity of vector functions.
- ▶ Derivatives and motion.
- ► Differentiation rules.
- ▶ Integrals of vector functions.

Motion in space motivates to define vector functions.

Definition

A function $\mathbf{r}: I \to \mathbb{R}^n$, with n=2,3, is called a *vector function*, where the interval $I \subset \mathbb{R}$ is called the *domain* of the function.



Remark: Given Cartesian coordinates in \mathbb{R}^3 , the values of a vector function can be written in components as follows:

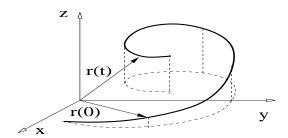
$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \qquad t \in I,$$

where x(t), y(t), and z(t) are the values of three scalar functions.

Motion in space motivates to define vector functions.

Remarks:

▶ There is a natural association between a curve in \mathbb{R}^n and the vector function values $\mathbf{r}(t)$.



- ▶ The curve is determined by the terminal points of the vector function values $\mathbf{r}(t)$.
- ► The independent variable *t* is called the parameter of the curve.

Vector functions.

Example

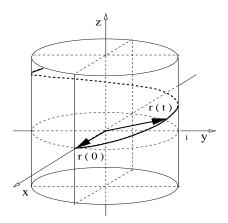
Graph the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a vertical cylinder with radius one, since

$$x^2 + y^2 = \cos^2(t) + \sin^2(t) = 1.$$

The z(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves up on the cylinder surface when t increases.



Vector functions.

Example

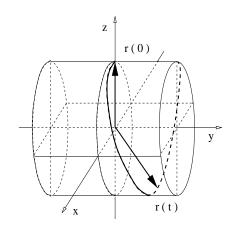
Graph the vector function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$.

Solution:

The curve given by $\mathbf{r}(t)$ lies on a horizontal cylinder with radius one, since

$$x^2 + z^2 = \sin^2(t) + \cos^2(t) = 1.$$

The y(t) coordinate of the curve increases with t, so the terminal point $\mathbf{r}(t)$ moves to the right on the cylinder surface when t increases.



Vector functions (Sect. 13.1).

- ▶ Definition of vector functions: $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$.
- ▶ Limits and continuity of vector functions.
- Derivatives and motion.
- ▶ Differentiation rules.
- ▶ Integrals of vector functions.

Limits and continuity of vector functions.

Definition

The vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n=2,3, has a *limit* given by the vector \mathbf{L} when t approaches t_0 , denoted as $\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{L}$, iff the following holds: For every number $\epsilon > 0$ there exists a number $\delta > 0$ such that

$$|t-t_0|<\delta \quad \Rightarrow \quad |\mathbf{r}(t)-\mathbf{L}|<\epsilon.$$

Remark:

- ▶ The limit of $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ as $t \to t_0$ is the limit of its components x(t), y(t), z(t) in Cartesian coordinates.
- ► That is: $\lim_{t\to t_0} \mathbf{r}(t) = \langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \rangle$.

$$\lim_{t\to t_0} \mathbf{r}(t) = \langle \lim_{t\to t_0} x(t), \lim_{t\to t_0} y(t), \lim_{t\to t_0} z(t) \rangle.$$

Given $\mathbf{r}(t) = \langle \cos(t), \sin(t)/t, t^2 + 2 \rangle$, compute $\lim_{t\to 0} \mathbf{r}(t)$.

Solution:

Notice that the vector function \mathbf{r} is not defined at t = 0, however its limit at t = 0 exists. Indeed,

$$\lim_{t \to 0} \mathbf{r}(t) = \lim_{t \to 0} \left\langle \cos(t), \frac{\sin(t)}{t}, t^2 + 2 \right\rangle$$
$$= \left\langle \lim_{t \to 0} \cos(t), \lim_{t \to 0} \frac{\sin(t)}{t}, \lim_{t \to 0} (t^2 + 2) \right\rangle$$
$$= \left\langle 1, 1, 2 \right\rangle.$$

 \triangleleft

We conclude that $\lim_{t\to 0} \mathbf{r}(t) = \langle 1, 1, 2 \rangle$.

Limits and continuity of vector functions.

Definition

A vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n=2,3, is *continuous at* $t=t_0 \in I$ iff holds $\lim_{t\to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$. The function $\mathbf{r}: I \to \mathbb{R}^n$ is *continuous* if it is continuous at every t in its domain interval I.

Remark: A vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is continuous iff each component is continuous.

Example

The function $\mathbf{r}(t) = \langle \sin(t), t, \cos(t) \rangle$ is continuous for $t \in \mathbb{R}$.

Remark: Having the idea of limit, one can introduce the idea of a derivative of a vector valued function.

Vector functions (Sect. 13.1).

- ▶ Definition of vector functions: $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$.
- ▶ Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- ▶ Integrals of vector functions.

Derivatives and motion.

Definition

The vector function $\mathbf{r}: I \to \mathbb{R}^n$, with n = 2, 3, is differentiable at $t = t_0$, denoted as $\mathbf{r}'(t)$ or $\frac{d\mathbf{r}}{dt}$, iff the following limit exists,

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}.$$

Remarks:

- ▶ A vector function $\mathbf{r}: I \to \mathbb{R}^n$ is *differentiable* if it is differentiable for each $t \in I$.
- ▶ If a vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is differentiable, then

$$\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

Derivatives and motion.

Theorem

If a vector function with Cartesian components $\mathbf{r} = \langle x, y, z \rangle$ is differentiable, then $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$.

Proof.

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h},$$

$$= \lim_{h \to 0} \left\langle \frac{x(t+h) - x(t)}{h}, \frac{y(t+h) - y(t)}{h}, \frac{z(t+h) - z(t)}{h} \right\rangle$$

$$= \left\langle \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}, \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}, \lim_{h \to 0} \frac{z(t+h) - z(t)}{h} \right\rangle$$

$$= \left\langle x'(t), y'(t), z'(t) \right\rangle.$$

Derivatives and motion.

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t), (t^2 + 3t - 1) \rangle$.

Solution: We differentiate each component of \mathbf{r} , that is,

$$\mathbf{r}'(t) = \langle -\sin(t), \cos(t), (2t+3) \rangle.$$

Example

Find the derivative of the vector function $\mathbf{r}(t) = \langle \cos(2t), e^{3t}, 1/t \rangle$.

Solution: We differentiate each component of r, that is,

$$\mathbf{r}'(t) = \langle -2\sin(2t), 3e^{3t}, -1/t^2 \rangle.$$

Geometrical property of the derivative.

Remark: The vector $\mathbf{r}'(t)$ is tangent to the curve given by \mathbf{r} at the point $\mathbf{r}(t)$.



Remark: If $\mathbf{r}(t)$ represents the vector position of a particle, then:

- ▶ The derivative of the position function is the velocity function, $\mathbf{v}(t) = \mathbf{r}'(t)$. The speed is $|\mathbf{v}(t)|$.
- ▶ The derivative of the velocity function is the acceleration function, $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.

Derivatives and motion.

Example

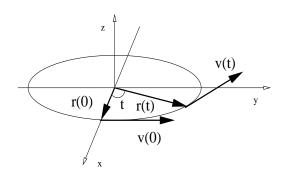
Compute the derivative of the position function $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$. Graph the curve given by \mathbf{r} , and explicitly show the position vector $\mathbf{r}(0)$ and velocity vector $\mathbf{v}(0)$.

Solution:

The derivative of \mathbf{r} is:

$$\mathbf{v}(t) = \langle -\sin(t), \cos(t), 0 \rangle.$$

$$\mathbf{r}(0) = \langle 1, 0, 0 \rangle, \ \mathbf{v}(0) = \langle 0, 1, 0 \rangle.$$



Differentiation rules are the same as for scalar functions

Theorem

If \mathbf{v} and \mathbf{w} are differentiable vector functions, then holds:

- $[\mathbf{v}(t) + \mathbf{w}(t)]' = \mathbf{v}'(t) + \mathbf{w}'(t),$ (addition);
- $[c\mathbf{v}(t)]' = c\mathbf{v}'(t),$ (product rule);
- $[\mathbf{v}(f(t))]' = \mathbf{v}'(f(t))f'(t),$ (chain rule);
- $[f(t)\mathbf{v}(t)]' = f'(t)\mathbf{v}(t) + f(t)\mathbf{v}'(t),$ (product rule);
- $[\mathbf{v}(t) \cdot \mathbf{w}(t)]' = \mathbf{v}'(t) \cdot \mathbf{w}(t) + \mathbf{v}(t) \cdot \mathbf{w}'(t), \qquad (dot \ product);$
- $[\mathbf{v}(t) \times \mathbf{w}(t)]' = \mathbf{v}'(t) \times \mathbf{w}(t) + \mathbf{v}(t) \times \mathbf{w}'(t), \text{ (cross product)}.$

Higher derivatives can also be computed.

Remark: The *m*-derivative of a vector function \mathbf{r} is denoted as $\mathbf{r}^{(m)}$ and is given by the expression $\mathbf{r}^{(m)}(t) = [\mathbf{r}^{(m-1)}(t)]'$.

Example

Compute the third derivative of $\mathbf{r}(t) = \langle \cos(t), \sin(t), t^2 + 2t + 1 \rangle$.

Solution:

$$\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 2t + 2 \rangle,$$

$$\mathbf{r}^{(2)}(t) = (\mathbf{r}'(t))' = \langle -\cos(t), -\sin(t), 2 \rangle,$$

$$\mathbf{r}^{(3)}(t) = (\mathbf{r}^{(2)}(t))' = \langle \sin(t), -\cos(t), 0 \rangle.$$

 \triangleleft

Recall: If $\mathbf{r}(t)$ is the position of a particle, then $\mathbf{v}(t) = \mathbf{r}'(t)$ is the velocity and $\mathbf{a}(t) = \mathbf{r}^{(2)}(t)$ is the acceleration of the particle.

Vector functions (Sect. 13.1).

- ▶ Definition of vector functions: $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$.
- ▶ Limits and continuity of vector functions.
- Derivatives and motion.
- Differentiation rules.
- ► Integrals of vector functions.

Integrals of vector functions.

Definition

The *indefinite integral*, also called the *antiderivative*, of a vector function \mathbf{v} is denoted as $\int \mathbf{v}(t) dt$ and given by

$$\int \mathbf{v}(t) dt = \mathbf{V}(t) + \mathbf{C},$$

where $\mathbf{V}'(t) = \mathbf{v}(t)$ and \mathbf{C} is a constant vector.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Solution: The position function is the primitive of the velocity function, $\mathbf{r}(t) = \mathbf{V}(t) + \mathbf{C}$, that satisfies the initial condition $\mathbf{r}(0) = \mathbf{V}(0) + \mathbf{C}$. This initial condition fixes the constant vector \mathbf{C} .

Integrals of vector functions.

Example

Find the position function \mathbf{r} knowing that the velocity function is $\mathbf{v}(t) = \langle 2t, \cos(t), \sin(t) \rangle$ and the initial position is $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$.

Solution: The position function is a primitive of the velocity,

$$\mathbf{r}(t) = \mathbf{V}(t) + \mathbf{C} = \langle t^2, \sin(t), -\cos(t) \rangle + \langle c_x, c_y, c_z \rangle,$$

with $\mathbf{C} = \langle c_x, c_y, c_z \rangle$ a constant vector. The initial condition determines the vector \mathbf{C} :

$$\langle 1, 1, 1 \rangle = \mathbf{r}(0) = \mathbf{V}(0) + \mathbf{C} = \langle 0, 0, -1 \rangle + \langle c_x, c_y, c_z \rangle,$$

that is, $c_x = 1$, $c_v = 1$, $c_z = 2$.

The position function is $\mathbf{r}(t) = \langle t^2 + 1, \sin(t) + 1, -\cos(t) + 2 \rangle$. \triangleleft

Integrals of vector functions.

Example

Find the position function of a particle with acceleration $\mathbf{a}(t) = \langle 0, 0, -10 \rangle$ having an initial velocity $\mathbf{v}(0) = \langle 0, 1, 1 \rangle$ and initial position $\mathbf{r}(0) = \langle 1, 0, 1 \rangle$.

Solution: The velocity is $\mathbf{v}(t) = \langle v_{0x}, v_{0y}, (-10t + v_{0z}) \rangle$. The initial condition implies $\langle 0, 1, 1 \rangle = \mathbf{v}(0) = \langle v_{0x}, v_{0y}, v_{0z} \rangle$, that is $v_{0x} = 0$, $v_{0y} = 1$, $v_{0z} = 1$. The velocity function is

$$\mathbf{v}(t) = \langle 0, 1, (-10t + 1) \rangle.$$

The position is $\mathbf{r}(t) = \langle r_{0x}, (t+r_{0y}), (-5t^2+t+r_{0z}) \rangle$. The initial condition implies $\langle 1,0,1 \rangle = \mathbf{r}(0) = \langle r_{0x}, r_{0y}, r_{0z} \rangle$, that is $r_{0x} = 1$, $r_{0y} = 0$, $r_{0z} = 1$. The velocity function is

$$\mathbf{r}(t) = \langle 1, t, (-5t^2 + t + 1) \rangle.$$

Integrals of vector functions.

Definition

If the components of $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$ are integrable functions on the interval [a, b], then the *definite integral* of \mathbf{r} is given by

$$\int_{a}^{b} \mathbf{r}(t)dt = \left\langle \int_{a}^{b} x(t)dt, \int_{a}^{b} y(t)dt, \int_{a}^{b} z(t)dt \right\rangle.$$

Example

Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Integrals of vector functions.

Example

Compute $\int_0^{\pi} \mathbf{r}(t) dt$ for the function $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution:

$$\int_0^{\pi} \mathbf{r}(t) dt = \int_0^{\pi} \langle \cos(t), \sin(t), t \rangle dt$$

$$= \left\langle \int_0^{\pi} \cos(t) dt, \int_0^{\pi} \sin(t) dt, \int_0^{\pi} t dt \right\rangle,$$

$$= \left\langle \sin(t) \Big|_0^{\pi}, -\cos(t) \Big|_0^{\pi}, \frac{t^2}{2} \Big|_0^{\pi}, \right\rangle$$

$$= \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle, \quad \Rightarrow \quad \int_0^{\pi} \mathbf{r}(t) dt = \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle.$$

The arc length of a curve in space (Sect. 13.3).

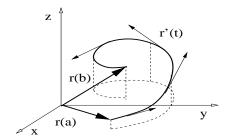
- ▶ The arc length of a curve in space.
- ▶ The arc length function.
- Parametrizations of a curve.
- ▶ The arc length parametrization of a curve.

The length of a curve is called its arc length.

Definition

The arc length of a continuously differentiable curve $\mathbf{r}:[a,b]\to\mathbb{R}^n$, with n=2,3, is the number given by

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| dt.$$



Remark:

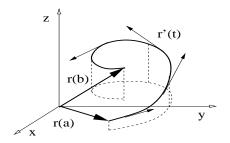
- If the curve \mathbf{r} is the path traveled by a particle in space, then $\mathbf{r}' = \mathbf{v}$ is the velocity of the particle.
- ▶ The arc length is the integral in time of the particle speed $|\mathbf{v}(t)|$.
- ▶ Therefore, the arc length of the curve is the distance traveled by the particle.

The length of a curve is called its arc length.

Recall:

The arc length of a curve $\mathbf{r}:[a,b] \to \mathbb{R}^3$

$$\ell_{ba} = \int_a^b \left| \mathbf{r}'(t) \right| dt.$$



 \triangleleft

Remark:

In Cartesian coordinates the functions \mathbf{r} and \mathbf{r}' are given by

$$\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle, \qquad \mathbf{r}'(t) = \langle \mathbf{x}'(t), \mathbf{y}'(t), \mathbf{z}'(t) \rangle.$$

Therefore the arc length of the curve is given by the expression

$$\ell_{ba} = \int_{a}^{b} \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2 + \left[z'(t)\right]^2} dt.$$

The arc length of a curve in a plane.

Example

Find the arc length of the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$, for $t \in [\pi/4, 3\pi/4]$.

Solution: The derivative vector function is $\mathbf{r}'(t) = \langle -\sin(t), \cos(t) \rangle$. The arc length formula is

$$\ell = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2} dt$$
 $= \int_{\pi/4}^{3\pi/4} dt \quad \Rightarrow \quad \ell = \frac{\pi}{2}.$

This result is reasonable, since the curve is a circle and we are computing the length of quarter a circle.

The arc length of a curve in a plane.

Example

Find the arc length of the spiral $\mathbf{r}(t) = \langle t \cos(t), t \sin(t) \rangle$, for $t \in [0, t_0]$.

Solution: The derivative vector is

$$\mathbf{r}'(t) = \langle \left[-t \sin(t) + \cos(t) \right], \left[t \cos(t) + \sin(t) \right] \rangle.$$

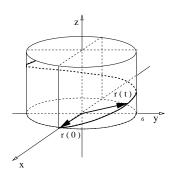
$$|\mathbf{r}'(t)|^2 = [t^2 \sin^2(t) + \cos^2(t) - 2t \sin(t) \cos(t)] + [t^2 \cos^2(t) + \sin^2(t) + 2t \sin(t) \cos(t)] = t^2 + 1.$$

The arc length is
$$\ell(t_0)=\int_0^{t_0}\sqrt{1+t^2}\,dt=\ln\bigl(t+\sqrt{1+t^2}\bigr)\Big|_0^{t_0}.$$
 We conclude: $\ell(t_0)=\ln\bigl(t_0+\sqrt{1+t_0^2}\bigr).$

The arc length of a curve in space.

Example

Find the arc length of $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, for $t \in [0, \pi]$.



Solution: The derivative vector is

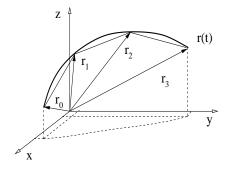
$$\mathbf{r}'(t) = \langle -12\sin(2t), 12\cos(2t), 5 \rangle,$$

 $|\mathbf{r}'(t)|^2 = 144 \left[\sin^2(2t) + \cos^2(2t) \right] + 25 = 169 = (13)^2.$

The arc length is
$$\ell = \int_0^{\pi} 13 \, dt = 13 \, t \Big|_0^{\pi} \quad \Rightarrow \quad \ell = 13\pi.$$

Idea behind the arc length formula.

The arc length formula can be obtained as a limit procedure One adds up the lengths of a polygonal line that approximates the original curve.



$$\ell_N = \sum_{n=0}^{N-1} |\mathbf{r}(t_{n+1}) - \mathbf{r}(t_n)|, \qquad \{a = t_0, t_1, \cdots, t_{N-1}, t_N = b\},$$

$$\simeq \sum_{n=0}^{N-1} |\mathbf{r}'(t_n)| (t_{n+1} - t_n) \stackrel{N \to \infty}{\longrightarrow} \int_a^b |\mathbf{r}'(t)| dt$$

The arc length of a curve in space (Sect. 13.3).

- ▶ The arc length of a curve in space.
- ► The arc length function.
- ▶ Parametrizations of a curve.
- ▶ The arc length parametrization of a curve.

The arc length function.

Definition

function. The arc $length\ function$ of a continuously differentiable vector function ${\bf r}$ is given by

$$\ell(t) = \int_{t_0}^t |\mathbf{r}'(au)| d au.$$

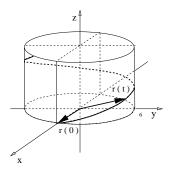
Remarks:

- ▶ The value $\ell(t)$ of the arc length function represents the length along the curve **r** from t_0 to t.
- ▶ If the function \mathbf{r} is the position of a moving particle as function of time, then the arc length $\ell(t)$ is the distance traveled by the particle from the time t_0 to t.

The arc length function.

Example

Find the arc length function for the curve $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, starting at t = 0.



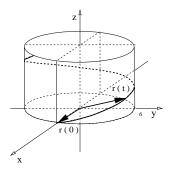
Solution: We have found that $|\mathbf{r}'(t)|=13$. Therefore,

$$\ell(t) = \int_0^t 13 d\tau \quad \Rightarrow \quad \ell(t) = 13 t.$$

The arc length function.

Example

Given the position function in time $\mathbf{r}(t) = \langle 6\cos(2t), 6\sin(2t), 5t \rangle$, find the position vector $\mathbf{r}(t_0)$ located at a length $\ell_0 = 20$ from the initial position $\mathbf{r}(0)$.



Solution: We have found that the arc length function for the vector function ${\bf r}$ is $\ell(t)=13\,t.$

Since $t = \ell/13$, the time at $\ell = \ell_0 = 20$ is $t_0 = 13/20$.

Therefore, the position vector at $\ell_0 = 20$ is given by

$$\mathbf{r}(t_0) = \langle 6\cos(13/10), 6\sin(13/10), 13/4 \rangle.$$

 \triangleleft

The arc length of a curve in space (Sect. 13.3).

- ▶ The arc length of a curve in space.
- ▶ The arc length function.
- ▶ Parametrizations of a curve.
- ▶ The arc length parametrization of a curve.

Parametrizations of a curve.

Remark:

A curve in space can be represented by different vector functions.

Example

The unit circle in \mathbb{R}^2 is the curve represented by the following vector functions:

- $ightharpoonup \mathbf{r}_1(t) = \langle \cos(t), \sin(t) \rangle;$

Remark:

The curve in space is the same for all three functions above. The vector \mathbf{r} moves along the curve at different speeds for the different parametrizations.

Parametrizations of a curve.

Remarks:

- ▶ If the vector function **r** represents the position in space of a moving particle, then there is a preferred parameter to describe the motion: The time *t*.
- ▶ Another parameter that is useful to describe a moving particle is the distance traveled by the particle, the arc length ℓ .
- A common problem is the following: Given a vector function parametrized by the time t, switch the curve parameter to the arc length ℓ .
- ► The problem above is called the arc length parametrization of a curve.

The arc length of a curve in space (Sect. 13.3).

- ▶ The arc length of a curve in space.
- ▶ The arc length function.
- ▶ Parametrizations of a curve.
- ▶ The arc length parametrization of a curve.

The arc length parametrization of a curve.

Problem:

Given vector function \mathbf{r} in terms of a parameter t, find the arc length parametrization of that curve.

Solution:

- ▶ With the function values $\mathbf{r}(t)$ compute the arc length function $\ell(t)$, starting at some $t = t_0$.
- ▶ Invert the function values $\ell(t)$ to find the function values $t(\ell)$.
- ▶ Example: If $\ell(t) = 3e^{t/2}$, then $t(\ell) = 2\ln(\ell/3)$.
- ▶ Compute the composition function $\mathbf{r}(\ell) = \mathbf{r}(t(\ell))$. That is, replace t by $t(\ell)$ in the function values $\mathbf{r}(t)$.

The function values $\mathbf{r}(\ell)$ are the parametrization of the function values $\mathbf{r}(t)$ using the arc length as the new parameter.

The arc length parametrization of a curve.

Example

Find the arc length parametrization of the vector function $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ starting at t = 0.

Solution: First find the derivative function:

$$\mathbf{r}'(t) = \langle -4\sin(t), 4\cos(t), 3 \rangle.$$

Hence, $|\mathbf{r}'(t)|^2 = 4^2 \sin^2(t) + 4^2 \cos^2(t) + 3^2 = 16 + 9 = 5^2$. Find the arc length function: $\ell(t) = \int_0^t 5 \, d\tau \quad \Rightarrow \quad \ell(t) = 5t$. Invert the equation above: $t = \ell/5$. Reparametrize the original curve:

$$\mathbf{r}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$$

The arc length parametrization of a curve.

Theorem

A unit tangent vector to a curve given by the vector function values $\mathbf{r}(t)$ is given by $\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell}$, where ℓ is the arc length of the curve.

Proof.

Given the function values $\mathbf{r}(t)$, let $\mathbf{r}(\ell)$ be the reparametrization of $\mathbf{r}(t)$ with the arc length function $\ell(t) = \int_{t_0}^t |\mathbf{r}'(\tau)| \, d\tau$.

Notice that
$$\frac{d\ell}{dt}=|\mathbf{r}'(t)|$$
 and $\frac{dt}{d\ell}=\frac{1}{|\mathbf{r}'(t)|}$.

Therefore,
$$\mathbf{u}(\ell) = \frac{d\mathbf{r}(\ell)}{d\ell} = \frac{d\mathbf{r}(t)}{dt} \frac{dt}{d\ell} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$
. We conclude that $|\mathbf{u}(\ell)| = 1$.

The arc length parametrization of a curve.

Example

Find a unit vector tangent to the curve given by $\mathbf{r}(t) = \langle 4\cos(t), 4\sin(t), 3t \rangle$ for $t \geqslant 0$.

Solution: Reparametrize the curve using the arc length. We get

$$\mathbf{r}(\ell) = \langle 4\cos(\ell/5), 4\sin(\ell/5), 3\ell/5 \rangle.$$

Therefore, a unit tangent vector is

$$\mathbf{u}(\ell) = \frac{d\mathbf{r}}{d\ell} \quad \Rightarrow \quad \mathbf{u}(\ell) = \left\langle -\frac{4}{5}\sin(\ell/5), \frac{4}{5}\cos(\ell/5), \frac{3}{5} \right\rangle.$$

 \triangleleft

We can verify that this is a unit vector, since

$$|\mathbf{u}(\ell)|^2 = \left(\frac{4}{5}\right)^2 \left[\sin^2(\ell/5) + \cos^2(\ell/5)\right] + \left(\frac{3}{5}\right)^2 \quad \Rightarrow \quad |\mathbf{u}(\ell)| = 1.$$