Lines and planes in space (Sect. 12.5)

Lines in space (Today).

- Review: Lines on a plane.
- The equations of lines in space:
- Vector equation.
- Parametric equation.
- Distance from a point to a line.

Lines and planes in space (Sect. 12.5)

Lines in space (Today).

- Review: Lines on a plane.
- The equations of lines in space:
- Vector equation.
- Parametric equation.
- Distance from a point to a line.

Planes in space (Next class).

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

Review: Lines on a plane

Equation of a line

The equation of a line with slope m and vertical intercept b is given by

$$
y=m x+b
$$

Review: Lines on a plane

Equation of a line

The equation of a line with slope m and vertical intercept b is given by

$$
y=m x+b
$$

Vector equation of a line
The equation of the line by the point $P=(0, b)$ parallel to the vector $\mathbf{v}=\langle 1, m\rangle$ is given by

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

where $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 0, b\rangle$.

Review: Lines on a plane

Example
Find the vector equation of a line $y=-x+3$.

Review: Lines on a plane

Example

Find the vector equation of a line $y=-x+3$.
Solution: The vertical intercept is at the point $P=(0,3)$.

Review: Lines on a plane

Example

Find the vector equation of a line $y=-x+3$.
Solution: The vertical intercept is at the point $P=(0,3)$.
A vector tangent to the line is $\mathbf{v}=\langle 1,-1\rangle$, since the point $P_{1}=(1,2)$ belongs to the line, which implies that
$\mathbf{v}=\overrightarrow{P P_{1}}=\langle(1-0),(2-3)\rangle=\langle 1,-1\rangle$.

Review: Lines on a plane

Example

Find the vector equation of a line $y=-x+3$.
Solution: The vertical intercept is at the point $P=(0,3)$.
A vector tangent to the line is $\mathbf{v}=\langle 1,-1\rangle$, since the point $P_{1}=(1,2)$ belongs to the line, which implies that
$\mathbf{v}=\overrightarrow{P P_{1}}=\langle(1-0),(2-3)\rangle=\langle 1,-1\rangle$.

The vector equation for the line is

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle
$$

Review: Lines on a plane

Example

Find the vector equation of a line $y=-x+3$.
Solution: The vertical intercept is at the point $P=(0,3)$.
A vector tangent to the line is $\mathbf{v}=\langle 1,-1\rangle$, since the point $P_{1}=(1,2)$ belongs to the line, which implies that
$\mathbf{v}=\overrightarrow{P P_{1}}=\langle(1-0),(2-3)\rangle=\langle 1,-1\rangle$.

The vector equation for the line is

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle
$$

Review: Lines on a plane

We verify the result above: That the line $y=-x+3$ is indeed

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle, \quad \text { (Vector equation of the line.) }
$$

Review: Lines on a plane

We verify the result above: That the line $y=-x+3$ is indeed

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle, \quad \text { (Vector equation of the line.) }
$$

If $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then $\langle x(t), y(t)\rangle=\langle(0+t),(3-t)\rangle$.

Review: Lines on a plane

We verify the result above: That the line $y=-x+3$ is indeed

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle, \quad \text { (Vector equation of the line.) }
$$

If $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then $\langle x(t), y(t)\rangle=\langle(0+t),(3-t)\rangle$. That is,

$$
\begin{aligned}
& x(t)=t \\
& y(t)=3-t
\end{aligned}
$$

Review: Lines on a plane

We verify the result above: That the line $y=-x+3$ is indeed

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle, \quad \text { (Vector equation of the line.) }
$$

If $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then $\langle x(t), y(t)\rangle=\langle(0+t),(3-t)\rangle$. That is,

$$
\begin{array}{lc}
x(t)=t, & \text { (Parametric equation of the line.) } \\
y(t)=3-t . & (\text { The parameter is } t .)
\end{array}
$$

Review: Lines on a plane

We verify the result above: That the line $y=-x+3$ is indeed

$$
\mathbf{r}(t)=\langle 0,3\rangle+t\langle 1,-1\rangle, \quad \text { (Vector equation of the line.) }
$$

If $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then $\langle x(t), y(t)\rangle=\langle(0+t),(3-t)\rangle$. That is,

$$
\begin{array}{lc}
x(t)=t, & \text { (Parametric equation of the line.) } \\
y(t)=3-t . & (\text { The parameter is } t .)
\end{array}
$$

Replacing t by x is the second equation above we obtain

$$
y(x)=-x+3
$$

Review: Lines on a plane

Vector equation of a line
The equation of the line by the point $P=(0, b)$ parallel to the vector $\mathbf{v}=\langle 1, m\rangle$ is given by

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

where $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 0, b\rangle$.

Review: Lines on a plane

Vector equation of a line
The equation of the line by the point $P=(0, b)$ parallel to the vector $\mathbf{v}=\langle 1, m\rangle$ is given by

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

where $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 0, b\rangle$.

Parametric equation of a line A line with vector equation

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}
$$

where $\mathbf{r}_{0}=\langle 0, b\rangle$ and $\mathbf{v}=\langle 1, m\rangle$ can also be written as follows
$\langle x(t), y(t)\rangle=\langle(0+t),(b+t m)\rangle$,
that is,

$$
\begin{aligned}
& x(t)=t \\
& y(t)=b+m t
\end{aligned}
$$

Lines and planes in space (Sect. 12.5)

Lines in space

- Review: Lines on a plane.
- The equations of lines in space:
- Vector equation.
- Parametric equation.
- Distance from a point to a line.

A line is specified by a point and a tangent vector

Vector equation of a line Definition
Fix Cartesian coordinates in \mathbb{R}^{3} with origin at a point O. Given a point P and a vector \mathbf{v} in \mathbb{R}^{3}, the line by P parallel to \mathbf{v} is the set of terminal points of the vectors

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad t \in \mathbb{R},
$$

where $\mathbf{r}_{0}=\overrightarrow{O P}$.

A line is specified by a point and a tangent vector

Vector equation of a line Definition
Fix Cartesian coordinates in \mathbb{R}^{3} with origin at a point O. Given a point P and a vector \mathbf{v} in \mathbb{R}^{3}, the line by P parallel to \mathbf{v} is the set of terminal points of the vectors

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad t \in \mathbb{R},
$$

where $\mathbf{r}_{0}=\overrightarrow{O P}$.

We refer to a line to mean both the set of vectors $\mathbf{r}(t)$ and the set of terminal points of these vectors.

Vector equation of a line.

Example

Find the vector equation of the line by the point $P=(1,-2,1)$ tangent to the vector $\mathbf{v}=\langle 1,2,3\rangle$.

Vector equation of a line.

Example

Find the vector equation of the line by the point $P=(1,-2,1)$ tangent to the vector $\mathbf{v}=\langle 1,2,3\rangle$.

Solution:
The vector $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 1,-2,1\rangle$, therefore, the formula $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$ implies

$$
\mathbf{r}(t)=\langle 1,-2,1\rangle+t\langle 1,2,3\rangle
$$

Lines and planes in space (Sect. 12.5)

Lines in space

- Review: Lines on a plane.
- The equations of lines in space:
- Vector equation.
- Parametric equation.
- Distance from a point to a line.

Parametric equation of a line.

Definition
The parametric equations of a line by $P=\left(x_{0}, y_{0}, z_{0}\right)$ tangent to $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ are given by

$$
\begin{aligned}
& x(t)=x_{0}+t v_{x} \\
& y(t)=y_{0}+t v_{y} \\
& z(t)=z_{0}+t v_{z}
\end{aligned}
$$

Parametric equation of a line.

Definition

The parametric equations of a line by $P=\left(x_{0}, y_{0}, z_{0}\right)$ tangent to $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ are given by

$$
\begin{aligned}
& x(t)=x_{0}+t v_{x}, \\
& y(t)=y_{0}+t v_{y}, \\
& z(t)=z_{0}+t v_{z} .
\end{aligned}
$$

Remark: It is simple to obtain the parametric equations form the vector equation, and vice-versa, noticing the relation

$$
\begin{aligned}
\mathbf{r}(t) & =\mathbf{r}_{0}+t \mathbf{v} \\
\langle x(t), y(t), z(t)\rangle & =\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{x}, v_{y}, v_{z}\right\rangle \\
& =\left\langle\left(x_{0}+t v_{x}\right),\left(y_{0}+t v_{y}\right),\left(z_{0}+t v_{z}\right)\right\rangle .
\end{aligned}
$$

Parametric equation of a line.

Example

Find the parametric equations of the line with vector equation

$$
\mathbf{r}(t)=\langle 1,-2,1\rangle+t\langle 1,2,3\rangle
$$

Parametric equation of a line.

Example

Find the parametric equations of the line with vector equation

$$
\mathbf{r}(t)=\langle 1,-2,1\rangle+t\langle 1,2,3\rangle
$$

Solution: Rewrite the vector equation in vector components,

$$
\langle x(t), y(t), z(t)\rangle=\langle(1+t),(-2+2 t),(1+3 t)\rangle .
$$

Parametric equation of a line.

Example

Find the parametric equations of the line with vector equation

$$
\mathbf{r}(t)=\langle 1,-2,1\rangle+t\langle 1,2,3\rangle
$$

Solution: Rewrite the vector equation in vector components,

$$
\langle x(t), y(t), z(t)\rangle=\langle(1+t),(-2+2 t),(1+3 t)\rangle .
$$

We conclude that

$$
\begin{aligned}
x(t) & =1+t \\
y(t) & =-2+2 t \\
z(t) & =1+3 t
\end{aligned}
$$

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Solution: A vector tangent to the line is $\mathbf{v}=\overrightarrow{P Q}$, which is given by

$$
\mathbf{v}=\langle(3-1),(-2-2),(1+3)\rangle \quad \Rightarrow \quad \mathbf{v}=\langle 2,-4,4\rangle .
$$

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Solution: A vector tangent to the line is $\mathbf{v}=\overrightarrow{P Q}$, which is given by

$$
\mathbf{v}=\langle(3-1),(-2-2),(1+3)\rangle \quad \Rightarrow \quad \mathbf{v}=\langle 2,-4,4\rangle .
$$

We can use either P or Q to express the vector equation for the line. If we use P, then the vector equation of the line is

$$
\mathbf{r}(t)=\langle 1,2,-3\rangle+t\langle 2,-4,4\rangle .
$$

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Solution: A vector tangent to the line is $\mathbf{v}=\overrightarrow{P Q}$, which is given by

$$
\mathbf{v}=\langle(3-1),(-2-2),(1+3)\rangle \quad \Rightarrow \quad \mathbf{v}=\langle 2,-4,4\rangle .
$$

We can use either P or Q to express the vector equation for the line. If we use P, then the vector equation of the line is

$$
\mathbf{r}(t)=\langle 1,2,-3\rangle+t\langle 2,-4,4\rangle .
$$

If we choose Q, the vector equation of the line is

$$
\mathbf{r}(s)=\langle 3,-2,1\rangle+s\langle 2,-4,4\rangle .
$$

We use s to do not confuse it with the t above.

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Solution: The parametric equation of the line is simple to obtain once the vector equation is known. Since

$$
\mathbf{r}(t)=\langle 1,2,-3\rangle+t\langle 2,-4,4\rangle
$$

then $\langle x(t), y(t), z(t)\rangle=\langle(1+2 t),(2-4 t),(-3+4 t)\rangle$.

Parametric equation of a line.

Example

Find both the vector equation and the parametric equation of the line containing the points $P=(1,2,-3)$ and $Q=(3,-2,1)$.

Solution: The parametric equation of the line is simple to obtain once the vector equation is known. Since

$$
\mathbf{r}(t)=\langle 1,2,-3\rangle+t\langle 2,-4,4\rangle
$$

then $\langle x(t), y(t), z(t)\rangle=\langle(1+2 t),(2-4 t),(-3+4 t)\rangle$.
Then, the parametric equations of the line are given by

$$
\begin{aligned}
& x(t)=1+2 t \\
& y(t)=2-4 t \\
& z(t)=-3+4 t
\end{aligned}
$$

Parallel lines, perpendicular lines, intersections

Definition

The lines $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$ and $\hat{\mathbf{r}}(t)=\hat{\mathbf{r}}_{0}+t \hat{\mathbf{v}}$ are parallel iff their tangent vectors \mathbf{v} and $\hat{\mathbf{v}}$ are parallel; they are perpendicular iff \mathbf{v} and $\hat{\mathbf{v}}$ are perpendicular; and the lines intersect iff they have a common point.

Parallel lines, perpendicular lines, intersections

Definition

The lines $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$ and $\hat{\mathbf{r}}(t)=\hat{\mathbf{r}}_{0}+t \hat{\mathbf{v}}$ are parallel iff their tangent vectors \mathbf{v} and $\hat{\mathbf{v}}$ are parallel; they are perpendicular iff \mathbf{v} and $\hat{\mathbf{v}}$ are perpendicular; and the lines intersect iff they have a common point.

Perpendicular lines in space may not intersect.

Parallel lines, perpendicular lines, intersections

Definition

The lines $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$ and $\hat{\mathbf{r}}(t)=\hat{\mathbf{r}}_{0}+t \hat{\mathbf{v}}$ are parallel iff their tangent vectors \mathbf{v} and $\hat{\mathbf{v}}$ are parallel; they are perpendicular iff \mathbf{v} and $\hat{\mathbf{v}}$ are perpendicular; and the lines intersect iff they have a common point.

Perpendicular lines in space may not intersect. Non-parallel lines in space may not intersect.

Parallel lines, perpendicular lines, intersections

Example

Find the line through $P=(1,1,1)$ and parallel to the line
$\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Parallel lines, perpendicular lines, intersections

Example

Find the line through $P=(1,1,1)$ and parallel to the line
$\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$
Solution:
We need to find \mathbf{r}_{0} and \mathbf{v} such that $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.

Parallel lines, perpendicular lines, intersections

Example

Find the line through $P=(1,1,1)$ and parallel to the line
$\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$
Solution:
We need to find \mathbf{r}_{0} and \mathbf{v} such that $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.
The vector \mathbf{r}_{0} is simple to find: $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 1,1,1\rangle$.

Parallel lines, perpendicular lines, intersections

Example

Find the line through $P=(1,1,1)$ and parallel to the line
$\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$
Solution:
We need to find \mathbf{r}_{0} and \mathbf{v} such that $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.
The vector \mathbf{r}_{0} is simple to find: $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 1,1,1\rangle$.
The vector \mathbf{v} is simple to find too: $\mathbf{v}=\langle 2,-1,1\rangle$.

Parallel lines, perpendicular lines, intersections

Example

Find the line through $P=(1,1,1)$ and parallel to the line
$\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$
Solution:
We need to find \mathbf{r}_{0} and \mathbf{v} such that $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$.
The vector \mathbf{r}_{0} is simple to find: $\mathbf{r}_{0}=\overrightarrow{O P}=\langle 1,1,1\rangle$.
The vector \mathbf{v} is simple to find too: $\mathbf{v}=\langle 2,-1,1\rangle$.
We conclude: $\mathbf{r}(t)=\langle 1,1,1\rangle+t\langle 2,-1,1\rangle$.

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$.

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$. Writing $S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle$,

$$
\overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$. Writing $S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle$,

$$
\overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to

$$
\begin{aligned}
& \hat{\mathbf{v}}=\langle 2,-1,1\rangle \text {. Writing } S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle, \\
& \overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle \quad \Leftrightarrow \quad \overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=0 .
\end{aligned}
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to

$$
\begin{aligned}
& \hat{\mathbf{v}}=\langle 2,-1,1\rangle . \text { Writing } S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle, \\
& \overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle \quad \Leftrightarrow \quad \overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=0 . \\
& 0=\overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=4 t+(-1+t)+(2+t)=6 t+1
\end{aligned}
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$. Writing $S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle$,

$$
\begin{aligned}
& \overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle \quad \Leftrightarrow \quad \overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=0 . \\
& 0=\overrightarrow{P S}_{t} \cdot \hat{\mathbf{v}}=4 t+(-1+t)+(2+t)=6 t+1 \quad \Rightarrow \quad t_{0}=-\frac{1}{6}
\end{aligned}
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$. Writing $S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle$,

$$
\begin{gathered}
\overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle \quad \Leftrightarrow \quad \overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=0 . \\
0=\overrightarrow{P S}_{t} \cdot \hat{\mathbf{v}}=4 t+(-1+t)+(2+t)=6 t+1 \quad \Rightarrow \quad t_{0}=-\frac{1}{6} . \\
\overrightarrow{P S_{0}}=\left\langle-\frac{2}{6},\left(1+\frac{1}{6}\right),\left(2-\frac{1}{6}\right)\right\rangle \Rightarrow \overrightarrow{P S_{0}}=\frac{1}{6}\langle-2,7,11\rangle .
\end{gathered}
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$. Writing $S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle$,

$$
\begin{aligned}
& \overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle \quad \Leftrightarrow \quad \overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=0 \\
& 0=\overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=4 t+(-1+t)+(2+t)=6 t+1 \quad \Rightarrow \quad t_{0}=-\frac{1}{6} \\
& \overrightarrow{P S_{0}}=\left\langle-\frac{2}{6},\left(1+\frac{1}{6}\right),\left(2-\frac{1}{6}\right)\right\rangle \Rightarrow \overrightarrow{P S_{0}}=\frac{1}{6}\langle-2,7,11\rangle \\
& \mathbf{r}(t)=\overrightarrow{O P}+t \overrightarrow{P S_{0}}
\end{aligned}
$$

Example

Find the line through $P=(1,1,1)$ perpendicular to and intersecting the line $\hat{\mathbf{r}}(t)=\langle 1,2,3\rangle+t\langle 2,-1,1\rangle$

Solution:
Find a point S on the intersection such that $\overrightarrow{P S}$ is perpendicular to $\hat{\mathbf{v}}=\langle 2,-1,1\rangle$. Writing $S_{t}=\hat{\mathbf{r}}(t)=\langle(1+2 t),(2-t),(3+t)\rangle$,

$$
\begin{gathered}
\overrightarrow{P S_{t}}=\langle 2 t,(1-t),(2+t)\rangle \perp \hat{\mathbf{v}}=\langle 2,-1,1\rangle \quad \Leftrightarrow \quad \overrightarrow{P S_{t}} \cdot \hat{\mathbf{v}}=0 . \\
0=\overrightarrow{P S}_{t} \cdot \hat{\mathbf{v}}=4 t+(-1+t)+(2+t)=6 t+1 \quad \Rightarrow \quad t_{0}=-\frac{1}{6} . \\
\overrightarrow{P S_{0}}=\left\langle-\frac{2}{6},\left(1+\frac{1}{6}\right),\left(2-\frac{1}{6}\right)\right\rangle \Rightarrow \overrightarrow{P S_{0}}=\frac{1}{6}\langle-2,7,11\rangle . \\
\mathbf{r}(t)=\overrightarrow{O P}+t \overrightarrow{P S_{0}} \Rightarrow \mathbf{r}(t)=\langle 1,1,1\rangle+\frac{t}{6}\langle-2,7,11\rangle .
\end{gathered}
$$

Lines and planes in space (Sect. 12.5)

Lines in space

- Review: Lines on a plane.
- The equations of lines in space:
- Vector equation.
- Parametric equation.
- Distance from a point to a line.

Distance from a point to a line.

Theorem

The distance from a point S in space to a line through the point P with tangent vector \mathbf{v} is given by

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

Distance from a point to a line.

Proof.

The distance from the point S to the line passing by the point P with tangent vector \mathbf{v} is given by

$$
d=|\overrightarrow{P S}| \sin (\theta)
$$

Recalling that $|\overrightarrow{P S} \times \mathbf{v}|=|\overrightarrow{P S}||\mathbf{v}| \sin (\theta)$, we conclude that

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

Distance from a point to a line.

Example

Find the distance from the point
$S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.

Distance from a point to a line.

Example

Find the distance from the point
$S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.

Solution:
First we need to compute the vector equation of the line above.
This line has tangent vector $\mathbf{v}=\langle-1,2,2\rangle$.

Distance from a point to a line.

Example

Find the distance from the point
$S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.

Solution:
First we need to compute the vector equation of the line above.
This line has tangent vector $\mathbf{v}=\langle-1,2,2\rangle$.
(The vector components are the numbers that multiply t.)

Distance from a point to a line.

Example

Find the distance from the point
$S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.

Solution:
First we need to compute the vector equation of the line above.
This line has tangent vector $\mathbf{v}=\langle-1,2,2\rangle$.
(The vector components are the numbers that multiply t.)
This line contains the vector $P=(2,-1,2)$.

Distance from a point to a line.

Example

Find the distance from the point
$S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.

Solution:
First we need to compute the vector equation of the line above.
This line has tangent vector $\mathbf{v}=\langle-1,2,2\rangle$.
(The vector components are the numbers that multiply t.)
This line contains the vector $P=(2,-1,2)$.
(Just evaluate the line above at $t=0$.)

Distance from a point to a line.

Example

Find the distance from the point
$S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.

Solution:
First we need to compute the vector equation of the line above.
This line has tangent vector $\mathbf{v}=\langle-1,2,2\rangle$.
(The vector components are the numbers that multiply t.)
This line contains the vector $P=(2,-1,2)$.
(Just evaluate the line above at $t=0$.)
Therefore, $\overrightarrow{P S}=\langle-1,3,-1\rangle$.

Example

Find the distance from the point $S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.
Solution:
So far: $P=(2,-1,2), \mathbf{v}=\langle-1,2,2\rangle$, and $\overrightarrow{P S}=\langle-1,3,-1\rangle$.

Example

Find the distance from the point $S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.
Solution:
So far: $P=(2,-1,2), \mathbf{v}=\langle-1,2,2\rangle$, and $\overrightarrow{P S}=\langle-1,3,-1\rangle$. Since $d=|\overrightarrow{P S} \times \mathbf{v}| /|\mathbf{v}|$, we need to compute:

$$
\overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 3 & -1 \\
-1 & 2 & 2
\end{array}\right|=(6+2) \mathbf{i}-(-2-1) \mathbf{j}+(-2+3) \mathbf{k}
$$

that is, $\overrightarrow{P S} \times \mathbf{v}=\langle 8,3,1\rangle$.

Example

Find the distance from the point $S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.
Solution:
So far: $P=(2,-1,2), \mathbf{v}=\langle-1,2,2\rangle$, and $\overrightarrow{P S}=\langle-1,3,-1\rangle$. Since $d=|\overrightarrow{P S} \times \mathbf{v}| /|\mathbf{v}|$, we need to compute:

$$
\overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 3 & -1 \\
-1 & 2 & 2
\end{array}\right|=(6+2) \mathbf{i}-(-2-1) \mathbf{j}+(-2+3) \mathbf{k}
$$

that is, $\overrightarrow{P S} \times \mathbf{v}=\langle 8,3,1\rangle$. We then compute the lengths:

$$
|\overrightarrow{P S} \times \mathbf{v}|=\sqrt{64+9+1}=\sqrt{74}, \quad|\mathbf{v}|=\sqrt{1+4+4}=3
$$

Example

Find the distance from the point $S=(1,2,1)$ to the line
$x=2-t, \quad y=-1+2 t, \quad z=2+2 t$.
Solution:
So far: $P=(2,-1,2), \mathbf{v}=\langle-1,2,2\rangle$, and $\overrightarrow{P S}=\langle-1,3,-1\rangle$. Since $d=|\overrightarrow{P S} \times \mathbf{v}| /|\mathbf{v}|$, we need to compute:

$$
\overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 3 & -1 \\
-1 & 2 & 2
\end{array}\right|=(6+2) \mathbf{i}-(-2-1) \mathbf{j}+(-2+3) \mathbf{k},
$$

that is, $\overrightarrow{P S} \times \mathbf{v}=\langle 8,3,1\rangle$. We then compute the lengths:

$$
|\overrightarrow{P S} \times \mathbf{v}|=\sqrt{64+9+1}=\sqrt{74}, \quad|\mathbf{v}|=\sqrt{1+4+4}=3
$$

The distance from S to the line is $d=\sqrt{74} / 3$.

Exercise

Consider the lines

$$
\begin{array}{ll}
x(t)=1+t, & x(s)=2 s \\
y(t)=\frac{3}{2}+3 t, \\
z(t)=-t, & y(s)=1+s \\
z(s)=-2+4 s .
\end{array}
$$

Are the lines parallel? Do they intersect?

Answer:
The lines are not parallel.
The lines intersect at $P=\left(1, \frac{3}{2}, 0\right)$.

Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

A point an a vector determine a plane.

Definition

Given a point P_{0} and a non-zero vector \mathbf{n} in \mathbb{R}^{3}, the plane by P_{0} perpendicular to \mathbf{n} is the set of points P solution of the equation

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0
$$

A point an a vector determine a plane.

Definition

Given a point P_{0} and a non-zero vector \mathbf{n} in \mathbb{R}^{3}, the plane by P_{0} perpendicular to \mathbf{n} is the set of points P solution of the equation

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0
$$

A point an a vector determine a plane.

Example

Does the point $P=(1,2,3)$ belong to the plane containing $P_{0}=(3,1,2)$ and perpendicular to $\mathbf{n}=\langle 1,1,1\rangle$?

A point an a vector determine a plane.

Example

Does the point $P=(1,2,3)$ belong to the plane containing $P_{0}=(3,1,2)$ and perpendicular to $\mathbf{n}=\langle 1,1,1\rangle$?

Solution: We need to know if the vector $\overrightarrow{P_{0} P}$ is perpendicular to \mathbf{n}.

A point an a vector determine a plane.

Example

Does the point $P=(1,2,3)$ belong to the plane containing $P_{0}=(3,1,2)$ and perpendicular to $\mathbf{n}=\langle 1,1,1\rangle$?

Solution: We need to know if the vector $\overrightarrow{P_{0} P}$ is perpendicular to \mathbf{n}. We first compute $\overrightarrow{P_{0} P}$ as follows,

$$
\overrightarrow{P_{0} P}=\langle(1-3),(2-1),(3-2)\rangle \quad \Rightarrow \quad \overrightarrow{P_{0} P}=\langle-2,1,1\rangle .
$$

A point an a vector determine a plane.

Example

Does the point $P=(1,2,3)$ belong to the plane containing $P_{0}=(3,1,2)$ and perpendicular to $\mathbf{n}=\langle 1,1,1\rangle$?

Solution: We need to know if the vector $\overrightarrow{P_{0} P}$ is perpendicular to \mathbf{n}. We first compute $\overrightarrow{P_{0} P}$ as follows,

$$
\overrightarrow{P_{0} P}=\langle(1-3),(2-1),(3-2)\rangle \quad \Rightarrow \quad \overrightarrow{P_{0} P}=\langle-2,1,1\rangle
$$

This vector is orthogonal to \mathbf{n}, since

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=-2+1+1=0
$$

We conclude that P belongs to the plane.

Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

Equation of a plane in Cartesian coordinates

Theorem
Given any Cartesian coordinate system, the point $P=(x, y, z)$ belongs to the plane by $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to $\mathbf{n}=\left\langle n_{x}, n_{y}, n_{z}\right\rangle$ iff holds

$$
\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}=0
$$

Furthermore, the equation above can be written as

$$
n_{x} x+n_{y} y+n_{z} z=d, \quad d=n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}
$$

Equation of a plane in Cartesian coordinates

Theorem
Given any Cartesian coordinate system, the point $P=(x, y, z)$ belongs to the plane by $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to $\mathbf{n}=\left\langle n_{x}, n_{y}, n_{z}\right\rangle$ iff holds

$$
\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}=0
$$

Furthermore, the equation above can be written as

$$
n_{x} x+n_{y} y+n_{z} z=d, \quad d=n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}
$$

Proof.
In Cartesian coordinates $\overrightarrow{P_{0} P}=\left\langle\left(x-x_{0}\right),\left(y-y_{0}\right),\left(z-z_{0}\right)\right\rangle$.
Therefore, the equation of the plane is

$$
0=\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}
$$

Equation of a plane in Cartesian coordinates

Example

Find the equation of a plane containing $P_{0}=(1,2,3)$ and perpendicular to $\mathbf{n}=\langle 1,-1,2\rangle$.

Equation of a plane in Cartesian coordinates

Example

Find the equation of a plane containing $P_{0}=(1,2,3)$ and perpendicular to $\mathbf{n}=\langle 1,-1,2\rangle$.
Solution: The point $P=(x, y, z)$ belongs to the plane above iff $\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0$, that is,

$$
\langle(x-1),(y-2),(z-3)\rangle \cdot\langle 1,-1,2\rangle=0
$$

Equation of a plane in Cartesian coordinates

Example

Find the equation of a plane containing $P_{0}=(1,2,3)$ and perpendicular to $\mathbf{n}=\langle 1,-1,2\rangle$.
Solution: The point $P=(x, y, z)$ belongs to the plane above iff $\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0$, that is,

$$
\langle(x-1),(y-2),(z-3)\rangle \cdot\langle 1,-1,2\rangle=0
$$

Computing the dot product above we get

$$
(x-1)-(y-2)+2(z-3)=0
$$

Equation of a plane in Cartesian coordinates

Example

Find the equation of a plane containing $P_{0}=(1,2,3)$ and perpendicular to $\mathbf{n}=\langle 1,-1,2\rangle$.
Solution: The point $P=(x, y, z)$ belongs to the plane above iff $\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=0$, that is,

$$
\langle(x-1),(y-2),(z-3)\rangle \cdot\langle 1,-1,2\rangle=0 .
$$

Computing the dot product above we get

$$
(x-1)-(y-2)+2(z-3)=0 .
$$

The equation of the plane can be also written as

$$
x-y+2 z=5 .
$$

Equation of a plane in Cartesian coordinates

Example

Find a point P_{0} and the perpendicular vector \mathbf{n} to the plane $2 x+4 y-z=3$.

Equation of a plane in Cartesian coordinates

Example

Find a point P_{0} and the perpendicular vector \mathbf{n} to the plane $2 x+4 y-z=3$.

Solution: We know that the general equation of a plane is

$$
n_{x} x+n_{y} y+n_{z} z=d
$$

The components of the vector \mathbf{n}, called normal vector, are the coefficients that multiply the variables x, y and z.

Equation of a plane in Cartesian coordinates

Example

Find a point P_{0} and the perpendicular vector \mathbf{n} to the plane $2 x+4 y-z=3$.

Solution: We know that the general equation of a plane is

$$
n_{x} x+n_{y} y+n_{z} z=d
$$

The components of the vector \mathbf{n}, called normal vector, are the coefficients that multiply the variables x, y and z. Therefore,

$$
\mathbf{n}=\langle 2,4,-1\rangle
$$

Equation of a plane in Cartesian coordinates

Example

Find a point P_{0} and the perpendicular vector \mathbf{n} to the plane $2 x+4 y-z=3$.

Solution: We know that the general equation of a plane is

$$
n_{x} x+n_{y} y+n_{z} z=d
$$

The components of the vector \mathbf{n}, called normal vector, are the coefficients that multiply the variables x, y and z. Therefore,

$$
\mathbf{n}=\langle 2,4,-1\rangle .
$$

A point P_{0} on the plane is simple to find. Just look for the intersection of the plane with one of the coordinate axis.

Equation of a plane in Cartesian coordinates

Example

Find a point P_{0} and the perpendicular vector \mathbf{n} to the plane $2 x+4 y-z=3$.

Solution: We know that the general equation of a plane is

$$
n_{x} x+n_{y} y+n_{z} z=d
$$

The components of the vector \mathbf{n}, called normal vector, are the coefficients that multiply the variables x, y and z. Therefore,

$$
\mathbf{n}=\langle 2,4,-1\rangle
$$

A point P_{0} on the plane is simple to find. Just look for the intersection of the plane with one of the coordinate axis.
For example: set $y=0, z=0$ and find x from the equation of the plane: $2 x=3$, that is $x=3 / 2$.

Equation of a plane in Cartesian coordinates

Example

Find a point P_{0} and the perpendicular vector \mathbf{n} to the plane $2 x+4 y-z=3$.

Solution: We know that the general equation of a plane is

$$
n_{x} x+n_{y} y+n_{z} z=d
$$

The components of the vector \mathbf{n}, called normal vector, are the coefficients that multiply the variables x, y and z. Therefore,

$$
\mathbf{n}=\langle 2,4,-1\rangle .
$$

A point P_{0} on the plane is simple to find. Just look for the intersection of the plane with one of the coordinate axis.
For example: set $y=0, z=0$ and find x from the equation of the plane: $2 x=3$, that is $x=3 / 2$. Therefore, $P_{0}=(3 / 2,0,0)$.

Equation of a plane in Cartesian coordinates

Example

Find the equation of the plane
containing the points $P=(2,0,0)$,
$Q=(0,2,1), R=(1,0,3)$.

Equation of a plane in Cartesian coordinates

Example

Find the equation of the plane containing the points $P=(2,0,0)$,
$Q=(0,2,1), R=(1,0,3)$.

Equation of a plane in Cartesian coordinates

Example

Find the equation of the plane containing the points $P=(2,0,0)$,
$Q=(0,2,1), R=(1,0,3)$.

Solution:
Find two tangent vectors to the plane, for example, $P Q=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

Equation of a plane in Cartesian coordinates

Example

Find the equation of the plane containing the points $P=(2,0,0)$,
$Q=(0,2,1), R=(1,0,3)$.

Solution:
Find two tangent vectors to the plane, for example, $P Q=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

Equation of a plane in Cartesian coordinates

Solution:
Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

Equation of a plane in Cartesian coordinates

Solution:

Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

A normal vector \mathbf{n} to the plane tangent to $\overrightarrow{P Q}^{\mathrm{x}}$ and $\overrightarrow{P R}$ can be obtained using the cross product: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$.

Equation of a plane in Cartesian coordinates

Solution:

Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

A normal vector \mathbf{n} to the plane tangent to $\overrightarrow{P Q}^{x}$ and $\overrightarrow{P R}$ can be obtained using the cross product: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$. That is,

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 2 & 1 \\
-1 & 0 & 3
\end{array}\right|=(6-0) \mathbf{i}-(-6+1) \mathbf{j}+(0+2) \mathbf{k}
$$

The result is: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 6,5,2\rangle$.

Equation of a plane in Cartesian coordinates

Solution:

Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

A normal vector \mathbf{n} to the plane tangent to $\overrightarrow{P Q}^{x}$ and $\overrightarrow{P R}$ can be obtained using the cross product: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$. That is,

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 2 & 1 \\
-1 & 0 & 3
\end{array}\right|=(6-0) \mathbf{i}-(-6+1) \mathbf{j}+(0+2) \mathbf{k} .
$$

The result is: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 6,5,2\rangle$.
Choose any point on the plane, say $P=(2,0,0)$.

Equation of a plane in Cartesian coordinates

Solution:

Find two tangent vectors to the plane, for example, $\overrightarrow{P Q}=\langle-2,2,1\rangle$ and $\overrightarrow{P R}=\langle-1,0,3\rangle$.

A normal vector \mathbf{n} to the plane tangent to $\overrightarrow{P Q}^{x}$ and $\overrightarrow{P R}$ can be obtained using the cross product: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$. That is,

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 2 & 1 \\
-1 & 0 & 3
\end{array}\right|=(6-0) \mathbf{i}-(-6+1) \mathbf{j}+(0+2) \mathbf{k}
$$

The result is: $\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 6,5,2\rangle$.
Choose any point on the plane, say $P=(2,0,0)$.
Then, the equation of the plane is: $6(x-2)+5 y+2 z=0$.

Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

Solution:

We need to find a vector perpendicular to both normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

Solution:

We need to find a vector perpendicular to both normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

Solution:

We need to find a vector perpendicular to both normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.

We choose $\mathbf{v}=\mathbf{N} \times \mathbf{n}$.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

Solution:
We need to find a vector perpendicular to both normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.

We choose $\mathbf{v}=\mathbf{N} \times \mathbf{n}$. That is,

$$
\mathbf{v}=\mathbf{N} \times \mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & -1 \\
2 & 1 & -3
\end{array}\right|=(-6+1) \mathbf{i}-(3+2) \mathbf{j}+(-1-4) \mathbf{k}
$$

Result: $\mathbf{v}=\langle-5,-5,-5\rangle$.

The line of intersection of two planes.

Example

Find a vector tangent to the line of intersection of the planes
$2 x+y-3 z=2$ and $-x+2 y-z=1$.

Solution:
We need to find a vector perpendicular to both normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.

We choose $\mathbf{v}=\mathbf{N} \times \mathbf{n}$. That is,

$$
\mathbf{v}=\mathbf{N} \times \mathbf{n}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 2 & -1 \\
2 & 1 & -3
\end{array}\right|=(-6+1) \mathbf{i}-(3+2) \mathbf{j}+(-1-4) \mathbf{k}
$$

Result: $\mathbf{v}=\langle-5,-5,-5\rangle$. A simpler choice is $\mathbf{v}=\langle 1,1,1\rangle$.

Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

Parallel planes and angle between planes

Definition

Two planes are parallel if their normal vectors are parallel. The angle between two non-parallel planes is the smaller angle between their normal vectors.

Parallel planes and angle between planes

Example

Find the angle between the planes $2 x+y-3 z=2$ and $-x+2 y-z=1$.

Parallel planes and angle between planes

Example

Find the angle between the planes $2 x+y-3 z=2$ and
$-x+2 y-z=1$.
Solution: We need to find the angle between the normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.

Parallel planes and angle between planes

Example

Find the angle between the planes $2 x+y-3 z=2$ and
$-x+2 y-z=1$.
Solution: We need to find the angle between the normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.
We use the dot product: $\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}$.

Parallel planes and angle between planes

Example

Find the angle between the planes $2 x+y-3 z=2$ and
$-x+2 y-z=1$.
Solution: We need to find the angle between the normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.
We use the dot product: $\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}$.
The numbers we need are:

$$
\begin{gathered}
\mathbf{n} \cdot \mathbf{N}=-2+2+3=3 \\
|\mathbf{n}|=\sqrt{4+1+9}=\sqrt{14}, \quad|\mathbf{N}|=\sqrt{1+4+1}=\sqrt{6}
\end{gathered}
$$

Parallel planes and angle between planes

Example

Find the angle between the planes $2 x+y-3 z=2$ and
$-x+2 y-z=1$.
Solution: We need to find the angle between the normal vectors $\mathbf{n}=\langle 2,1,-3\rangle$ and $\mathbf{N}=\langle-1,2,-1\rangle$.
We use the dot product: $\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{N}}{|\mathbf{n}||\mathbf{N}|}$.
The numbers we need are:

$$
\begin{gathered}
\mathbf{n} \cdot \mathbf{N}=-2+2+3=3 \\
|\mathbf{n}|=\sqrt{4+1+9}=\sqrt{14}, \quad|\mathbf{N}|=\sqrt{1+4+1}=\sqrt{6}
\end{gathered}
$$

Therefore, $\cos (\theta)=3 / \sqrt{84}$. We conclude that

$$
\theta=70^{\circ} 53^{\prime} 36^{\prime \prime}
$$

Lines and planes in space (Sect. 12.5)

Planes in space.

- Equations of planes in space.
- Vector equation.
- Components equation.
- The line of intersection of two planes.
- Parallel planes and angle between planes.
- Distance from a point to a plane.

Distance formula from a point to a plane

Theorem
The distance d from a point P to a plane containing P_{0} with normal vector \mathbf{n} is the shortest distance from P to any point in the plane, and is given by the expression

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$

Distance formula from a point to a plane

Proof.
We need to proof the distance formula

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$

Distance formula from a point to a plane

Proof.
We need to proof the distance formula

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$

From the picture we see that

$$
d=\left|\left|\overrightarrow{P_{0} P}\right| \cos (\theta)\right|
$$

where θ is the angle between $\overrightarrow{P_{0} P}$ and \mathbf{n}, where the absolute value are needed since the distance is a non-negative number.

Distance formula from a point to a plane

Proof.
We need to proof the distance formula

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$

From the picture we see that

$$
d=\left|\left|\overrightarrow{P_{0} P}\right| \cos (\theta)\right|
$$

where θ is the angle between $\overrightarrow{P_{0} P}$ and \mathbf{n}, where the absolute value are needed since the distance is a non-negative number. Recall:

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=\left|\overrightarrow{P_{0} P}\right||\mathbf{n}| \cos (\theta) \quad \Rightarrow \quad\left|\overrightarrow{P_{0} P}\right| \cos (\theta)=\frac{\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}}{|\mathbf{n}|}
$$

Distance formula from a point to a plane

Proof.
We need to proof the distance formula

$$
d=\frac{\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right|}{|\mathbf{n}|}
$$

From the picture we see that

$$
d=\left|\left|\overrightarrow{P_{0} P}\right| \cos (\theta)\right|
$$

where θ is the angle between $\overrightarrow{P_{0} P}$ and \mathbf{n}, where the absolute value are needed since the distance is a non-negative number. Recall:

$$
\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}=\left|\overrightarrow{P_{0} P}\right||\mathbf{n}| \cos (\theta) \quad \Rightarrow \quad\left|\overrightarrow{P_{0} P}\right| \cos (\theta)=\frac{\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}}{|\mathbf{n}|}
$$

Take the absolute value above, and that is the formula for d.

Distance formula from a point to a plane

Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.

Distance formula from a point to a plane

Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.
Solution: We need to find a point P_{0} on the plane and its normal vector \mathbf{n}. Then use the formula $d=\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right| /|\mathbf{n}|$.

Distance formula from a point to a plane

Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.

Solution: We need to find a point P_{0} on the plane and its normal vector \mathbf{n}. Then use the formula $d=\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right| /|\mathbf{n}|$.
A point on the plane is simple to find: Choose a point that intersects one of the axis, for example $y=0, z=0$, and $x=4$.
That is, $P_{0}=(4,0,0)$.

Distance formula from a point to a plane

Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.
Solution: We need to find a point P_{0} on the plane and its normal vector \mathbf{n}. Then use the formula $d=\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right| /|\mathbf{n}|$.
A point on the plane is simple to find: Choose a point that intersects one of the axis, for example $y=0, z=0$, and $x=4$.
That is, $P_{0}=(4,0,0)$.
The normal vector is in the plane equation: $\mathbf{n}=\langle 1,-3,2\rangle$.

Distance formula from a point to a plane

Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.

Solution: We need to find a point P_{0} on the plane and its normal vector \mathbf{n}. Then use the formula $d=\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right| /|\mathbf{n}|$.
A point on the plane is simple to find: Choose a point that intersects one of the axis, for example $y=0, z=0$, and $x=4$.
That is, $P_{0}=(4,0,0)$.
The normal vector is in the plane equation: $\mathbf{n}=\langle 1,-3,2\rangle$.
We now compute $\overrightarrow{P_{0} P}=\langle-3,2,3\rangle$.

Distance formula from a point to a plane

Example

Find the distance from the point $P=(1,2,3)$ to the plane $x-3 y+2 z=4$.

Solution: We need to find a point P_{0} on the plane and its normal vector \mathbf{n}. Then use the formula $d=\left|\left(\overrightarrow{P_{0} P}\right) \cdot \mathbf{n}\right| /|\mathbf{n}|$.
A point on the plane is simple to find: Choose a point that intersects one of the axis, for example $y=0, z=0$, and $x=4$.
That is, $P_{0}=(4,0,0)$.
The normal vector is in the plane equation: $\mathbf{n}=\langle 1,-3,2\rangle$.
We now compute $\overrightarrow{P_{0} P}=\langle-3,2,3\rangle$. Then,

$$
d=\frac{|-3-6+6|}{\sqrt{1+9+4}} \quad \Rightarrow \quad d=\frac{3}{\sqrt{14}} .
$$

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres,

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

- Cones,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 .
$$

- Hyperboloids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

- Paraboloids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0 .
$$

- Saddles,

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z}{c}=0 .
$$

Cylinders.

Definition

Given a curve on a plane, called the generating curve, a cylinder is a surface in space generating by moving along the generating curve a straight line perpendicular to the plane containing the generating curve.

Cylinders.

Definition

Given a curve on a plane, called the generating curve, a cylinder is a surface in space generating by moving along the generating curve a straight line perpendicular to the plane containing the generating curve.

Example

A circular cylinder is the particular case when the generating curve is a circle. In the picture, the generating curve lies on the $x y$-plane.

Example

Find the equation of the cylinder given in the picture.

Example

Find the equation of the cylinder given in the picture.

Solution:
The intersection of the cylinder with the $z=0$ plane is a circle with radius r, hence points of the form $(x, y, 0)$ belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and $z=0$.

Example

Find the equation of the cylinder given in the picture.

Solution:

The intersection of the cylinder with the $z=0$ plane is a circle with radius r, hence points of the form $(x, y, 0)$ belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and $z=0$.
For $z \neq 0$, the intersection of horizontal planes of constant z with the cylinder again are circles of radius r, hence points of the form (x, y, z) belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and z constant.

Example

Find the equation of the cylinder given in the picture.

Solution:

The intersection of the cylinder with the $z=0$ plane is a circle with radius r, hence points of the form $(x, y, 0)$ belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and $z=0$.
For $z \neq 0$, the intersection of horizontal planes of constant z with the cylinder again are circles of radius r, hence points of the form (x, y, z) belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and z constant.
Summarizing, the equation of the cylinder is $x^{2}+y^{2}=r^{2}$. We do not mention the coordinate z, since the equation above holds for every value of $z \in R$.

Example

Find the equation of the cylinder given in the picture.

Example

Find the equation of the cylinder given in the picture.

Solution:
The generating curve is a circle, but this time on the plane $y=0$. Hence point of the form $(x, 0, z)$ belong to the cylinder iff $x^{2}+z^{2}=r^{2}$.

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a circle, but this time on the plane $y=0$. Hence point of the form $(x, 0, z)$ belong to the cylinder iff $x^{2}+z^{2}=r^{2}$.

We conclude that the equation of the cylinder above is

$$
x^{2}+z^{2}=r^{2}
$$

We do not mention the coordinate y, since the equation above holds for every value of $y \in \mathbb{R}$.

Example

Find the equation of the cylinder given in the picture.

Example

Find the equation of the cylinder given in the picture.

Solution:
The generating curve is a parabola on planes with constant y.

Example

Find the equation of the cylinder given in the picture.

Solution:
The generating curve is a parabola on planes with constant y.
This parabola contains the points $(0,0,0),(1,0,1)$, and $(2,0,4)$.

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a parabola on planes with constant y. This parabola contains the points $(0,0,0),(1,0,1)$, and $(2,0,4)$.
Since three points determine a unique parabola and $z=x^{2}$ contains these points, then at $y=0$ the generating curve is $z=x^{2}$.

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a parabola on planes with constant y.
This parabola contains the points $(0,0,0),(1,0,1)$, and $(2,0,4)$.
Since three points determine a unique parabola and $z=x^{2}$ contains these points, then at $y=0$ the generating curve is $z=x^{2}$.
The cylinder equation does not contain the coordinate y. Hence,

$$
z=x^{2}, \quad y \in \mathbb{R} .
$$

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres.
- Ellipsoids.
- Cones.
- Hyperboloids.
- Paraboloids.
- Saddles.

Quadratic surfaces.

Definition

Given constants a_{i}, b_{i} and c_{1}, with $i=1,2,3$, a quadratic surface in space is the set of points (x, y, z) solutions of the equation

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{1} x+b_{2} y+b_{3} z+c_{1}=0
$$

Quadratic surfaces.

Definition

Given constants a_{i}, b_{i} and c_{1}, with $i=1,2,3$, a quadratic surface in space is the set of points (x, y, z) solutions of the equation

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{1} x+b_{2} y+b_{3} z+c_{1}=0 .
$$

Remark:

- The coefficients b_{1}, b_{2}, b_{3} play a role moving around the surface in space.

Quadratic surfaces.

Definition

Given constants a_{i}, b_{i} and c_{1}, with $i=1,2,3$, a quadratic surface in space is the set of points (x, y, z) solutions of the equation

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{1} x+b_{2} y+b_{3} z+c_{1}=0
$$

Remark:

- The coefficients b_{1}, b_{2}, b_{3} play a role moving around the surface in space.
- We study only quadratic equations of the form:

$$
\begin{equation*}
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{3} z=c_{2} . \tag{1}
\end{equation*}
$$

Quadratic surfaces.

Definition

Given constants a_{i}, b_{i} and c_{1}, with $i=1,2,3$, a quadratic surface in space is the set of points (x, y, z) solutions of the equation

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{1} x+b_{2} y+b_{3} z+c_{1}=0
$$

Remark:

- The coefficients b_{1}, b_{2}, b_{3} play a role moving around the surface in space.
- We study only quadratic equations of the form:

$$
\begin{equation*}
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{3} z=c_{2} . \tag{1}
\end{equation*}
$$

- The surfaces below are rotations of the one in Eq. (1),

$$
\begin{aligned}
& a_{1} z^{2}+a_{2} x^{2}+a_{3} y^{2}+b_{3} y=c_{2}, \\
& a_{1} y^{2}+a_{2} x^{2}+a_{3} x^{2}+b_{3} x=c_{2} .
\end{aligned}
$$

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres.

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids.
- Cones.
- Hyperboloids.
- Paraboloids.
- Saddles.

Spheres.

Recall: We study only quadratic equations of the form:

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{3} z=c_{2} .
$$

Example

A sphere is a simple quadratic surface, the one in the picture has the equation

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1
$$

$\left(a_{1}=a_{2}=a_{3}=1 / r^{2}, b_{3}=0\right.$ and $c_{2}=1$.)

Equivalently, $\quad x^{2}+y^{2}+z^{2}=r^{2}$.

Spheres.

Recall: Linear terms move the surface around in space.
Example
Graph the surface given by the equation $x^{2}+y^{2}+z^{2}+4 y=0$.
Solution: Complete the square:

$$
x^{2}+\left[y^{2}+2\left(\frac{4}{2}\right) y+\left(\frac{4}{2}\right)^{2}\right]-\left(\frac{4}{2}\right)^{2}+z^{2}=0
$$

Therefore, $x^{2}+\left(y+\frac{4}{2}\right)^{2}+z^{2}=4$. This is the equation of a sphere centered at $P_{0}=(0,-2,0)$ and with radius $r=2$.

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres,

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids.
- Cones.
- Hyperboloids.
- Saddles.

Ellipsoids.

Definition

Given positive constants a, b, c, an ellipsoid centered at the origin is the set of point solution to the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Example

Graph the ellipsoid, $x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1$.

Example
Graph the ellipsoid, $x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1$.

Example

Graph the ellipsoid, $x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1$.
Solution:
On the plane $z=0$ we have the ellipse $x^{2}+\frac{y^{2}}{3^{2}}=1$.

Example

Graph the ellipsoid, $x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1$.
Solution:
On the plane $z=0$ we have the ellipse $x^{2}+\frac{y^{2}}{3^{2}}=1$.

On the plane $z=z_{0}$, with $-2<z_{0}<2$
we have the ellipse $x^{2}+\frac{y^{2}}{3^{2}}=\left(1-\frac{z_{0}^{2}}{2^{2}}\right)$.
Denoting $c=1-\left(z_{0}^{2} / 4\right)$, then
$0<c<1$, and $\frac{x^{2}}{c}+\frac{y^{2}}{3^{2} c}=1$.

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres,
$\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1$.
- Ellipsoids,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Cones, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
- Hyperboloids.
- Paraboloids.
- Saddles.

Cones.

Definition

Given positive constants a, b, a cone centered at the origin is the set of point solution to the equation

$$
z= \pm \sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}
$$

Example

Graph the cone,
$z=\sqrt{x^{2}+\frac{y^{2}}{3^{2}}}$.

Example
Graph the cone, $z=+\sqrt{\frac{x^{2}}{2^{2}}+y^{2}}$.

Example
Graph the cone, $z=+\sqrt{\frac{x^{2}}{2^{2}}+y^{2}}$.
Solution:

On the plane $z=1$ we have the ellipse $\frac{x^{2}}{2^{2}}+y^{2}=1$.

Example
Graph the cone, $z=+\sqrt{\frac{x^{2}}{2^{2}}+y^{2}}$.
Solution:

On the plane $z=1$ we have the ellipse $\frac{x^{2}}{2^{2}}+y^{2}=1$.

On the plane $z=z_{0}>0$ we have the ellipse $\frac{x^{2}}{2^{2}}+y^{2}=z_{0}^{2}$, that is, $\frac{x^{2}}{2^{2} z_{0}^{2}}+\frac{y^{2}}{z_{0}^{2}}=1$.

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres,

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

- Cones,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 .
$$

- Hyperboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids.
- Saddles.

Hyperboloids.

Definition

Given positive constants a, b, c, a one sheet hyperboloid centered at the origin is the set of point solution to the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

(One negative sign, one sheet.)

Example

Graph the hyperboloid, $x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Hyperboloids.

Example

Graph the hyperboloid $\quad x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Hyperboloids.

Example

Graph the hyperboloid $\quad x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

Hyperboloids.

Example

Graph the hyperboloid $x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=1+z_{0}^{2}
$$

Hyperboloids.

Example

Graph the hyperboloid $\quad x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=1+z_{0}^{2}
$$

- On vertical planes, $y=y_{0}$, we obtain hyperbolas

$$
x^{2}-z^{2}=1-\frac{y_{0}^{2}}{2^{2}}
$$

Hyperboloids.

Example

Graph the hyperboloid $\quad x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=1+z_{0}^{2}
$$

- On vertical planes, $y=y_{0}$, we obtain hyperbolas

$$
x^{2}-z^{2}=1-\frac{y_{0}^{2}}{2^{2}}
$$

- On vertical planes, $x=x_{0}$, we obtain hyperbolas

$$
\frac{y^{2}}{2^{2}}-z^{2}=1-x_{0}^{2}
$$

Hyperboloids.

Definition

Given positive constants a, b, c, a two sheet hyperboloid centered at the origin is the set of point solution to the equation

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(Two negative signs, two sheets.)

Example

Graph the hyperboloid, $-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Hyperboloids.

Example

Graph the hyperboloid
$-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Hyperboloids.

Example

Graph the hyperboloid
$-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

Hyperboloids.

Example

Graph the hyperboloid
$-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $\left|z_{0}\right|>1$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=-1+z_{0}^{2}
$$

Hyperboloids.

Example

Graph the hyperboloid
$-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $\left|z_{0}\right|>1$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=-1+z_{0}^{2}
$$

- On vertical planes, $y=y_{0}$, we obtain hyperbolas

$$
-x^{2}+z^{2}=1+\frac{y_{0}^{2}}{2^{2}}
$$

Hyperboloids.

Example

Graph the hyperboloid
$-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $\left|z_{0}\right|>1$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=-1+z_{0}^{2}
$$

- On vertical planes, $y=y_{0}$, we obtain hyperbolas

$$
-x^{2}+z^{2}=1+\frac{y_{0}^{2}}{2^{2}}
$$

- On vertical planes, $x=x_{0}$, we obtain hyperbolas

$$
-\frac{y^{2}}{2^{2}}+z^{2}=1+x_{0}^{2}
$$

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres,

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

- Cones,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
- Hyperboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0$.
- Saddles.

Paraboloids.

Definition

Given positive constants a, b, a paraboloid centered at the origin is the set of point solution to the equation

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Example

Graph the paraboloid, $z=x^{2}+\frac{y^{2}}{2^{2}}$.

Paraboloids.

Example
Graph the paraboloid $\quad z=x^{2}+\frac{y^{2}}{2^{2}}$.

Paraboloids.

Example
Graph the paraboloid $\quad z=x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

Paraboloids.

Example

Graph the paraboloid $\quad z=x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $z_{0}>0$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=z_{0}
$$

Paraboloids.

Example

Graph the paraboloid $\quad z=x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $z_{0}>0$, we obtain ellipses $x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.
- On vertical planes, $y=y_{0}$, we obtain parabolas $z=x^{2}+\frac{y_{0}^{2}}{2^{2}}$.

Paraboloids.

Example

Graph the paraboloid $\quad z=x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $z_{0}>0$, we obtain ellipses $x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.
- On vertical planes, $y=y_{0}$, we obtain parabolas $z=x^{2}+\frac{y_{0}^{2}}{2^{2}}$.
- On vertical planes, $x=x_{0}$, we obtain parabolas $z=x_{0}^{2}+\frac{y^{2}}{2^{2}}$.

Cylinders and quadratic surfaces (Sect. 12.6).

- Cylinders.
- Quadratic surfaces:
- Spheres,

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

- Cones,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 .
$$

- Hyperboloids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

- Paraboloids,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0 .
$$

- Saddles,

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z}{c}=0 .
$$

Saddles, or hyperbolic paraboloids.

Definition

Given positive constants a, b, c, a saddle centered at the origin is the set of point solution to the equation

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Example

Graph the paraboloid, $z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Saddles.

Example

Graph the saddle
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Saddles.

Example

Graph the saddle
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:
Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

Saddles.

Example

Graph the saddle
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On planes, $z=z_{0}$, we obtain hyperbolas $-x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.

Saddles.

Example

Graph the saddle
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On planes, $z=z_{0}$, we obtain hyperbolas $-x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.
- On planes, $y=y_{0}$, we obtain parabolas $z=-x^{2}+\frac{y_{0}^{2}}{2^{2}}$.

Saddles.

Example

Graph the saddle
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On planes, $z=z_{0}$, we obtain hyperbolas $-x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.
- On planes, $y=y_{0}$, we obtain parabolas $z=-x^{2}+\frac{y_{0}^{2}}{2^{2}}$.
- On planes, $x=x_{0}$, we obtain parabolas $z=-x_{0}^{2}+\frac{y^{2}}{2^{2}}$.

